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We calculate the magnetic field generated by a steady current that takes the shape of two types of special
curves: hypocycloids and epicycloids with n numbers of sides. The computation was performed in the center of
the referred curves. For this purpose, we use the Biot-Savart law which is studied in every introductory-level
electricity and magnetism course. The result is quite general because it is obtained as a function of the number of
sides of the curve and in terms of a parameter ε that identifies the type of curve considered (ε = −1 hypocycloids
and ε = +1 epicycloids).
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1. Introduction

The calculation of the magnetic field due to a steady
current in a circuit is one of the exercises that all
students in the first-level course of electricity and mag-
netism must confront. For this purpose, introductory
physics textbooks present Biot-Savart’s (BS) law and
Ampere’s law [1–3]. Although these laws are equiva-
lents [4], the elementary texts usually begin the magnetic
field calculations using the BS law. This is because BS
law provides students a general tool for calculating the
magnetic field due to a current-carrying wire of arbitrary
shape while Ampere’s law can only be used when the
symmetry of the problem allows extracting B of the
integral

∮
B · dl [5].

Additionally, the BS law is introduced first because
there is a theoretical evolution between it and Ampere’s
law. The BS law can be obtained by making a parallel
with the integral that is used to calculate the electric
field of a charge distribution, and the Ampere law has a
correspondence with the Gauss law.

In most situations, textbooks focus on magnetic field
caculations to straight wire conductors, curved wire
segments, circular current loops, or combinations of
these cases, excluding the rest of the geometric shapes
of the study. Miranda [6] extends the calculation of
the magnetic field using the BS law to conic curves,
spirals, and harmonically deformed circular circuits at
a point that lies in the same plane as the current
filament, finding that in most cases the calculation is
straightforward but some particular types of expressions
called elliptic integrals appear [7, 8]. In this paper we
are going to extend the study carried out by Miranda,
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considering two additional groups of plane curves, the
epicycloids and the hypocycloids [9–11]. These types
of curves appear in different branches of physics, such
as Mechanics [12, 13], Optics [14], and Cosmology [15].
Although the employment of special functions and para-
meterization of particular curves could make it laborious
to calculate the magnetic field, computational tools
such as those offered by Mathematica [16] and Maple
[17] allow us to simplify the problem and examine the
solutions obtained. Since the magnetic field is expressed
in terms of elliptical integrals, we believe that this
exercise is a good opportunity to introduce students
to these special functions [18]. This calculation uses
physical concepts and mathematical techniques that
would be accessible to an average freshman student.

1.1. Epicycloids and hypocycloids

An epicycloid is a plane curve generated by a fixed point
P on the edge of a circle of radius b rolling externally
upon a fixed circle of radius a with a > b. A hypocycloid
is obtained similarly except that the circle of radius b
rolling internally upon a fixed circle of radius a [9–11] as
can be seen in Figure 2.

The parametric equations of the epicycloid and hy-
pocycloid curves are [9–11]:

x = (a+ εb) cos θ − ε b cos
(
a+ εb

b
θ

)
(1)

y = (a+ εb) sin θ − b sin
(
a+ εb

b
θ

)
(2)

where ε = +1 corresponds to an epicycloid and ε = −1
corresponds to a hypocycloid. These expressions were
derived in Appendix. To obtain a closed and non-
intersecting curve, we set the relationship a/b = n, where
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Figure 1: Configuration of the circles to produce an epicycloid
and a hypocycloid curve.

n is an integer number, and correspond with the number
of sides of the geometric shape. Then, we get:

x = a

[
n+ ε

n

]
cos θ − ε

[a
n

]
cos ((n+ ε) θ) (3)

y = a

[
n+ ε

n

]
sin θ −

[a
n

]
sin ((n+ ε) θ) (4)

where θ varies from 0 to 2π. Figure 2 and Figure 3
show some epicycloid and hypocycloid curves generated
with the above parametric equations for different integer
values of n.

2. The Magnetic Field Calculation

To determine the magnetic field in the center of the loop
which carries a steady current I, we will apply the BS
law[5] for a line current

~B( ~r ) = µ0 I

4 π

∮
Epi/Hypo

d~̀ ′ × (~r − ~r ′)
|~r − ~r ′|3

(5)

where µ0 is the permeability of free space. Using Eq. (3)
and (4) we find the infinitesimal length element

d~̀ ′ = dx î+ dy î

d~̀ ′ =
{
−a (n+ ε)

n
sin θ + ε

a (n+ ε)
n

sin[(n+ ε)θ]
}
dθ î

+
{
a (n+ ε)

n
cos θ − a (n+ ε)

n
cos[(n+ ε) θ]

}
dθ ĵ

(6)

if we consider that the observation point is the center of
the curve (origin of coordinates), we have:

~r − ~r ′ = −x î− y ĵ (7)

where the x and y values are giving in Eqs (3) and (4).
We calculate

d~̀ ′ × (~r − ~r ′) = a2 (n+ 2ε) (n+ ε)
n2 {cos(n θ)− 1} dθ k̂

(8)

Figure 2: Closed and non-self-intersecting epicycloid curves. For illustrative purposes, we display the plots for some values of n
considering a equal to one arbitrary unit.
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Figure 3: Closed and non-self-intersecting hypocycloid curves. For illustrative purposes, we display the plots for some values of n
considering a equal to one arbitrary unit.

and

|~r − ~r ′|3 =
{
−ε
[
a2

n2

][
2 (n+ ε) (cos(θ n)− 1)− εn2]}3/2

(9)
As can be observed from Fig. 2 and Fig. 3 the n-cusped

epi and hypo-cycloids are symmetrical under rotations
of the angle 2π/n around the z-axis. Since the magnetic
field is a vector, it also has components along the x
and y-axis. Under finite rotations these components
could change even though the source remains symmetric.
The only possibility that the components do not change
under finite rotations is that they will be zero, as can be
seen in Eq. (8).

3. Results

Thus, replacing Eq. (8) and Eq. (9) in Eq. (5), and
performing the integration with Mathematica [16], we
obtain the magnetic field in the origin

Bz = µ0 I

4 π a

ε n E
(
nπ, −4 ε (n+ε)

n2

)
(n+ 2ε)

+
(n+ 2ε) F

(
nπ, −4 ε (n+ε)

n2

)
n

 (10)

where ε = +1 corresponds to an epicycloid curve and
ε = −1 corresponds to a hypocyloid curve. In addition,

F (φ, k) is the elliptic integral of the first kind and E(φ, k)
is the elliptic integral of the second kind [7, 8]. To form
a closed curve and consequently generate an electric
current, the integral was carried out in the interval
[0, 2π] and for n > 2. This expresion is quite general
because represent the magnetic field in the center of
any (epi)hypocycloid with n > 2. From Eq. (10) it can
be verified that for large values of n, the magnitude of
the magnetic field tends to µ0 I/2a, which corresponds
to the magnetic field in the center of a circular loop.
Additionally, the Figure 4 shows the behavior of the

Figure 4: Magnetic field plot in function of the number of sides
n of the (epi)hypocicloyd. The central dash line represent the
2π value.
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Table 1: Numerical values of the magnitude of the magnetic
field for the epicycloids and hypocycloids circuits as a function
of the number of sides n. As can be seen, when the number of
sides increases considerably, the magnetic field of both sets of
curves tends to 2π.

|B| / (µ0 I/4πa) |B| / (µ0 I/4πa)
n Epicycloid Hypocycloid
3 4.314 14.99
35 6.027 6.567
67 6.146 6.428
99 6.19 6.38
131 6.212 6.356
163 6.226 6.342

...
...

...
739 6.27 6.296
771 6.271 6.295

magnetic field as a function of the number of sides,
and as can be seen when the number of sides increases
considerably, the magnetic field of both sets of curves
tends to that of a closed circular loop. The same behavior
can be observed from Table 1.

4. Conclusion

In this work, we derive a general expresion to compute
the magnetic field produced by current-carrying wires
with planar hypocycloids and epicycloids shapes. The
calculation of the magnetic field is carried out in the
center of the geometric shape, and the current flowing
through the cables is considered stable. We have analy-
zed the asymptotic behavior of our result for very large
values of n and we have been able to verify that the
expression tends to that generated by a circular loop as
would be expected from Figure 2 and Figure 3. We show
that using an adequate parametrization of the curves,
and with the help of computational tools such as the
Mathematica package we could calculate the magnetic
field, visualize the results and compare among different
types of curves. The derivation of the magnetic field
contains only basic geometric ideas, making it accessible
to an average introductory electricity and magnetism
student. The present work is intended to serve as an
example for future attempts to evaluate the magnetic
field in non-standard cases using the BS law. A different
approach to calculate the magnetic field of a loop at any
point of space using a regular n-sided polygon and the
superposition principle is discussed in [19].

Supplementary material

The following online material is available for this article:

Appendix
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