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The continuous spectrum of a quantum mechanical (QM) system contains important information on the system.
However, the normalization of wave functions of the continuous spectrum is often difficult and therefore is often
omitted from the books on QM. We discuss this problem and show how we can overcome this problem technically,
with some examples.
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1. Introduction

A physical system in quantum mechanics is characterized
by its Hamiltonian, which is a self-adjoint operator in
a Hilbert Space. Assume for now that the system is
one dimensional. Then the Hilbert space are complex
functions of a real variable ψ(x), such that∫ ∞

−∞
ψ∗(x)ψ(x)dx = A (finite) . (1)

The symbol ∗ stands for complex conjugate. The func-
tions ψ(x) are the states of the systems. If we define

φ(x) = 1
A1/2ψ(x), (2)

we say that we have normalized the wave function and
we have ∫ ∞

−∞
φ∗(x)φ(x)dx = 1 . (3)

Remark 1 In three dimensions, for central potentials,
the differential equations for the radial part of the eigen-
function is identical to the equation for one dimension
except by the centrifugal barrier. Also, the integrations
in equations (1) and (3) are from 0 to ∞.

Let uE(x) be an eigenfunction of a Hamiltonian H,
i.e.,

HuE(x) = EuE(x). (4)
Sometimes, only some (or none) of the eigenfunctions

are normalizable in the usual sense, the others (or all of
them) are such that∫ ∞

−∞
u∗

E(x)uE(x)dx = ∞ . (5)

*Correspondence email address: coutinho@dim.fm.usp.br

The values of E for such eigenfunctions form a contin-
uum interval, as we shall see. The eigenfunctions uE(x)
are said to be eigenfunctions of the continuous spectrum
of the Hamiltonian operator.

A very important property of the Hamiltonian is that
it has a complete set of eigenfunctions. They form a
complete set of functions in the sense that any state of
the system can be expanded in a series, integrals or a
mixture of both series and integrals of these functions,
that is,

ψ(x) =
∑

ciuEi
(x) +

∫
φ(E)uE(x)dE . (6)

where
ci =

∫
u∗

Ei
(x)ψ(x)dx (7)

and
φ(E) =

∫
u∗

E(x)ψ(x)dx . (8)

However, uEi and uE(x) must be properly normalized.
The summation over the bound states i (equation (7))
and the values of E in equation (8) depend on the system
under study, as we shall see later.

The eigenfunctions on the second term of the equation
(6) belong to the continuous spectrum and it is important
that the eigenfunctions be normalized, in a special way,
as we will explain below.

2. The location of the continuous
spectrum and its normalization

Consider the problem of a particle in one dimension
subjected to a potential that has the form shown in
Figure 1.
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e20190099-2 The normalization of wave functions of the continuous spectrum

Figure 1: A potential with possible bound states (between E−1
and E0) and continuous spectrum for E > E0 (with possible
resonances between E0 and E1).

Almost all books on quantum mechanics show that for
energies between E−1 and E0 there exist eigenfunctions
that are bound states, whose wave functions ψEi

(x) are
normalizable, that is,∫

dx |uEi(x)|2 = finite . (9)

If we have two or more normalizable states with the
same energy Ei = Ej we can arrange things so the∫

dxu∗
Ei

(x)uEj
(x) = δij . (10)

In the above formula, δij is 1 if i = j and zero other-
wise.

For energies greater than E0, the eigenfunctions are
not normalizable as in equation (2) because these wave
functions uE(x) are such that

||uE(x)|| =
∫
dxu∗

E(x)uE(x) = ∞ . (11)

These eigenfunctions are said to be of the continuous
spectrum of the Hamiltonian that in the above case
extends from E0 to ∞.

Figure 2 shows an even more interesting situation. In
this case, the potential is given by [1]

V (x) =
{

−V0 − Fx, 0 < x < a, (12)
−Fx, x > a.

In this case, the system have no normalizable eigenfunc-
tions and the spectrum is continuous from −∞ < E < ∞.

For the eigenfunctions of the continuous spectrum to
be useful, however, we have to “normalize” them in a
special way. It is possible to proof [2, p. 99] that, when
correctly normalized, any eigenfunction of the continuous
spectrum, say uE(x), is such that

||uE(x)uE′ (x)|| =
∫
u∗

E′(x)uE(x)dx = δ(E−E′), (13)

Figure 2: Graph of the potential given by equation (12).

where δ is the Dirac delta function. However, as stressed
above, one has to correctly normalize the uE(r). This
involves the difficult evaluation of divergent integrals
to show that the resulting mathematical objects are δ
functions [3, p. 237] [4, 5], that is, that in fact they obey
equation (13).

The purpose of this article is to show ways of perform-
ing these difficult calculations. In the next section, we
show three methods of normalizing the wave functions
of the continuous spectrum.

3. Methods of normalizing the wave
functions of the continuous spectrum

3.1. Calculating divergent integrals

This is, in general, the most difficult method and should
be used parsimoniously. It should be noted that divergent
integrals sometimes produces distributions but they are
not always the Dirac delta function distribution [6, p. 71],
that is, they do not obey equation (13). We shall elaborate
below about how to proof that a certain normalization
results in a delta function.

Example 1) Normalize the following eigenfun-
tions of the continuous spectrum of the following
problem [7]

Consider the Hamiltonian H = − d2

dx2 defined for 0 <
x < ∞ with boundary condition φ(0) = 0. The solution
of the equation Hφ = Eφ is φ = A sin(kx) where k2 = E.
To normalize φ we have to use the relation∫ ∞

0
sin(k1x) sin(k2x)dx = π

2 δ(k1 − k2), k1, k2 > 0, (14)

so that A =
( 2

π

)1/2.
To prove relation (14) we show that it obeys the fol-

lowing defining property of the Dirac Delta function,
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namely: ∫ ∞

0
f(k1)δ(k1 − k2)dk1 = f(k2). (15)

This property is actually a rigorous definition of the
Dirac delta function. If the reader feels uncomfortable
with this definition, he/she should read Remark 2 for
clarification.

To demonstrate (14) we calculate

lim
L→∞

∫ ∞

0
f(k1)dk1

∫ L

0
sin(k1x) sin(k2x)dx =

= 1
2πf(k2). (16)

The details of this calculation are presented in Brown-
stein [7] and repeated here for completeness and also
because there are a few misprints in his article

lim
L→∞

∫ ∞

0
f(k1)dk1

∫ L

0
sin(k1x) sin(k2x)dx =

= lim
L→∞

1
2

∫ ∞

0
f(k1)dk1

×
(

sin[(k1 − k2)L]
k1 − k2

− sin[(k1 + k2)L]
k1 + k2

)
. (17)

Consider the first integral and change variable

ξ

L
= (k1 − k2). (18)

Then the first integral becomes

lim
L→∞

1
2

∫ ∞

−k2L

f(k2+ ξ
L )dξ

L
ξ
L

sin ξ

= 1
2f(k2)

(∫ 0

−∞

sin ξ
ξ

dξ +
∫ ∞

0

sin ξ
ξ

dξ

)
= f(k2)

∫ ∞

0

sin ξ
ξ

dξ

= π

2 f(k2). (19)

We have used (see [8, p. 285])∫ ∞

0

sin x
x

dx = π

2 . (20)

The second integral gives zero in the limit L → ∞, as
can be easily verified. In fact, the second integral after
the transformation

ξ

L
= (k1 + k2) (21)

becomes

− lim
L→∞

1
2

∫ ∞

k2L

f(−k2+ ξ
L )dξ

L
ξ
L

sin ξ (22)

that vanishes because the lower limit of integration ap-
proaches ∞ as L → ∞.

Example 2) Normalize the following eigenfunc-
tion of the continuous spectrum of the following
problem

Consider the Hamiltonian − d2

dx2 defined for 0 < x < ∞
with boundary condition φ′(0) = 0. The eigenfunctions
of the problem Hφ(x) = Eφ(x) are φ(x) = B cos(kx)
where k2 = E.

To normalize φ(x) we use the relation∫ ∞

0
cos(k1x) cos(k2x)dx = π

2 δ(k1 − k2) (23)

and hence B =
( 2

π

)1/2.
The proof of this relation is identical to the proof of

relation (16).

Example 3) Normalize the following eigenfun-
tions of the continuous spectrum

Consider the Hamiltonian − d2

dx2 defined for 0 < x < ∞
with boundary condition ψ′(0) = αψ(0). The eigenfunc-
tions of this problem are

ψ(x) = cos(kx) + α

k
sin(kx) (24)

where k2 = E.
To normalize this function we need the relations (14),

(23) and the following relation∫ ∞

0
[k2 sin(k1x) cos(k2x) + k1 sin(k2x) cos(k1x)] dx = 0.

(25)
To prove equation (25) we replace the upper limit

of the integral by L, multiply by a function f(k1) and
integrate to get

lim
L→∞

∫ ∞

0
f(k1)dk1

∫ L

0
[k2 sin(k1x) cos(k2x)

+ k1 sin(k2x) cos(k1x)]dx =

lim
L→∞

∫ ∞

0
f(k1)dk1

∫ L

0

d

dx
[sin(k1x) sin(k2x)dx] =

lim
L→∞

∫ ∞

0
f(k1)dk1 sin(k1L) sin(k2L) = 0 , (26)

where we have used the relation (see [9, p. 310])

lim
L→∞

∫ ∞

0
f(k1) sin(k1L)dk1 = 0 . (27)

After some more calculations we get the properly nor-
malized eigenfunction which is

ψ(x) =
(

2
π

) 1
2

k
(
α2 + k2)− 1

2
(

cos(kx) + α

k
sin(kx)

)
.

(28)
We shall give another demonstration of this formula in
the example 5.
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3.2. Normalizing the eigenfunctions when
V (x) → 0 sufficiently fast as x → ∞

We first examine the equation that results for V (x) ≡ 0

− d2

dx2φ(x) = Eφ(x) (29)

with boundary conditions φ(0) = 0 and φ′(0) = 1.
We have only eigenfunctions of the continuous so that

we can write equations (6) and (8) as

ψ(x) =
∫ ∞

0
φ(E)uE(x)dE (30)

φ(E) =
∫ ∞

0
uE(x)ψ(x)dx. (31)

But since uE(x) = sin
√

Ex√
E

we have

φ(E) =
∫ ∞

0

sin
√
Ex√
E

ψ(x)dx (32)

and

ψ(x) =
∫ ∞

0
φ(E) sin

√
Ex√
E

dE. (33)

The correct normalization of a eigenfunction of the
continuous spectrum of a problem such that V (x) → 0
as x → ∞ is obtained by matching the eigenfunction to
equation (33) when x → ∞ [1].

Example 4) A square well
Consider the case when V (x) is given by V (x) = −V0

, (V0 > 0) for 0 < x < a and V (x) = 0 for x > a with
boundary condition ψ(0) = 0 (an impenetrable barrier
to the left).

The eigenfuction for E > 0 is given by

ψk(x) = A(k) sin(Kx) forx < a (34)

and

ψk(x) = B(k) (sin δ cos kx+ cos δ sin kx)
= B(k) sin(kx+ δ(k)) forx > a , (35)

where K = (E + V0)1/2 and k = E1/2.
The ratio B(k)/A(k) = C(k) can be determined by

imposing continuity of the eigenfunction at x = a and by
imposing continuity of the derivative of the eigenfunction
at x = a.

The wave function will be properly normalized by
imposing the condition C(k) = (2/π)1/2.

To proof that this recipe produces the proper normal-
ized eigenvalue we proceed as follows:

Consider the eigenfunction at two values of the energy
k1 and k2. Then using the Schrodinger equation we get∫ R

0
ψ∗

k1
ψk2dx = 1

k2
1 − k2

2

[
dψk2

dx
ψ∗

k1
− ψk2

dψk∗
1

dx

]R

0
.

(36)

At x = 0 the left hand side of the previous equation
gives zero and using the asymptotic value of the eigenfunc-
tions, namely C(k1) sin(k1x+δ1) and C(k2) sin(k2x+δ2),
we get ∫ R

0
ψ∗

k1
ψk2dx = 1

2(C(k1)C(k2))

×
{

1
k1 − k2

sin [(k1 − k2)R+ δ1 − δ2]

− 1
k1 + k2

sin [(k1 + k2)R+ δ1 + δ2]
}
. (37)

Now, we want to show that the mathematical object∫ R

0 ψ∗
k1
ψk2dx is proportional to δ(k1 − k2) as R → ∞.

To do this, we have to show that this object multiplied
by any good function f(k2) and integrated in R in this
limit gives f(k1).

The second part∫ R

0
−1

2(C(k1)C(k2))
{ 1
k1 + k2

× sin [(k1 + k2)R+ δ1 + δ2]
}
f(k2) dR (38)

gives zero because the term between brackets oscillates
violently as R → ∞.

The first part∫ R

0
−1

2(C(k1)C(k2))
{ 1
k1 − k2

× sin [(k1 − k2)R+ δ1 − δ2]
}
f(k2) dR (39)

also goes to zero if k1 6= k2. However when k1 → k2, δ1
cancels with δ2 and we are left with∫ R

0
−1

2(C(k1)C(k2))
{ 1
k1 − k2

sin [(k1 − k2)R]
}

f(k2)dR. (40)

Therefore, in the limit as R → ∞, we get

lim
R→∞

∫ R

0
−1

2(C(k1)C(k2))
{

1
k1 − k2

sin [(k1 − k2)R]
}

f(k2)dR = π

2 |C(k1)|2δ(k1 − k2)f(k1), (41)

as we showed in equation (16) above. A different approach
to this problem is shown in Remark 2.

Hence the proper normalization is obtained by making
|C(k)| = (2/π)1/2 as claimed. The eigenfunctions for
E > 0 are then given by

ψk(x) =
(

2
π

) 1
2

C(k)−1 sin(Kx), for x < a (42)

and

ψk(x) =
(

2
π

) 1
2

(sin δ cos kx+ cos δ sin kx)

=
(

2
π

) 1
2

sin(kx+ δ(k)), for x > a, (43)
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where K = (E + V0)1/2 and k = E1/2.
The above calculation was adapted from the book by

Perelomov and Zel’dovich [10, p. 53-55]. It is however
more convenient to use the following result, that can be
found in [3, p. 247] and that is based in the following
theorem:

Theorem 1 (Friedman [3]) The eigenfunctions of the
continuous spectrum uk(x) of the operator − d2

dx2 + V (x),
where V (x) vanishes when x → ∞ and uk(x) satisfies
some boundary condition at x = 0 are properly normalized
if they are solutions of the equation

d2uk(x)
dx2 + V (x)uk(x) = k2uk(x) (44)

and behave at infinity as(
1

2π

) 1
2

(e−ikx + S(k)eikx). (45)

Let’s apply this theorem to the problem considered
above.

Using equations (42) and (43) we can write

uk(x) = −
(

1
2π

) 1
2

eiδC(k)−1 sin(Kx), for x < a

(46)

and

uk(x) =
(

1
2π

) 1
2

(e−ikx − ei2δeikx), for x > a,

(47)

which is normalized according to the above theorem.

3.3. The Titchmarsh-Weil m-coefficient
(Everitt [11])

To normalize the eigenfunctions of the continuous spec-
trum of a problem that result from a potential like the
one shown in Figure 2 the following method is easier. We
mean easier in the sense that it does not require evalua-
tion of divergent integrals but may be very laborious.

We rewrite equation (6) as

ψ(x) =
∑

ciuEi
(x) +

∫
C(E)uE(x)ρ(E)dE. (48)

The function ρ(E) is called spectral density and is
related to the m-coefficient, that we shall define later in
section 3.3.1, by the formula:

Recipe 1:

ρ(E) = 1
2πi lim

ε→0
[m(E + iε) −m(E − iε)]

= 1
π

lim
ε→0

Im{m(E + iε)} , (49)

where Im{m(E+ iε)} means imaginary part of m(E+ iε).
In formula (48) the normalization of uE(x) is arbitrary

but ρ(E) must be calculated and it contains all the
information we need about the continuous spectrum of
the problem.

The normalization of uE(x) is obtained from equation
(48) as follows

ψ(x) =
∑

ciuEi(x) +
∫ (∫

u∗
E(x)ψ(x)dx

)
×uE(x)ρ(E)dE, (50)

where we have replaced C(E) in equation (49) by its
value given by equation (8).

So

ψ(x) =
∑

ciuEi
(x) +

∫ (∫
u∗

E(x)ρ1/2(E)ψ(x)dx
)

×uE(x)ρ1/2(E)dE. (51)

The function
uE(x)ρ1/2(E) (52)

is properly normalized.
We shall illustrate now the method with examples.

(An excellent example, the only one we could find in
the literature dedicated to physics teaching, is given in
reference [1].)

3.3.1. How to calculate the m-coefficient

We start with an operator given by its action (that is,
what it does when acting on the function)

− d2

dx2 + V (x), 0 ≤ x < ∞, (53)

and a boundary condition

ψ′(0) = αψ(0). (54)

For notational simplicity, we shall consider only the case
where the operator has only continuous spectrum.

Given a function f(x) we can write formula (48) as

C(E) =
∫ ∞

0
f(x)u∗

E(x)dx (55)

and its inverse

f(x) =
∫ ∞

0
C(E)uE(x)ρ(E)dE, (56)

where uE(x) are eigenfunctions of the operator (53), that
is,

− d2uE(x)
dx2 + V (x)uE(x) = EuE(x). (57)

The normalization of uE(x) is arbitrary, but ρ(E) must
be calculated using equation (49).

We now sketch how to calculate m(E).
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First we calculate two eigenfunctions of the operator,
uE(x) and γE(x), with Im{E} > 0, such that

uE(0) = 1, u′
E(0) = α (58)

and
γE(0) = 0, γ′

E(0) = −1. (59)

More generally we want two fundamental solutions
of the equation. That is, uE(x) and γE(x) must be lin-
early independent (Wronskian not zero) solutions of equa-
tion (57).

Recipe 2:
The m-coefficient is determined uniquely by the condi-

tion that γE(x) +m(E)uE(x) is square integrable, that
is, belongs to L2(0.∞).

3.3.2. Examples

Example 5) As a first example of the procedure
let’s return to the Example 3 of section 3.1.

We want to find the normalization of the eigenfunctions
of the operator

− d2

dx2uk(x) = k2uk(x) (60)

with boundary condition u′
k(0) = αuk(0). It is important

to remember that k2 is complex with Im{k} > 0.
Two fundamental solutions of equation (60) are

uk(x) = cos(kx) + α

k
sin(kx) (61)

and
γk(x) = − 1

k
sin(kx). (62)

Note that the function (61) is an eigenvalue of equa-
tion (60) that satisfies the boundary condition u′

k(0) =
αuk(0).

The m-coefficient can then be easily determined

γk(x) +m(k)uk(x) =
{
m(k)

[
1
2 − α

2ik

]
+ 1

2ik

}
e−ikx

+
{
m(k)

[
1
2 + α

2ik

]
− 1

2ik

}
e+ikx.

(63)

This is square integrable if

m(k)
[

1
2 − α

2ik

]
+ 1

2ik = 0. (64)

To see this, note that Im{k} > 0, therefore Re{e−ikx} =
e− Im{k}x but Re{eikx} = eIm{k}x and so equation (64)
has to be imposed. Re means real part.

From equation (64), we get

m(k) = 1
α− ik

. (65)

So that using equation (49)

ρ(k) = 1
π

k

k2 + α2 . (66)

We now return to equation (50)

ψ(x) =
∑

ciuEi(x)+
∫ (∫

u∗
E(x)ψ(x)dx

)
uE(x)ρ(E)dE.

Remembering that E = k2 so that dE = 2 k dk and
using equation (66), we get

ψ(x) =
(

2
π

) 1
2

k
(
α2 + k2)− 1

2
(

cos(kx) + α

k
sin(kx)

)
.

(67)
This is the same as equation (28).

Example 6) Normalize the functions of the Hamil-
tonian given by(

− d2

dx2 + V (x)
)
uE(x) = EuE(x), (68)

where the potential V (x) is given by

V (x) =
{

−V0 − Fx, 0 < x < a, (69)
−Fx, x > a

and the boundary condition uE(0) = 0.
This problem was completely solved in Dean and

Fulling [1] or Titchmarsh [12, p. 92]. However here we
describe only the solution for which V0 = 0 and we follow
Dean and Fulling [1].

First we put V0 = 0 in equation (69) and change
variables

z = −F 1/3x− F−2/3E (70)

and
ψ(x) = ω(z). (71)

Then equation

− d2ψ

dx2 − Fxψ = Eψ (72)

with boundary condition ψ(0) = 0 becomes

d2ω

dz2 − zω = 0, (73)

which is the Airy’s equation [13].
The Airy’s equation has two linearly independet solu-

tions: Ai(z) and Bi(z).
We need to find combinations of Ai(z) and Bi(z) that

satisfy (58) with α = 1 and (59). Write them as

uE(x) = a Ai(z) + b Bi(z) (74)
γE(x) = c Ai(z) + d Bi(z). (75)
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Now we invert (74) and (75) to write

Ai(z) = e uE(x) + f γE(x) (76)
Bi(z) = g uE(x) + h γE(x) (77)

where

e = −F 1/3(Ai)′(−F−2/3E), (78)
f = Ai(−F−2/3E), (79)
g = −F 1/3(Bi)′(−F−2/3E), (80)
h = Bi(−F−2/3E). (81)

Taking advantage of the fact that the Wronskian of
the Airy function is W [Ai(z),Bi(z)] = π−1, we calculate

a = πF−1/3 Bi(−F−2/3E), (82)
b = −πF−1/3 Ai(−F−2/3E), (83)
c = π(Bi)′(−F−2/3E), (84)
d = −π(Ai)′(−F−2/3E). (85)

We now have two functions uE(x) and γE(x) that
satisfy the differential equation (72) and the boundary
conditions (58) and (59).

We now must find a linear combination of these solu-
tions

γE(x) +m(E)uE(x) (86)
that is square integrable.

This linear combination found by asymptotic analysis
(see Dean and Fulling [1]) is

γE(x)+ i (Bi)′(−F−2/3E) − (Ai)′(−F−2/3E)
−i Bi(−F−2/3E) + Ai(−F−2/3E)

F 1/3uE(x) .

(87)
Readers unfamiliar with asymptotic analysis should

consult Wasow [14], Olver [15, p.54] or Mazzitelli et
al. [16].

Hence, by Recipe 2,

m(E) = i (Bi)′(−F−2/3E) − (Ai)′(−F−2/3E)
−i Bi(−F−2/3E) + Ai(−F−2/3E)

F 1/3,

(88)
and, by Recipe 1,

ρ(E) = F 1/3π−2/
[
Ai2

(
−F−2/3E

)
+ Bi2

(
−F−2/3E

)]
.

(89)
By replacing in equation (52) uE(x) given by equation

(74) and ρ1/2(E) given by the square root of equation
(89), we get

uE(x) =
{
πF−1/3 Bi(−F−2/3E) Ai(−F 1/3x− F−2/3E)+

− πF−1/3 Ai(−F−2/3E) Bi(−F 1/3x− F−2/3E)
}

×

× F 1/6

π

[
Ai2

(
−F−2/3E

)
+ Bi2

(
−F−2/3E

)]−1/2
,

(90)

which completes the solution.

Remark 2 Divergent integrals and the delta function

In section 3.1 we considered the following integral∫ ∞

0
sin(k1x) sin(k2x)dx (91)

which in the usual sense is at least dubious. We want to
show that it is in fact equal to π

2 δ(k1 − k2).
The symbol δ(k1 − k2) is a distribution in this case

the so-called Dirac Delta Function. A distribution is a
linear functional that when acting on a good function
produces a number. A simple example of a functional
is one generated by a function F (x). In fact, given any
good function f(x), this functional is given by∫ ∞

−∞
F (x)f(x) = Number. (92)

A delta function is a functional that acts in a function
as follows. ∫ ∞

−∞
δ(y − x)f(x) = f(y). (93)

Note that there is no ordinary function that generates
this functional.

So, we want to show that the mathematical object∫ ∞
0 sin(k1x) sin(k2x)dx is a delta function.
That is, we want to show that

2
π

∫ ∞

0
sin(k1x) sin(k2x)dx

= lim
L→∞

2
π

∫ L

0
sin(k1x) sin(k2x)dx (94)

behaves as

2
π

∫ ∞

0
lim

L→∞

∫ L

0
sin(k1x) sin(k2x)dxf(k1) = f(k2).

(95)
The manipulations carried out in section 3.1 show that

2
π

∫ ∞

0
sin(k1x) sin(k2x)dx = δ(k1 − k2). (96)

Another approach to obtain the δ function can be used,
and this was probably noticed by attentive readers. In
this approach, the δ function, δ(x), is defined as limits
of sequences that approach a function that is 0 if x 6= 0
and ∞ if x = 0.

One such sequence is

lim
a→∞

sin(ax)
a

= πδ(x). (97)

Note that, when k1 → k2, equation (37) becomes

1
2C

∗(k1)C(k2)
{

1
k1 − k2

sin[(k1 − k2)R]
}

(98)
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and, therefore, taking the limit as R → ∞ we get from
equation (97)

1
2 |C(k1)|2δ(k1 − k2). (99)

Many other sequences that tend to a δ function can be
found in [2, p.103] and the whole approach is explained
in [17].
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