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‘We discuss the construction of Maxwellian electrodynamics in 2 + 1 dimensions and some of its applications.
Special emphasis is given to the problem of the retarded potentials and radiation, where substantial differences
with respect to the usual three-dimensional case arise. These stem from the general form of the solutions of the
wave equation in two dimensions, which we discuss using the Green’s function method. We believe the topics
presented here could be stimulating additions to an advanced electrodynamics course at the undergraduate level.
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1. Introduction

Maxwell’s electrodynamics is a monumental construction
that became one of the most paradigmatic theories of
physics, if not the most celebrated one. In undergradu-
ate courses, it is often presented as the definition of a
complete theory: a construction whose internal machin-
ery alone allows for spectacular predictions, such as the
existence of electromagnetic waves.

In contemporary physics, it has become customary
to study successful physical theories in spacetimes with
a different number of dimensions. The motivation for
studies of this type go beyond mere scientific curiosity.
With the advent of Quantum Electrodynamics (QED)
one immediately started considering its realisations in
two and one spatial dimensions. Schwinger, in 1962, has
discussed some of the peculiarities of QED in a single
spatial dimensions [1]— a theory sometimes referred to
as the Schwinger model. It was shown that quantum cor-
rections generate a mass for the photon without breaking
gauge invariance, a rather peculiar fact. Also, it is known
that QED becomes confining in such a limit, i.e. isolated
monopoles cannot be found since they would be confined
in neutral bound states and an infinite amount of en-
ergy would be required to extract a charge from these
“atoms”. Therefore, QED in one spatial dimension is a
toy model for Quantum Chromodynamics (QCD), the
theory of strong interactions, which does exhibit confine-
ment in our universe. As a matter of fact, as of today,
our understanding of the spectrum of quark-antiquark
bound states is partially based on a solution of quantum
chromodynamics in a certain limit in only one spatial
dimension, due to ‘t Hooft [2].

It seems, therefore, that classical electrodynamics would
be an excellent framework to introduce undergraduate
students to the issues one may face when studying a
physical theory in a spacetime with a different number
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of spatial dimensions. However, a search for references
on Maxwell’s equations in two spatial dimensions reveals
that the available material is fragmented and scarce. The
present work is an attempt to fill part of this gap in the
spirit of an advanced undergraduate course on electro-
dynamics. Our main goal is to point out differences and
similarities between Maxwell equations — and part of
their phenomenology — in three and two spatial dimen-
sions. We believe this is an interesting topic to be covered
in courses at this level, and our experience shows that
motivated students find very interesting to understand
the construction of this theory and the potential impli-
cations for a hypothetical universe with only two spatial
dimensions.

Part of the material presented here can be found in
the literature, albeit in a fragmented form. About 30
years ago, a number of papers on the quantum solution
of the Hydrogen atom in 14+ 1 and 2 4 1 dimensionsﬂ
were published [3,/4]. In these papers, one can find short
discussions about the electric field and the Coulomb po-
tential in one and two spatial dimensions, since this is
the only necessary electromagnetic input to the wave-
mechanics calculation. Classical text books do not discuss
the topic [5/6]. To the best of our knowledge, the topic
was discussed in the spirit of our work in the Refs. [7}[8].
The unpublished work of Ref. [§] by K. T. McDonald is
probably the most self-contained in the literature and it
can be considered as the main reference of the present
paper. Here we will borrow part of the notation and the
strategy employed in [8]. However, we will develop in de-
tail topics that are not discussed in his work [’ such as the
retarded potentials and radiation in 2+ 1 dimensions. We

IWe will refer to the dimensions of space-time as D + 1, where D
is the number of spatial dimensions.

2 After the online publication of our manuscript, a new version of
Ref. |8] appeared encompassing some of the topics that we discuss
in the present work, as well as correcting an inconsistency found
by us in the expressions of the retarded potentials given in the
previous version of Ref. [8].
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also try to follow a physical reasoning in order to explain
some of the results that can appear as counterintuitive
when going from three to two spatial dimensions. With
this aim, it is useful to carefully consider the parallel
between the theory in the 2+1 world and usual electro-
dynamics with one dimension “stretched out” to infinity,
something that was first exploited by Hadamard [9].

In this work, we follow the idea that electrodynamics
— or a theory totally analogous to it — can exist in any
spacetime, regardless of the dimensionality [8,9]. In fact,
within this assumption, electrodynamics can even be ex-
tended to a fractional number of spatial dimensions |10 E|
In the construction of electrodynamics in two dimensions
one faces a few issues. The first one, as is well known, is
related to the fact that the Coulomb force must changeﬁ
Arguably, the most natural way to construct the theory
is to assume that the essence of Gauss’ law remains unal-
tered, but this requires that the electric field of a point
charge now falls off as the inverse of the distance which,
in turn, entails a logarithmic electrostatic potential. Ad-
ditionally, part of the vector calculus must change. The
absence of a right-hand rule is obvious and the concept of
curl, for example, must be redefined. As a result of this
construction, the magnetic field must be qualitatively
different; it turns out that it cannot be a vector anymore:
it becomes a scalar field. Once these basic issues are
figured out, one can ask how would the multipole expan-
sion be in such a universe, what are the new retarded
potentials, what happens to electromagnetic waves or,
yet, how would dipole radiation arise. In the remainder
of this paper, we discuss these questions having in mind
a curious undergraduate student, one with particular
interest for theoretical physics, or a teacher that would
like to use part of this material in a somewhat advanced
course on electrodynamics. We will, therefore, stick to
usual SI units. Although sometimes this results in some-
what cumbersome expressions, it becomes easier to make
contact with the usual undergraduate text books [6].

One of the main differences between electrodynam-
ics in two and three spatial dimensions appears in the
retarded potentials. The reason for this difference is di-
rectly linked to the fact that the solutions to the wave
equation, satisfied by the potentials, change qualitatively
when going from three to two dimensions, a fact that
is well known in the literature in other contexts [12].
This difference is often discussed in the framework of
Huygens’ principle, which states that every point on a
wave front is itself the source of (spherical) waves. This
principle is valid only in spacetimes with D > 3 and
odd [9]. Huygens’ principle relies on the fact that all
waves propagate with a single speed, ¢ in our case. In
two dimensions, however, a solution to the wave equation

3Some authors, however, based on arguments derived from differ-
ential geometry prefer to consider that electrodynamics, as we
understand it, exists only in spacetimes with odd number of spatial
dimensions [11]. In these spacetimes, the Faraday tensor and its
dual have the same rank, which does not occur in our construction.
4Even this fact, however, has been missed in some of the discussions
found in the literature.
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can be understood as a superposition of waves travelling
with speeds ranging from zero to the maximum value
¢, with which the first wave front travels [13]. This fact
leads to important differences in the retarded potentials
as compared with the D = 3 case, and it becomes less
obvious how these connect with their static counterpart.
Here, we discuss this issue and the problem of radiation
in the context of a hypothetical universe with 241 di-
mensions. We show that one benefits from the systematic
use of the Green’s function method to find the correct
form of the retarded potentials. This is sometimes not
emphasized in usual electrodynamics [6] where the idea
of time retardation is more intuitive, due to the validity
of Huygen’s principle.

We organize this paper as follows. In Sec. [2| we discuss
electrostatics in 2 4+ 1 dimensions. The starting point is
Gauss’ law, from which we can obtain the electric field
and the associated scalar potencial. In Sec. |3, we will
construct the full set of Maxwell’s equations starting from
the relativistic formulation. We then discuss Poynting’s
theorem, wave equations, the retarded potentials, and
electric dipole radiation. The mathematical notation for
vector calculus in 2 + 1 dimensions will be introduced
when necessary. In Sec. [4] we summarize the results and
conclude.

2. Electrostatics in 2 + 1 dimensions

A generalization of Gauss’ law is possibly the best start-
ing point to construct electrostatics in 241 dimensions.
This route is not unique, as we mentioned in the introduc-
tion, but is arguably the most natural way to construct
the theory. The idea consists in postulating that the
essence of Gauss’ law is unaltered when one considers
spacetimes with a different number of spatial dimensions:
the flux of electric field lines, CDED), through a closed (hy-
per)surface in D dimensions contains information about
the total charge enclosed by the surface. For D = 3, with
an electric charge g at the origin of the coordinate system,
and choosing a spherical surface of radius r, this means
that q

oY) = |E|4m? = o (1)

from which the usual behavior of the electric field |E| ~
1/7?% can be read off. Although we are mostly interested in
2+1 dimensions, it is interesting to start with a discussion
in D+ 1 dimensions. Considering the Gaussian surface to
be a hypersphere of radius r, the formulation of Eq.
can be straightforwardly generalized to

D-1 2P/ q

(D) D-1
o) = |E dQp = |E _ 4
E ‘ |T /S D | |T F(D/2) 6()7 ( )

where we have used the well known result for the in-
tegration over the element of solid angle in D spatial
dimensions, df)p, written in terms of the usual I" func-
tion [14]. Throughout this work we will use the symbol
E for the generalized electric field, ¢ for the general-
ized charge and so on. Their physical meaning follow
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from usual electrodynamics although there are impor-
tant differences with respect to their counterpart in 341
dimensions, as we discuss below.

Exploiting the hyperspherical symmetry, the electric
field of a point charge at the origin can be written as
r(D/2) #

2nP/2¢y pP-1° (3)

E=q

The dependence of the electric field, and hence of Coulomb’s
law, with r is now 1/rP~1. Thus, the usual 3+1-dimensional

fall off as 1/7? can be understood as a consequence of
the dimensionality of our space-time. This point, albeit
somewhat obvious, has sometimes been missed in the
literature, as pointed out in Ref. [3|.

After this short digression, we can now make D = 2
in Eq. to conclude that the electric field E of a point
charge located at v’ in 2 + 1 dimensions is given by

B0) = s = @

which falls off as the inverse of the distance. One should
remark that, as Eq. (4) shows, the units of ¢y (and o)
change in two dimensions.

The generalization to a continuous surface charge dis-
tribution, o(r), is direct

/d2r’ O'(T‘/)|(T_7;/)2. (5)

rTr—r

E =
2meg

Taking the divergence of the last equatioxﬁ and using
that, for D = 2,

V. (""”) =21 6%(r — 1), (6)

|r — 7|2
we recover the differential form of Gauss’ law

V-E=", (7)
€0
which is essentially the same as in the usual space-time
with the replacement of the volumetric charge density
by a surface one.

Next, we look for an electrostatic potential. In two
dimensions, a vector field F' is conservative — and hence
can be written in terms of the gradient of a scalar poten-
tial — if 0,(F), = Oy(F),. To make contact with the
idea of the usual curl of a vector, it is useful to start by
defining, in two dimensions, a vector v, as

v = (vy, ~), (8)

which is, by construction, perpendicular to the vector
v = (vg,vy). We define then the operator [8]

Vi = (0y, —0s). (9)

With this definition, a vector field is conservative if
V., -F = 0. From Eq. @D and Eq. we find that

SRemember that now V = (9, dy).
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V. - E =0, and therefore the electrostatic field can be
written as E = —VV. We can then conclude that the
potential obeys, as expected, Poisson’s equation in two

dimensions o

ViV = - .

(10)
€0

The solution of this equation by the Green’s function

method yields
1 2,/ / ‘T — T/|
In| —— 11
QWO/draw>n( )

from which we can obtain the potential of a point charge
at the origin as
r
4 In (f) .
2meg a

The constant a is an arbitrary reference point that plays a
role similar to that of the additive constant that appears
in the potential in 3 + 1 dimensions. It will also be
important to point out that the solution of Eq. is
completely analogous to the usual three dimensional case,
where one ha,

1 3,0 P(T')
Vara(r) = d7e /d r/\r -7’

Vir)=-

Vir)=-

(12)

(13)

from which the potential of the point charge at the origin
is obtained.

In the usual electromagnetism, one meets a logarith-
mic potential of the type of Eq. when studying the
idealised case of an infinite uniformly charged straight
wire. Accordingly, the electric field of such a wire falls off
as 1/r, as in Eq. . In fact, many of the phenomena of
electrodynamics in two dimensions can be understood as
if spacetime were a conveniently chosen two dimensional
slice of the usual spacetime with point charges “stretched”
into infinite wires (an idea pioneered by Hadamard [9]).
In the case of the field of a point charge, the problem is es-
sentially equivalent to considering the field of the infinite
charged wire in three dimensions on a two-dimensional
plane perpendicular to the wire. In the static case this
may seem obvious, but in Sec. [3| we will show that even ra-
diation can be understood in terms of this system where
the point charges are extended to infinity.

One should remark that the potential of a point charge
in 2 + 1 dimensions, Eq , is qualitatively different
from the usual 3 4 1 case. Note that Eq. diverges
when r — oo (in addition to the divergence at the origin,
which is also present in 3+1). This means that a hydrogen
atom in 2+ 1 dimensions would be a confined system: an
infinite amount of energy would be needed to extract the
electron from the atom, in direct analogy to what happens
in quark-antiquark bound states where, at large distances,
a linear potential, usually written as V() = or, confines
the particles inside the bound state [15]. Therefore, in
a universe with 2 + 1 dimensions chemistry would be

SFor the sake of clarity, we will often denote three dimensional
quantities with an explicit subindex, as in V341.

Revista Brasileira de Ensino de Fisica, vol. 42, e20190323, 2020



€20190323-4

radically different |4]. In addition, the total energy of a
point charge is infinite not only due to the divergence
for small distances, as in the usual 3+1 case, but also for
large distances as well. In fact, any charge distribution
with non-zero net charge will carry an infinite amount
of energy. This very peculiar fact is in part solved by
the hypothesis of confinement: i.e. if charges in such a
theory are confined, as color charge is confined in QCD,
then all charge distributions would have a zero monopole
term and isolated charges would not be observed in the
universe.

In the construction of electrostatics, the discontinuity
of the electric field plays an important role. In 3+1 di-
mensions, the electrostatic field is discontinuous when
crossing a surface charge. Accordingly, in 241, the discon-
tinuity appears when crossing a line charge. The bound-
ary conditions can be found with the usual method, by
considering a Gaussian “box”, which now becomes a
rectangle in two dimensions, around the line charge A.
Making the lateral size of the box approach zero one finds
that the component of the electric field perpendicular to
the surface is discontinuous by an amount given by

A
E above — E below — :n, (14)
0

where E ,pove and E pelow are defined by the choice of
the normal vector 7.

The scalar potential is continuous (as in 3+1 dimen-
sions), but again the gradient of the potential inherits
the discontinuity of the electric field

A
V‘/above - vaelow =——"n.

(15)
€0

The last two equations are examples of aspects of the
construction that are completely straightforward, and
follow exactly what one could intuitively expect, with
the surface charge replaced by the line charge .

One can proceed developing the standard electrostatics
tool box in 241 dimensions. Let us comment, for example,
on the multipole expansion of the scalar potential for
points away from the source. The result of Eq.
can be straightforwardly expanded for r > /. In polar
coordinates one finds

V(rg) = -2L 1 (5)

2meg a
1 o= Ay, cos B, si
> cos(nd) + Busind)
with the coefficients A,, and B,, given by
A, = /d%’(r')"a(r')cos(nqﬁ') ,
B, = /dQT’(r’)"a(r’) sin(ng’) . (17)

The structure of the expansions shows that we can still
talk about a “monopole term”, a “dipole term”, and
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so on, although their behaviour with r is now different
compared with usual electrodynamics. The monopole
term contains the total charge @ T and is, as expected,
logarithmic. Charge confinement would essentially for-
bid the monopole term in two dimensions and therefore
QT = 0. It is followed by a dipole term, which would
be the leading effect here that falls off as 1/r, then by
a quadrupole term that behaves as 1/r? and so on. By
considering only the dipole term one can then write

Vaip (1) /d2r’ r' o(r')cos(¢p — @),  (18)

2meg T

which can be cast as

1 7-p
Vai = , 19
aip(7) 2meg T (19)
with the dipole vector moment given by
p= /d2r’ ' o(r'). (20)

One clearly sees that in the multipole expansion, apart
from the different power counting in 1/r, the only qual-
itatively different term is the leading monopole, which
becomes logarithmic in 241 dimensions.

The general solution to the Poisson equation in two di-
mensions using the method of separation of variables can
be found in almost any book on mathematical methods
for physics. With Eq. it is easy to make contact with
these results and establish the standard correspondence
between V (r) obtained from the multipole expansion and
Poisson’s equation in polar coordinates. Typical electro-
static problems can be solved with these techniques and
their solution do not differ significantly from the familiar
ones in 341 dimensions. In the remainder, we will focus
on electrodynamics and the problem of radiation, where
more subtle issues arise.

3. Electrodynamics and radiation

An elegant strategy to obtain the full set of Maxwell’s
equations in 2+1 dimensions consists in using as a start-
ing point the Faraday tensor, F},,. For completeness, and
to establish the notation, we briefly review in our con-
ventions Maxwell’s equations in 3+1 dimensions in the
manifestly covariant form. We define the four-potential
A* = (V/c, A) formed from the scalar potential V' and
the vector potencial AE] We then build the tensor F* =
OFAY — 0¥ A* which explicitly reads, in our conventions,

0 —E*/¢c —EY/c —FE?/c
E/c 0 ~-B*  BY
wro
F3+1 - EU/C B* 0 — Bz (21)
E*)c -BY  B® 0

"We use gu, = diag(+1,—1,—1,—1). We will keep all factors of ¢
explicit and, accordingly, we work with the coordinate z° = ct and
9 9

8x0 — cot”
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Forming the dual tensor F}y, = ¢"PF,, Maxwell’s
equations are then written as

O FEY ) = poJ”, (22)
O F, = 0. (23)

where J# is the four-current defined as J* = (cp, J) with
p and J being respectively the volume charge and current
densities.

In 241 dimensions, Faraday’s tensor has now only three
independent components. These will contain E, and E,
as well as (the now scalar) magnetic field B. In a world
where all electric effects are confined to the zy plane, the
magnetic field would be along the z direction. This is
sufficient to see that the last row and the last column of
F* given in Eq. must now absent. Faraday’s tensor
in 241 dimensions can then be obtained by “removing”
the last row and the last column of Eq. ﬂ It then
reads [7,8]

0 —E*/¢c —EY/c
= Bo/e 0 -B |. (24)
EY/e B 0

The immediate consequence is that now the magnetic
field has only its would-be z component; it is no longer
a vector field and it becomes a (pseudo) scalar field. The
equivalent of Eq. can be obtained in a straightfor-
ward manner. To write the 241 equivalent of Eq.
one must notice that now the dual tensor will become a
vector, since the Levi-Civita symbol loses one index. We
have then F* = "7 F,,. In covariant form, Maxwell’s
equations in 2+1 dimensions are then

81/Fl“/ = MOle) (25)
O, F" =0, (26)

where in j* the surface charge and current densities
appear.

Diffentiating Eq. and remembering that the elec-
tromagnetic tensor is antisymmetric, we obtain

Ouj" =0, (27)

which is the covariant form of the continuity equation.
As in three dimensions, electric charge is conserved.

One can then work out the differential Maxwell’s equa-
tions in 241 dimensions in terms of the fields as

v.E=Z (28)
€0
0B
E === 2
VJ_ ﬁt’ ( 9)
. 1 OF
V1B = pupj+ 20 (30)

where ¢ and j are the surface charge and surface current,
respectively, and we have made use, again, of the opera-
tor of Eq. @ We have also used that in 241 it remains

8The same procedure can be applied once more to obtain F* in
141 dimensions, as discussed in more detail in [8]. We relegate to
the supplementary material an alternative derivation of this result.
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true that ¢ = (ugep) 1 (as we will show below). One no-

tices that there is no equivalent to the three-dimensional
magnetic Gauss’ law.

Electrodynamics becomes complete with the Lorentz
force law. From the expression of the Lorentz force in
terms of the Faraday tensor and the 4-velocity, u,,, which
reads f* = (q/c)F* u,, one obtains in 2+1 dimensions
the following result

f=a(E+v.B). (31)

An immediate consequence of Maxwell’s equations in
2+1 dimensions is the existence of electromagnetic waves
in two spatial dimensions. To follow the usual steps done
in the derivation of the wave equations for E and B
one needs the following two-dimensional vector relation
V. (Vy -F)=V*F—-V(V.-F). Using it in Eq.
we get V1 (V1 - E) =0;(V_LB) and consequently

1 1 .
V?E — ga@E = avo + 110047, (32)

which is the general wave equation with sources. A similar
procedure gives the wave equation for the magnetic field,
which is now a scalar wave

1 .
V’B — gaftB =poVi-J. (33)

In the context of electromagnetic waves, a crucial role
is played by the Poynting vector. It may not be obvious
how to construct this vector in two spatial dimensions.
In order to closely follow the familiar derivation, it turns
out to be useful to work with the field £, = (E,, —E).
One can then follow the familiar steps of the derivation
of energy balance in the electromagnetic field. Starting
from the power % =/, d*r' (E - j), and replacing j by
its expression in terms of fields using Ampere-Maxwell’s
law, Eq. , and using the vector identity

V(ELB):B(VLE)+E(VLB)
one finally finds

d*r’' B «B”
2,LLO 2

aw __d
At dt 4

]—1/ d*r' V-(E.B).
Ho J A

Upon use of the divergence theorem, one can then relate
the derivative with respect to time of the mechanical
and electromagnetic energies to the flux of the Poynting
vector, defined as

S = iELB (34)
Ko

through a closed loop. Or, in the usual differential form,

0
pn (Umec + Uem) + V - S = 0. (35)

The meaning of the Poynting vector given in Eq. can
be understood as follows. The vector E | B is perpendic-
ular to E and by construction points in a direction that
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would also be perpendicular to the would-be third dimen-
sion. In other words, if we consider in 3+1 dimensions the
fields E = (Eg, Ey,0) and B = (0,0, B) the Poynting vec-
tor would be proportional to £ x B = (E, B,—E, B,0),
which has the same x and y components as E | B in 2+1
dimensions.

The requirement for radiating fields is that they carry
energy away from the system to infinity. For this to
happen, since now the flux of the Poynting vector is to
be computed through a closed loop, one obtains that for
radiating fields S ~ 1/r, suggesting that radiation fields
should fall off as E yaq ~ 1/y/r and B aq ~ 1/4/7.

As in 341 dimensions, it is advantageous to treat the
problem of radiation starting from the potentials V' and
A. To follow a similar route in D = 2, we must first
establish the relation between the vector potential and
the magnetic field. This can be done in a way consistent

with Eq. through [§]

B=-V, - A (36)
From Faraday’s law one concludes that V| - (E+0;A) =
0 and, thus, the quantity E + 0; A is conservative and can
be written as the gradient of a scalar potential, which
implies E = —VV — 0;A. As usual, gauge invariance
allows one to choose V- A = — C%&V, which corresponds
to Lorenz gaugeﬂ The equations satisfied by the poten-
tials are then the wave equation with sources. In 241
dimensions, and reminding the reader that V2 = 92 + 85,

the equations ar@

1 o
2 2v,
VeV — Cjattv = —a, (37)
1 .
VA - CﬁaftA —Hod- (38)

At this point, we must look for the solutions of Egs.
and . In the usual 3+1 case, they would be the stan-
dard retarded potentials. Here, an important difference
between three and two spatial dimensions occurs. In
three dimensions, the retarded potentials can be ob-
tained in a rather intuitive, albeit not very rigorous way,
by simply imposing in the static solution that in the
dynamical case information travels with the speed of
light, as suggested by the wave equations satisfied by V'
and A. In practice, one is allowed to take the solution
to Poisson’s equation, Eq. , and simply replace in
the integrand p(r') — p(v’, t,) with the retarded time
given by ¢,» =t — |r — r’|/c. This solution is correct in
three dimensions and has the advantage of being very
intuitive.

A more formal derivation of the retarded potentials can
be obtained using the Green’s function method, which
will be the basis for our discussion of the two-dimensional

9L. Lorenz, Danish physicist, not to be confused with H. Lorentz,
the Dutch physicist famous for the Lorentz transformations [16].

10T facilitate the comparison with the usual expressions, the po-
tentials and Green’s functions will always be written as functions
of the variable ¢ (instead of z° = ct).
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case. It is, therefore, useful to briefly discuss this solu-
tion in D = 3. We define the Green’s function of the
d’Alembertian operator in three dimensions as [17]

1

= 4763 (r)3(t). (39)

The solution for V(r,t) is obtained, by construction, as

Vi (7, 8) = —— / & / 4t Giyar (r—1"t—t") p(r' 1),
47eg

(40)

In 341 dimensions, the Green’s function of the d’Alem-

bertian is, explicitly,

5t —ty)

! !
Gapr(r—rt=1') = ]

(41)
The integration over ¢ immediately leads to the usual
form of the retarded potentials. For the scalar potential

we have
1 /dST‘I ,0(7’/, tT")
d7eg |r — 7’|

The Green’s function of Eq. can be interpreted as
the potential associated with a point charge that exists at
point 7’ in space only at the instant ¢’, as per Eq. H
The Dirac ¢ in the numerator shows that at another point
in space, r, at a later time, t, the effect of the existence
of this point charge that blinks at ¢ = ¢’ will only be
felt once, precisely at the time ¢t = ' + |r — 7/|/c. In
turn, this is linked to the fact that the general solution
to the spherical wave equation in three dimensions is
given by functions of the type f(r £ ct)/r, i.e., waves
that propagate with a single speed c. This is sometimes
called “sharp” wave propagation, and is a feature that is
consistent with Huygens’ principle |17].

Let us now turn to our case of interest, namely the
retarded potentials in two spatial dimensions. Now, a
naive attempt to obtain the solution by simply replacing
o(r’) = o(r',t.) in Eq. is wrong. This is so because
the intuitive idea about the way information propagates,
embedded in this naive solution, breaks down in two
spatial dimensions — in other words, Huygens’ principle
is not valid in two spatial dimensions [13]. To understand
what is happening it is better to use the Green’s function
method. Now we have

2Gop1(r,t) = =206 (r)8(1).

Vapi(r,t) =

(42)

(43)

The solution for this Green’s function can be found in
the literature [12], it reads

O(cr — s)

’ no_
G2+1(T‘—’I",t—t)—77_2_82/02,

with s=1|r—7|, 7=t-1t. (44)

' This is, of course, inconsistent with charge conservation, but it
remains useful as a mathematical device to interpret the Green’s
function. The same applies to the non-physical charge distribution

of Eq. ,
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Instead of the Dirac delta we now have a Heaviside 6 func-
tion. This function is still zero for ¢ < ¢’ + |r — r'| /¢, but
the effects of the “point charge” that existed at t =t are
felt forever after this time. There is, however, an attenu-
ation given by the denominator of Eq. and the effect
disappears, asymptotically, with time. The outermost
wave front propagates with velocity ¢, in agreement with
the expectations of causality but, as we discuss in detail
below, the full wave can be written as a superposition of
modes with velocities ranging from zero to ¢, which is not
a sharp wave propagation as in three dimensions |17HE|
The analogy with the three dimensional infinite charged
wire is again instrumental in understanding this effect.
Consider, in three dimensions, an infinite charged wire
along the z axis with constant charge density A = 2mwn
(where 7 is a constant that carries the dimensions) that
exists only at instant ¢ = 0, with charge distribution

given by
p(r,t) =21 6(x)d(y)d(t).

We can then obtain its potential on a two dimensional
slice of three dimensional space, which we take to be the
xy plane. With Egs. and , for a point at distance

/22 + y2 from the 2z axis we have

eV (r,t) :/ood 14(t - \/22+7’2/c)
1 o 2 V2

Information from two points with z = £z =
++/(ct)?2 — r? arrive simultaneously at a point on the
xy plane at time ¢t. The Dirac § in the integrand can then
be written as

(45)

T =

(46)

ct
—VzZ224r2/e) = \/ﬁ

x [5(z — VAR =) 4 5z 4+ Ve = 12)| L (47)

Clearly, if ¢t < r the integral will give zero. Using this
fact and the § functions to perform the integral we find

eV (r,t) _ O(ct —r) (48)

n t2 — 12 /c?

which is identical to the two- dimensional Green’s func-
tion of Eq. | ., and therefore Eq. (| is an integral
representation of Eq. (| . In this example it becomes
clear that information from two equidistant points at
z = £z will be reaching a given point on the zy plane
for t = r/c and since information travels with the speed
of light from every point of the infinite wire, the po-
tential is felt forever. For the observer confined to the
two-dimensional slice of spacetime, information would
appear to emanate from the origin but travelling with

different speeds v(z) = \/chﬁ, ranging from 0 to c.

12A possible interpretation for this “tail” of the Green’s function
is put forward in Ref. |18] in terms of a charge moving with the
speed of light at the light-cone shell.
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The last observation provides us with some additional
intuition regarding the Green’s function Gay1(r,t) given
in Eq. and suggests the following practical result.
From the integral representation we derived above we
can write

St —V22+r?
G2+1(T, t) = / dz ( o /C)a (49)
and apply the change of variables v(z) = \/chv sug-

gested by the analogy with the infinite charged wire to
obtain

c. /v

dv s

in agreement with the interpretation given above, namely
that information in two dimensions appears to travel with
different speeds, ranging from 0 to ¢, which immediately
implies that Huygen’s principle is not valid.

Having discussed the Green’s function in two dimen-
sions in detail, one can then write the solution for the
retarded potentials. The analog to Eq. in 2+1 di-
mensions is

1
Vour(r,t) = —— / a2 / 0t Go 1 (r—r" t—1') o (', 1),
2meg
(51)
and the solutions to V()

Gay1(r,t) = 6(t —r/v), (50)

) and A(r) can be written ad"|

2, _Oler—3)
%60 / &' | at \/T/c? 1),(52)

/ d2 / dt )
27T€0 \/T/@

with the notation of Eq. . In two dimensions it is,
therefore, less trivial to make contact with the static case,
given for the scalar potential in Eq. . In particular, it
is not as obvious how the potentials of a point charge ap-
pear in the static limit. It is interesting then to consider
an unphysical case which violates charge conservation,
but that is instrumental in understanding how the new
formulae for the retarded potentials are compatible with
the static ones. Let us take the potentials for an oscillat-
ing monopolﬂ with localized charge distribution at an
arbitrary point rg given by

),(53)

o(r,t) = qgd*(r — ro)e™?t, (54)
(One is tacitly assuming that the physical charge is con-
nected to the real part of the last expression.) The static
limit can be recovered doing w — 0. Using this charge
density in the scalar potential the integrals over ' can

13 A superseded version of Ref. [8] contained a mistake in the ex-
pression of the retarded potentials. The present version of Ref. [8],
published after our work was made public, is now correct and in
full agreement with our expressions.

14 This choice is partially motivated by the fact that we will use this
oscillating monopole as a building block for the physical dipole
when studying radiation. Another possible route is the direct use
of the integral representation of the Green’s function in Eq. .
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be done with the delta function present in o(r,t) and we
find

q ’ cT — iwt’
Vir,t) = dt ——
(r.?) 2meg / \/ T2 —d2/c26
t—d/c

q

ezwt
/ dt’ 7
2meg V=12 —d2/c?

where we used the 6 function and d = |r — r¢| is the
distance from 7 to the charge at ro. With a change of
variables, this last integral can be cast as

(55)

v qeiwt 00 q efiwzd/c 6
t) = —_—
=2 [Ta o 6o

In this form, it becomes simple to identify that the solu-
tion is a combination of Bessel functions of the first and
second kind, known as the Hankel function of the second
kind, Hl(,2)(z), defined in Eq. (1.2) in the supplementary
material. Using the relevant integral representations of
Eq. (1.1), we explicitly obtain

iwt

Virt) = —qzeo iHP (“”:””) . 57)

In the static limit, w — 0, and using that H(()z) (z—=0)~
—% In z, we recover precisely the potential of a point
charge located at rg as

V(r,t) = _2710 In ('T a””') , (58)

which shows that Eq. is perfectly compatible with
the static case.

Let us now turn to the problem of dipole radiation.
We can model an oscillating electric dipole in two di-
mensions adapting the usual procedure followed in three
dimensions. We consider two tiny disks at points 7 and
r_ connected by a thin wire that carries a current back
and forth from one to the other, such that if one disk has
charge ¢(t) the other has charge —q(t) and the system is
always neutral. More precisely, the charge distribution
of such a dipole can be written as

o gip(T, 1) = qet6@ (r — 1) — qet6D (r —r_). (59)

Formally, it is the superposition of two oscillating monopoles

and the associated exact scalar potential V' (r,t) can be
obtained from the solution Eq. (57))

Vaip(r,t) = — qZ:ti [Héz) (% |r — r+|)
— H® (% \r—r,m. (60)

Here we are interested in the radiation zone, where
r > ry. We can then use r1 /r < 1 and Taylor expand
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the Hankel functions to find

et w . dHé2)(z)

VvV i ’t ~ — —_—. - 7 N
b B
(61)
where we used without loss of generality that r, = —r_

and the dipole moment is p = 2¢r,. As expected, the
monopole term cancels and we are left with a dipole term,
which contains the part of V(r,t) that will contribute
to radiating fields. We now use the asymptotic form of

H(()Z)(z) for z — oo of Eq. (1.4) to obtain

Pop [w eilwt=r/otn/a)
Vaip(r, t) = e ,/%—\/77 +--- (62

This expression is the part of the scalar potential that
contributes to dipole radiation since its gradient will
generate terms in E that behave as 1/4/r as required
for radiating fields in two spatial dimensions. To make
contact with the familiar expressions in three dimensions,
one can consider an electric dipole at the origin with p
aligned along the ¢ direction. In this case, taking the real

part of Eq. , one finds

Vaip(r, ) ~ _Wﬁsinw(t —\/;/c) + 8o] o
(63)

where ¢ is the angle between 7 and the y-axis and 8y is
a constant phase. In the final result for the potential in
the radiation zone, the usual retarded time with respect
to the origin intervene. It is interesting to note that,
although it is crucial in the intermediate steps to con-
sider the somewhat counterintuitive solutions of the wave
equation in 241 dimensions, the behaviour of V g (7, t)
in the radiation zone is essentially the same found in
three dimensions, and the outgoing electromagnetic wave
travels with the speed of light.

4. Conclusions

We have discussed the construction of Electrodynamics in
two spatial dimensions. We tried to emphasise mainly the
somewhat unexpected differences that arise with respect
to the usual three-dimensional case. First, we began with
a general discussion of Gauss’ law and how the Coulomb
field changes with the dimensions of space-time. It is
well known that Coulomb’s force, or Newton’s law of
gravitation attraction, is expected to behave as the in-
verse of the distance (to the first power) in two spatial
dimensions. This leads to a logarithmic potential which,
in itself, is enough to dramatically alter the phenomenol-
ogy of electromagnetism in 241 dimensions, since the
attractive potential between opposite charges becomes
confining, i.e., an infinite amount of energy would be
required to extract the electron from the hydrogen atom,
for example. It is not difficult to obtain the general solu-
tion of Poisson’s equation in this context and to consider
its multipole expansion. This expansion retains its main
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features, in spite of a logarithmic monopole term and
the different power counting in 1/r with the dipole term
behaving as 1/r and so on.

Next, we considered the construction of the full set
of Maxwell’s equations. One must face the fact that the
magnetic field becomes a scalar field. With a few defini-
tions for the vector calculus in two dimensions, one is
able to construct Maxwell’s equations in a form that is
similar to the usual one, although there is no equivalent
for the magnetic Gauss’ law. With these equations at
hand, it becomes straightforward to find the wave equa-
tions satisfied by electric and magnetic fields and by the
scalar and vector potentials (in Lorenz gauge). Here, an
important difference with respect to the three dimen-
sional case appears. Huygen’s principle is not valid in
spaces with even number of dimensions. In practice, this
means that part of our intuition regarding the way infor-
mation propagates is no longer valid since information
travels as a superposition of waves with speeds ranging
from 0 to c. The retarded potentials in two dimensions
have a rather different form, inherited from the Green’s
function of the d’Alembertian in 241 dimensions which
has a Heaviside theta function instead of the usual Dirac
delta. We have then shown that this solution, albeit less
intuitive, is fully consistent with the static case.

We then turned to an investigation of radiation, using
the paradigmatic oscillating dipole. We were able to show
in Eq. that, in spite of the qualitative difference in
the behaviour of the solutions of the wave equation in
two and three dimensions, the scalar potential in the
radiation zone retains a form very similar to the one
we are used to in three dimensions. Therefore, dipole
radiation in two dimensions is much more similar to its
counterpart in three dimensions than the form of the
retarded potentials may suggest.

We should state very clearly that we do not know
of any physical system, e.g. a material, where electro-
dynamics would be described by the two-dimensional
Maxwell’s equations we discussed here. Rather, our main
purpose with this note was to collect a few results on
electrodynamics in two dimensions that could be useful
for an advanced course on electromagnetism at the under-
graduate level. However, in this spirit, other interesting
aspects of the phenomenology of Maxwell’s theory in
2+1 dimensions remain to be investigated such as the
radiation of a magnetic dipole, to name one. We believe
the issues we discussed here are, nevertheless, sufficient
to show that the subject is interesting, and can be the
basis, for example, for student’s projects. These would
certainly broaden their knowledge of electromagnetism
and introduce them to some of the common practices
of theoretical physics. Our experience confirms this fact,
since the results presented here were, in part, obtained
as a project by four of us while undergraduate students.
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