
Revista Brasileira de Ensino de F́ısica, vol. 43, e20210171 (2021) Articles
www.scielo.br/rbef cb

DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0171 Licença Creative Commons

Simulation of deterministic compartmental models for
infectious diseases dynamics

Antonio M. Batista1,2,3, Silvio L. T. de Souza4, Kelly C. Iarosz*3,5,6 ,
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Infectious diseases are caused by pathogenic microorganisms and can spread through different ways.
Mathematical models and computational simulation have been used extensively to investigate the transmission
and spread of infectious diseases. In other words, mathematical model simulation can be used to analyse the
dynamics of infectious diseases, aiming to understand the effects and how to control the spread. In general, these
models are based on compartments, where each compartment contains individuals with the same characteristics,
such as susceptible, exposed, infected, and recovered. In this paper, we cast further light on some classical epidemic
models, reporting possible outcomes from numerical simulation. Furthermore, we provide routines in a repository
for simulations.
Keywords: Compartmental model, computational simulation, infectious diseases, COVID-19.

1. Introduction

Infectious diseases have caused epidemics with devas-
tating effects, for instance influenza A virus sub-type
H1N1 [1] and smallpox [2]. Infectious disease with pan-
demic potential is one of the greatest challenges of the
health system. Recently, the World Health Organization
declared COVID-19 [3, 4] as a pandemic. The mortality
depends on many factors such as number of infected
people, virulence, and prevention efforts [5]. Various
infectious diseases can come in waves, e.g., the first three
waves of avian influenza A (H7N9) virus circulation [6].
Kissler et al. [7] projected that recurrent outbreaks of
COVID-19 will probably happen.

Epidemiological models [8] have been proposed to
analyse the spread of infectious diseases in host popu-
lations [9]. In 1760, Bernoulli [10] proposed a model to
describe the impact of variolation. In 1906, a mathe-
matical model to explain the epidemic of measles was
introduced by Hamer [11].

The SI model [12] describes the evolution of sus-
ceptible S and infected I individuals, respectively. A

* Correspondence email address: kiarosz@gmail.com

model was proposed by Ross [13] in 1916 for malaria.
In the Ross model, known as SIS model [14], susceptible
become infected and infected recover without immunity.
Kermack and McKendrick [15] introduced a model,
known as SIR model, in which the removed can be
recovered, immune, or dead. The SIRS model [16] was
obtained when a waning immunity was incorporated.
In the SEIR model [17] there are four states, where
E corresponds to exposed, namely a latency period is
considered. It has been applied to measles [18] and
rubella [19]. The SEIRS model [20] considers individuals
that are transferred from the recovered to the susceptible
compartments.

One of the different types of controls of epidemic is
the vaccination. The vaccination controls have as main
objective to remove by immunity the population from
the susceptible state [21]. Gao et al. [22] demonstrated
that pulse vaccination can be an effective strategy for
the elimination of infectious diseases. Investigating the
transmission of tuberculosis by means of epidemiological
models, Liu et al. [23] reported that mixed vaccination
gives a rapid control.

When there is no vaccine for the infectious disease,
the control strategies are based on quarantine and
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isolation, for instance the COVID-19 epidemics [24]. Law
et al. [25] studied a time-varying SIR model for the
transmission dynamics of COVID-19. Prem et al. [26]
reported that the magnitude of the epidemic peak can be
reduced through sustained physical distancing. Feng [27]
analysed the final and peak epidemic sizes considering
quarantine and isolation in SEIR models. Recently,
Boldog et al. [28] analysed the risk assessment of novel
coronavirus outbreaks outside China by means of an
extension of a standard SEIR model.

Stochastic mathematical models have been considered
in prediction of the spread of several infectious diseases
[29]. The law of mass-action has been used for almost a
century in epidemiology to describe the contact rate of
individuals. This law originated in practice and theory
of chemical reaction kinetics [30]. Tomé and Oliveira [14]
presented models for epidemic spreading and showed the
analogy between the spreading of a disease with a critical
phase transition. They also analysed the epidemic curve,
which is a graphical representation of the number of
identified cases over a period of time.

In this work, we focus on the simulation of different
deterministic models that have been used to describe
infectious disease dynamics. We provide routines in a
repository [31] to assist students with their first steps
about computer simulations of mathematical models in
epidemiology. The reader can find mathematical details
in Ref. [14]. We show the dynamical behaviours predict
by some mathematical models, such as SI, SIS, SIR,
SIRS, SEIR, and SEIRS. We present an application of
the SIR model in COVID-19 for the parameters obtained
from China according to Ref. [32]. Considering the SEIR
model, we show the impact of easing restriction on the
infection rate that was reported in Ref. [33].

2. The SI Model

The SI model describes the dynamical behaviour
of transmitted diseases [34] with interactions among
infected and susceptible people. In this model, vital
processes are not considered, such as rates of birth
and mortality. Figure 1 displays the diagram of the SI
model, where the population is divided into susceptible
and infected individuals. After infected, the individual
does not return to the susceptible class, for instance
herpes that is spread from person to person by the virus

Figure 1: Compartment diagram of the SI model, where S
and I are the numbers of susceptible and infected individuals,
respectively, and β (in units of 1/day) is the effective contact
rate of the disease.

Figure 2: Time evolution of S (blue line) and I (red line) for
N = 1000, S(0) = 995, I(0) = 5, and β = 0.1.

Figure 3: Compartment diagram of the SIS model, where S
and I are the numbers of susceptible and infected individuals,
respectively, β (in units of 1/day) is the infectious rate, and δ
(in units of 1/day) is the rate in which the infected individuals
recover to the susceptible state.

Herpesviridae.
The SI model is given by

dS

dt
= −βSI

N
, (1)

dI

dt
= βSI

N
, (2)

where N = S + I is the total population and β is the
effective contact rate of the disease. Figure 2 exhibits
the time evolution (in days) of S (blue line) and I (red
line) for β = 0.1. With time, every susceptible individual
becomes infected.

3. The SIS Model

In the SIS model [35, 36], which was studied recently
[14, 29], the infected individuals can become susceptible,
however, there is no long-lasting immunity. Due to this
fact, an individual can have recurrent infections, such as
common cold (rhinoviruses) and influenza, as well as sex-
ually transmitted diseases, for instance chlamydia and
gonorrhoea. In Fig. 3, we see a schematic representation
of the compartment diagram related to the SIS model.

The SIS model is written as
dS

dt
= −βSI

N
+ δI, (3)

dI

dt
= βSI

N
− δI, (4)
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Figure 4: Time evolution of S (blue line) and I (red line) for
N = 1000, S(0) = 995, I(0) = 5, β = 0.1, and δ = 0.01.

Figure 5: Compartment diagram of the SIR model, where S, I,
and R are the numbers of susceptible, infected, and recovered
individuals, respectively, β (in units of 1/day) is the infectious
rate, and γ (in units of 1/day) is the rate in which the infected
individuals recover.

where the infected individual goes to the susceptible
state with a rate δ. In Fig. 4, we consider β = 0.1 and
δ = 0.01 for N = 1000. The SIS model has two stable
equilibria, one for I = 0 and another for I = N(1−δ/β).

4. The SIR Model

In 1927, Kermack and McKendrick [15] proposed the SIR
model, a mathematical model of spread of an infectious
disease within a population, studied recently [14, 29].
They considered three compartments, in which the
susceptible individuals go to the infectious compartment
according to an infectious rate and, depending on the
recover rate, the infected individual recover and develop
immunity, as shown in Fig. 5.

The SIR model was introduced to explain the rapid
increase of infected individuals, as verified in epidemics
such as the cholera and the plague. The mathematical
model is given by

dS

dt
= −βSI

N
, (5)

dI

dt
= βSI

N
− γI, (6)

dR

dt
= γI, (7)

where γ is the recovery rate and N = S + I + R. The
behaviour of the infectious class has a dependence on
the parameter R0 = β/γ, known as reproduction ratio.
R0 is an important threshold quantity that describes the
transmissibility or contagiousness of pathogenic microor-

Figure 6: Time evolution of S (blue line), I (red line), and R
(green line) for N = 1000, S(0) = 995, I(0) = 5, β = 0.2, and
γ = 0.05.

Figure 7: Time evolution of S (blue line), I (red line), and R
(green line) for N = 83132, S(0) = 83127, I(0) = 5, β = 0.35,
and γ = 0.035.

ganisms [37]. In a susceptible group of individuals,
it gives the expected number of secondary cases of
infections due to an infected individual. The pathogenic
microorganism is able to invade the population of sus-
ceptible individuals if R0 > 1. The births and deaths
are not considered due to the fact that the infection and
recovery rates are fast.

Figure 6 shows the time evolution (in days) of S (blue
line), I (red line), and R (green line) for N = 1000,
β = 0.2, and γ = 0.05. As initial conditions, we
consider S(0) = 995 and I(0) = 5. We see that the
infected population reaches a peak while the susceptible
individuals decrease and recovered ones increase. After
the peak, the number of infected individuals decreases.

In 2020, the SIR model was utilised by Cooper
et al. [32] to study the spread of COVID-19 in different
communities. They analysed data recorded between
January and June 2020 from China, South Korea, India,
Australia, Italy, and the state of Texas in the USA. It
was demonstrated that the SIR model can provide a
theoretical framework to study how the COVID-19 virus
spreads within communities. Figure 7 displays the time
evolution of S (blue line), I (red line), and R (green line)
for N = 83132, S(0) = 83127, I(0) = 5, β = 0.35, and
γ = 0.035, where the parameters are selected according
to Ref. [32] for China.
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5. The SIRS Model

The SIRS model has been studied by various authors [38,
39] and studied recently [14, 16, 29]. Figure 8 exhibits
the process diagram for the SIRS model. In this model,
the recovery can generate temporary immunity, and as
a consequence the recovered individuals return to the
susceptible class after some time. The loss of immunity
is observed in smallpox, tetanus, and influenza.

The SIRS model is given by

dS

dt
= −βSI

N
+ δR, (8)

dI

dt
= βSI

N
− γI, (9)

dR

dt
= γI − δR, (10)

where δ is the rate in which the recovered individuals
return to the susceptible class after losing the immunity
and N = S + I +R.

In Fig. 9, the blue, red, and green lines correspond to
the time evolution (in days) of S, I, and R, respectively.
We see the persistence of the infected population due to
the transfer of individuals from the recovery class to the
susceptible one.

Figure 8: Compartment diagram of the SIRS model, where S,
I, and R are the numbers of susceptible, infected, and recovered
individuals, respectively, β (in units of 1/day) is the infectious
rate, γ (in units of 1/day) is the rate in which the infected
individuals recover, δ (in units of 1/day) is the rate in which the
recovered individuals return to the susceptible class.

Figure 9: Time evolution of S (blue line), I (red line), and R
(green line) for N = 1000, S(0) = 995, I(0) = 5, β = 0.4,
γ = 0.2, and δ = 0.005. The inset figure corresponds to the
magnification of the infected individuals.

6. The SEIR Model

One of the compartmental models of infectious diseases
is the SEIR model, studied recently [14, 29]. In this
model, the individuals are separated into four com-
partments. The SEIR model assumes people in the
susceptible (S), exposed (E), infected (I), and recovered
(R) states, as shown in Fig. 10.

The people move from S to E due to direct or indirect
contact. In the E stage, the people are infected but are
not infectious, namely an latent period. The infected
individuals are recovered. The SEIR model was used by
Carcione et al. [40] to simulate the COVID-19 epidemic.

The SEIR model is written as
dS

dt
= −βSI

N
, (11)

dE

dt
= βSI

N
− ωE, (12)

dI

dt
= ωE − γI, (13)

dR

dt
= γI, (14)

where β is the coefficient of infection rate, ω is the
coefficient of migration rate of latency, γ is the coefficient
of migration rate, and N = S + E + I + R is the total
population.

Figure 11 displays the temporal evolution (in days) of
S (blue line), E (black line), I (red line), and R (green
line) for β = 0.5, γ = 0.01, ω = 0.1. Initially, S decreases
and E, I, and R increase. S is depleted by the epidemic

Figure 10: Compartment diagram of the SEIR model, where S,
E, I, and R are the numbers of susceptible, exposed, infected,
and removed individuals, respectively, β (in units of 1/day) is
the infectious rate, ω (in units of 1/day) is the coefficient of
migration rate, and γ (in units of 1/day) is the rate in which
the infected individuals recover.

Figure 11: Time evolution of S (blue line), E (black line), I (red
line), and R (green line) for N = 1000, S(0) = 995, I(0) = 5,
β = 0.5, ω = 0.1, and γ = 0.1.
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Figure 12: (a) Time evolution of I for ω = 0.2, γ = 0.25, r = 0
(red line), r = 0.2 (red dashed line), and r = 0.4 (red dotted
line). (b) Time evolution of I for r = 0 (t < 14), r = 0.6
(14 ≤ t < 365), and r = 0.2 (t ≥ 365).

and goes to zero. Both E and I exhibit peaks and R
saturates when they go to zero.

Recently, Souza et al. [33] considered the SEIR model
to analyse the impact of easing restriction on the infec-
tion rate during COVID-19 pandemic. They included a
parameter related to the restriction r in the SEIR model,
β → β(1− r). By increasing r, the peak of infectious is
delayed and the curve peak is flattened, as shown in
Fig. 12(a). Figure 12(b) shows that changes in the value
of r can generate a second wave, namely the increase of
the number of infected individuals after few cases.

7. The SEIRS Model

In the SEIRS model, the susceptible individuals first
go through the exposed class before infected one. After
the infectious, they are transferred to the recovered
compartment and become susceptible again, as shown
in Fig. 13. Denphedtnong et al. [41] used the SEIRS
epidemic model to describe the spread of diseases by
transports. They investigated the data of SARS (severe
acute respiratory syndrome) outbreak in 2003.

The SEIRS model is given by
dS

dt
= −βSI

N
+ δR, (15)

dE

dt
= βSI

N
− ωE, (16)

dI

dt
= ωE − γI, (17)

dR

dt
= γI − δR, (18)

Figure 13: Compartment diagram of the SEIRS model, where
S, E, I, and R are the numbers of susceptible, exposed, infected,
and removed individuals, respectively, β (in units of 1/day) is
the infectious rate, ω (in units of 1/day) is the coefficient of
migration rate, γ (in units of 1/day) is the rate in which the
infected individuals recover, and δ (in units of 1/day) is the
rate in which the recovered individuals return to the susceptible
class.

Figure 14: Time evolution of S (blue line), E (black line), I (red
line), and R (green line) for N = 1000, S(0) = 995, I(0) = 5,
β = 0.5, ω = 0.1, γ = 0.1, and δ = 0.03.

where δ is the rate in which the recovered individuals
return to the susceptible class after losing the immunity.

In Fig. 14, we calculate S (blue line), E (black line), I
(red line), and R (green line) for N = 1000, S(0) = 995,
I(0) = 5, β = 0.5, ω = 0.1, γ = 0.1, and δ = 0.03. We see
that the susceptible, exposed, and infected individuals
do not go to the value equal to zero over time. This
occurs due to the fact that recovered individuals become
susceptible again.

8. Conclusions

Investigations about infectious diseases play a crucial
role in reducing negative consequences and improving
the recovery of individuals. Scientists have been carried
out research in epidemiology to understand how the
people are affected by transmissible diseases over time.
Many different mathematical models were proposed to
find epidemiological parameters and manners to prevent
illness.

In this work, we present some mathematical models
that have been used to describe the dynamical behaviour
of infectious diseases. The models are based on indi-
viduals that are separated into compartments, such as
susceptible (S), exposed (E), infected (I), and recovered
(R). They focus on the prediction of the population
growth or reduction in each compartment. The models
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depend on the parameters related to the rate in which
individuals are transferred between the classes.

The SI model considers that the individuals go from
the susceptible to infected states, while the SIS model
assumes that there is no immunity and the infected
individuals return to the susceptible compartment. In
the SIR and SIRS model, it is included the class of
the recovered individuals. The SEIR and SEIRS models
have not only the susceptible, infected, and recovered
individuals, but also the exposed ones. Recently, the
SIR and SEIR models have been used in studies about
the COVID-19 epidemic. The SIR, SIRS, SEIR, and
SEIRS models exhibit a peak of infected people that
was observed in different infection spread.

It has been demonstrated that through the intensity
of restrictions associated with the control policies to
reduce the infection spread, it is possible to flat the curve
associated with the temporal evolution of the infected
people [33]. However, the results depend on the duration
and specific time in which the restriction is applied.
The peak of infections can be reduced by means of
restrictions or another peak can appear after suspending
the restrictions.

We provide routines in a repository for the SI, SIS,
SIR, SIRS, SEIR, and SEIRS models [31].
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