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We present the numerical analysis of the capacitance dependence of a conducting sphere on the distance to
another sphere and its relative size. Among other results, we find that the greatest deviations from the model
of a secluded sphere are observed for the case of the presence of infinite conducting plane near it. We provide a
simple physical explanation of this fact. For example, our numerical calculations show that the value of relative
error in the determination of the sphere capacitance is equal to 5% if the distance from the sphere center to the
infinite plate is ten times more than its radius. The consideration of this problem will be useful for advanced
undergraduates, who study the methods for solving electrostatic problems.
Keywords: Capacitance, model of a secluded sphere, electrostatics of two close conducting spheres.

1. Introduction

It is well known that capacitance C of a single conductor
is the ratio of the change in its electric charge to
the corresponding change in its electric potential. This
definition should be distinguished from the other two
definitions, relating to the system of two conducting
objects (that is, for a capacitor) [1]. The capacitance of
the isolated (secluded) single conductor depends on its
geometric shape, sizes, and the dielectric permittivity ε
of the surrounding medium. For example, for conducting
sphere in SI units: C = 4πεε0R, where ε0 is the vacuum
permittivity; R is the sphere radius. In reality, the ca-
pacitance of a single conductor also depends on the pre-
sence of other nearby bodies (mainly conducting bodies).
A striking example of the application of this property is
the Theremin electronic musical instrument [2].

Different spherical conductors are quite common both
in nature and in technology. As an example, we may
mention Earth, the hollow metal globe of a van de Graaff
generator, and the metal sphere of an electroscope. The
electrostatics of two close conducting spheres presents
a challenging problem in mathematical physics, which
has been considered among others by Poisson, Lord
Kelvin, Kirchoff, Maxwell, and Russell [3, 4]. First, this
system has a simple geometry. Despite this fact, the
derivation of capacitance coefficients is a rather cumber-
some procedure [5]. Moreover, the numerical calculation
of the values of these coefficients requires significant
computer resources, especially, as the two spheres come
closer. Finally, this system can demonstrate non-trivial
behavior (there are the regions of attraction between
like-charged conducting spheres) [6].
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In this paper we present the numerical analysis of
the capacitance dependence of a conducting sphere
on the distance to another sphere and its relative size.
The consideration of this problem will be useful for
advanced undergraduates, who study the methods for
solving electrostatic problems.

2. Theoretical Consideration

Let us consider two distant from other bodies isolated
conducting spheres of radii R1 and R2 with charges q1
and q2. Below we consider two possible cases: the first,
when the charge of the second sphere is fixed, and the
second, when the potential of the second sphere is fixed.
We denote the distance from the center of the first sphere
to the nearest point of the surface of the second sphere
as d (d > R1; see Figure 1). The charges of these spheres
can be represented as follows [7]:

q1 = C11V1 + C12V2, (1)

q2 = C21V1 + C22V2, (2)

Figure 1: Geometry of the problem.
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where V1 and V2 are the potentials of these spheres; C11
and C22 are their self capacitances; C12 = C21 is their
mutual capacitance. Using equation (1) and (2), we get:

q1 =
(
C11 −

C2
12

C22

)
V1 + C12

C22
q2, (3)

Then, the capacitance of the first sphere for the case of
fixed charge q2 is

C1 = dq1

dV1
= C11 −

C2
12

C22
. (4)

Using equation (1), for the case of fixed potential V2 we
obtain:

C1 = dq1

dV1
= C11. (5)

Therefore, the capacitance of a single conductor is
equal to its self capacitance only if the potentials of
other conductors are kept constant. If the surrounding
conductors have fixed charges, then C1 < C11 (see
equation (4)).

The calculations of capacitance coefficients, using the
method of images (involving an infinite series of the
images in this case), yield the following expressions [5, 7]:

C11 = C1∞y sinhα
∞∑
n=1

1
y sinh(αn) + sinh[α(n− 1)] ,

(6)

C12 = −C1∞
y sinhα
x+ y

∞∑
n=1

1
sinh(αn) , (7)

C22 = C1∞y sinhα
∞∑
n=1

1
sinh(αn) + y sinh[α(n− 1)] ,

(8)

where C1∞ = 4πε0R1 is the capacitance of the secluded
first sphere; x = d/R1 > 1 is the dimensionless distance
between the center of the first sphere and the nearest
point of the surface of the second sphere; y = R2/R1
(0 < y <∞) is the sphere radii ratio. The parameter α
is related to x and y by expression

coshα = x(x+ 2y)− 1
2y . (9)

The quantity C1 → C1∞ as x → ∞ (the secluded
conductor model for the first sphere) or y → 0 (the
point charge model for the second sphere). For the
finite value of y and x � 1 we can use the known
expansions [8] of the capacitance coefficients for the
case of two widely separated spherical conductors. Then,
considering equations (4) and (5), we derive:

C1 ≈ C1∞

(
1 + y3

x4

)
(q2 = const), (10)

C1 ≈ C1∞

(
1 + y

x2

)
(V2 = const). (11)

When the spheres are close (x → 1), one can use the
approximate expressions [1] for the capacitance coeffici-
ents. Then, for such a near approach, we immediately
obtain:

C1 ≈
C1∞y

1 + y

[
ψ
(

1
1+y

)
+ ψ

(
y

1+y

)
− 2ψ(1)

]
ln
( 2
α

)
+ ψ2(1)− ψ

(
1

1+y

)
ψ
(

y
1+y

)
ψ
(

1
1+y

)
− ln

( 2
α

)
(12)

if q2 = const,

C1 ≈
C1∞y

1 + y

[
ln
(

2
α

)
− ψ

(
y

1 + y

)]
(13)

if V2 = const. Here ψ(z) is the logarithmic derivative of
the gamma function [9].

According to equations (12), (13), the capacitance of
the first sphere in the case of its contact with the second
sphere (x = 1) formally takes a finite value at q2 = const
and diverges at V2 = const. The first circumstance
follows from the fact that the electrical energy of a
limited body with a finite charge should take a finite
value. However, our consideration (equations (4)–(8)) is
not physically correct as x is very close to 1, since in
a dielectric medium the electrical breakdown becomes
inevitable. In the vacuum the effects of field electron
emission are possible. We also note that according to
equations (9) and (10) C1 > C1∞ for considered above
limiting cases. In the following section we give simple
physical explanation of this fact for general (x > 1) case.

3. Numerical Results and Discussion

In Figures 2 and 3 we plot relative difference (relative
error) δC1 = (C1 − C1∞)/C1 as a function of relative
distance x, constructed at different values of y for two
cases: q2 = const and V2 = const. Since the series in
equations (5)–(7) converge, we can hold a large but finite
number of terms for numerical calculations. We increase
the number of terms in the series until the change in the
value of δC1 at the last iteration does not exceed 0.1%.
This procedure can be realized using some mathematical
software (Mathematica, Maple, etc.).

It follows from Figures 2 and 3 that δC1 > 0 always
(that is, C1 > C1∞). This fact in the case of q2 = const is
physically explained by the phenomenon of electrostatic
induction. Due to the electric field of charge q1, a
redistribution of electric charge in the second sphere
takes place. On the nearest side of the second sphere,
the induced charges of opposite sign appear, while the
far side is charged with the same sign. The resulting
electric field of the second sphere causes a decrease in the
absolute value of the potential of the first sphere. This
ultimately leads to some increase in its capacitance C1.

As distance x increases, the magnitude of the nearest
charge induced on the second sphere and its field decre-
ase. As a result, the value of δC1 decreases too (Figure 2).
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Figure 2: Relative difference δC1 as a function of x for q2 =
const. (1) y = 1, (2) y = 10, and (3) y → ∞.

Figure 3: Relative difference δC1 as a function of x for V2 =
const. (1) y = 1, (2) y = 10, and (3) y → ∞.

With an increase in y (that is, increase of the second
sphere radius) the relative effective distance between its
induced charges of opposite sign increases. This causes
the increasing of the resulting electric field of the second
sphere and the appropriate increasing of the capacitance
of the first sphere. Therefore, the greatest deviations
from the model of a secluded sphere are observed for the
case of the presence of infinite conducting plane (y →∞;
Figure 2) near it. For example, in this case, the value of
δC1 = 5% for x = 10.

For the case of a grounded sphere (V2 = const) the
electric field of charge q1 causes the inflow of charge
of opposite sign q2 from ground to the second sphere.
This latter will also contribute to reduction of the
potential of the first sphere and leads to some increase in
capacitance C1. The process of charging second sphere
has somewhat greater influence on the capacitance of the
first sphere than its redistribution (see equations (4), (5)
and Figures 2, 3).

The solution of the considered in this paper electros-
tatic problem can be applied in the capacitive displa-
cement sensors (or in the projected capacitive touch
technology), when we measure the capacitance of a
spherical electrode depending on the distance to another
electrode (it is convenient in this case to use the flat
surface of the Earth, whose influence on the capacity of
the spherical electrode will be the greatest).

4. Conclusion

The capacitance of a conductor is a topic that is
possibly not explored deep enough in undergraduate
physics degree curricula. In this paper we try to fill
this gap. First, we derive the general expression for
the capacitance of a sphere in the presence of nearby
another conducting sphere and consider it in two limiting
cases. Next, we perform the numerical analysis of the
capacitance dependence of a conducting sphere on the
distance to another sphere and its relative size. Our
analysis is accompanied by simple physical explanations
employing the phenomenon of electrostatic induction.
We hope that our consideration should help readers
to probe the limits of applicability of the secluded
conductor model and can be used in undergraduate
courses or projects.
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