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We present a quantitative analysis of some ‘infinite’ models, occurring in the course of electricity and magnetism.
First, we estimate the deviations from the models of an ideal parallel-plate capacitor and solenoid arising due to
the bending field effect. Next, we consider the models of an infinite wire and plane of uniform charge. We show
that in the first case the real electric field differs from the idealized one because of the finite length of the wire.
In the second case this difference is caused also by the non-uniform surface charge density. The issues outlined
in this article will be useful for advanced undergraduates, studying solutions to electrostatic and magnetostatic
problems.
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1. Introduction

Ones of the most important limit transition abstractions
[1] in the university course of electricity and magnetism
are the so-called ‘spatially infinite’ models. These include
the models of physical objects, whose dimensions in one
or several directions are so large that, when solving a
specific problem, the influence of edge effects, that is, the
presence of edges in these directions, can be neglected.
One can distinguish between two types of models of this
kind:

1. The models of objects ‘transverse’ and ‘longitudi-
nal’ sizes of which differ many times.

2. The models of objects, the distances to the edges of
which from the observation points are much larger
than the shortest distances from these points to
the objects.

The first type includes, in particular, the models of
an ideal parallel-plate capacitor and solenoid. As the
examples of models of the second type we may mention
the models of an charged infinite wire and plane.

In reference [2] a quantitative analysis of a model of
the magnetic field of a long straight wire is presented.
Here, we discuss the applicability limits of some other
‘infinite’ models in the course of electricity and mag-
netism. The correctness of the applicability of a par-
ticular model depends on the specific physical situation
itself and, strictly speaking, should be determined by
means of a physical experiment. However, for education
purposes the accuracy of a model, i.e. the errors arising
as a consequence of neglecting several factors considered
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to be insignificant in the construction of the model can
be estimated theoretically within the extended model
taking into account these neglected factors. The issues
outlined in this article will be useful for advanced
undergraduates studying solutions to electrostatic and
magnetostatic problems.

2. An Ideal Parallel-plate Capacitor
and Solenoid

Ones of the basic models in the course of electricity
and magnetism are an ideal parallel-plate capacitor and
solenoid. Their “ideality” is caused by the fact that the
field inside them is considered homogeneous everywhere.
In fact, the field lines are bent at their edges (Figures 1
and 2).

Let us consider an idealized, parallel-plate capacitor
with circular plates (for ease of comparison we choose
“regular” shaped capacitor). Its capacitance is

C0 = ε0πD
2

4d , (1)

where ε0 is the vacuum permittivity; D is the plate
diameter; d is the plate separation. The approximate
expression, taking into account the finite relative size
of the plate, is known as Kirchoff’s approximation [3]
and can be represented in the following form:

C ≈ C0 + ε0D

2

[
ln
(

8πD
d

)
− 1
]
. (2)

The detailed discussion of the derivation of Equation (2)
is presented in the book by Sneddon [4]. Here we
briefly describe this process of derivation. The problem
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Figure 1: The field lines in the case of a real parallel-plate
capacitor.

Figure 2: The field lines in the case of a real solenoid.

starts by solving the Laplace equation in the region
between two charged discs having opposite potentials.
From the condition that the partial derivative of the
potential in the direction perpendicular to the disk
surface is proportional near it to the surface charge
density, one can find the radial distribution of the latter
on the disk surface. This allows us to find further the
total charge of one plate of the capacitor. As a result,

Figure 3: Relative error δC as a function of relative plate
separation d/D.

the capacitance (the ratio between the charge and the
potential difference) is presented in the integral form.
This expression can be expanded in power series of the
ratio d/D. It gives directly the Kirchoff’s approximation.

According to Equation (2) C > C0. This fact can
be qualitatively understood as follows. The energy of
a capacitor is equal to CU2/2. But for the real parallel-
plate capacitor of finite size there is an additional energy
associated with the existence of the field outside it
(see Figure 1). Then, at fixed voltage U , its accounting
directly leads to some increasing of the capacitance.

In Figure 3 we plot relative error δC = (C−C0)/C as
a function of relative plate separation d/D. This error
is not the error of calculations but appear as the result
of difference between the simple and extended model.
It is seen that the value of this quantity is equal to
5%, if distance d is a hundred times more than plate
diameter D.

The inductance of an infinitely long cylindrical
solenoid is given by

L0 = µ0πn
2D2l

4 , (3)

where µ0 is the magnetic constant; n is the number of
turns per unit length; D is the coil diameter; l is the
length of the coil. Taking approximately into account the
end-effect correction, the inductance of an finite length
solenoid can be calculated as [5, p. 126]

L ≈ L0

(
1 − 4D

3πl

)
. (4)

The derivation of Equation (4) can be easily done if
we remember that the self-inductance is proportional to
the free self-energy of the current. The latter can be
calculated as a double integral over the surface of the
solenoid [5]. Performing the approximate integration for
D � l, we finally derive Equation (4).

According to Equation (4) L < L0. This fact can be
qualitatively understood as follows. The total magnetic
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Figure 4: Relative error δL as a function of relative coil
diameter D/l.

flux through the coil is obtained by adding this value
for individual turns. But, at fixed value of current I, the
magnetic flux through the peripheral turns decreases due
to the weakening and bending of the magnetic field near
the edges. This should directly lead to some decrease of
the inductance.

In Figure 4 we plot relative error δL = (L0 − L)/L as
a function of relative coil diameter D/l. It is seen that
the value of this quantity is equal to 5%, if length l is a
ten times more than diameter D.

3. An Infinite Wire and Plane
of Uniform Charge

As the illustrative examples of the application of Gauss’s
theorem in the course of electrostatics, the calculations
of fields of uniformly charged infinite wire and planes are
given. The electric field of an infinite wire is

E0 = λ

2πε0r
, (5)

where λ is the linear charge density; r is the shortest
distance from wire to the point of observation. The
electric field of an infinite plane is given by

E0 = σ

2ε0
, (6)

where σ is the surface charge density. In both cases,
the electric field is directed perpendicular to the object.
Equations (5) and (6) are used for the approximations of
the electric fields of a long conducting charged wire and
disc. In reality, such objects are characterized by both
non-uniform distribution of the surface charge density
and finite size.

The exact expressions for the field potentials of the
real conducting charged wire of finite size and circular
disk can be found as the limiting cases of the potential

of a conducting charged spheroid. For a line segment we
have [5, p. 22]

ϕ = E0r tanh−1

 l2/2

r2 + z2 + l2

4 +
√(

r2 + z2 − l2

4
)2 + l2r2

1/2

,

(7)

where the value of E0 is defined by Equation (5); l is
the length of a wire; r, z are the cylindrical coordinates
of the point of observation (the origin coincides with
the center of a line segment; z-axis coincides with a line
segment; r-axis is perpendicular to a line segment). For
a circular disk [5, p. 25]

ϕ = E0R tan−1

[
2R2

r2 + z2 −R2 +
√

(r2 + z2 −R2)2 + 4R2r2

]1/2

,

(8)

where the value of E0 is defined by Equation (6); R is
the disc radius; r, z are the cylindrical coordinates of the
point of observation (the origin coincides with the center
of a disk; z-axis lies in the plane of the disk; r-axis is
perpendicular to the disk). In deriving Equation (8), we
took into account that the disk has two identical surface
areas. The derivation of the field of a conducting charged
spheroid is based on using ellipsoidal coordinates and
leads to the integral representation for the potential in
form of an elliptic integral of the first kind [5, p. 22].

Equations (7) and (8) together with relations Er =
−∂ϕ/∂r and Ez = −∂ϕ/∂z allow one to calculate
relative errors

δ~E =
√

(Er − E0)2 + E2
z√

E2
r + E2

z

in the determination of electric field ~E = ~Er + ~Ez,
which arise in the case of replacing these bodies with
the infinite and uniformly charged idealized objects. In
Figures 5 and 6, we present the results of the numerical
calculation as contour lines, along which the relative
error δ~E is equal to 5%. The domains corresponding to
a larger value of this quantity are shaded in gray.

It can be observed that the maximum ‘correct’ dis-
tance from the wire to the observation points (about 15%
of the wire length) corresponds to its middle, decreasing
to zero as these points approach the edges of the wire.
Since, the linear charge density of the wire turns out
to be constant at such a limiting transition [6], the
deviations from an infinite wire model are completely
determined by the finite length of the wire.

In the case of a conducting disc the situation is
somewhat different. The maximum ‘correct’ distance
from the disk to the observation points (about 10% of the
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Figure 5: Domains of credibility (white) and incredibility (gray)
of the infinite wire model for the line segment at δ~E = 5%.

Figure 6: Domains of credibility (white) and incredibility (gray)
of the infinite plane model for the disk at δ~E = 5%.

disk diameter) also corresponds to its middle. However,
due to the increase in surface charge density towards
the edges of the disk, the dimension of the domain of
credibility along the disk is much less than for the wire.

4. Conclusions

In this paper we present a quantitative analysis of the
applicability limits of some ‘infinite’ models in the course
of electricity and magnetism. We show that the real
parallel-plate capacitor can be considered as the ideal-
ized one, if its longitudinal size is a hundred times more
than the transverse size. The real solenoid can be seen
as the ‘infinite’ one if this ratio is approximately equal
to 10. Next, we discuss the influence of the non-uniform
distribution of the surface charge density and finite size
on the deviations from the models an infinite wire and
plane of uniform charge. We visualize the errors of these

two models and conclude that in the first case the real
electric field differs from the idealized one because of the
finite length of the wire. In the second case this difference
is caused also by the non-uniform surface charge density.
These findings can help readers to probe the limits of
applicability of the considered models.
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