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P.A.M. Dirac in 1949 showed that it is possible to construct relativistic dynamic forms starting from the
description of the initial state of a given relativistic system in any space-time surface whose distances between
two points on this hypersurface has no causal connection. The dynamic evolution corresponds to such a system
following a trajectory through this hypersurface. For example, the commonest hypersurface of time t = 0 is our
three-dimensional (Euclidean) space. It is invariant by rotations and translations. However, in any transformation
of inertial frame of references that involves “boosts”, the time coordinate is modified and, consequently, the
hypersurface at t = 0. Other hypersurfaces may be invariant through some kind of “boost”; the hyperplane that
is called null-plane is such a hyperplane, defined by x+ = t + z/c, in which c is the speed of light in vacuum, and
plays the role of the “time” coordinate in the light-front. The null-plane defined in such a way guarantees that a
“boost” in the z direction does not modify the null-plane. Our aim here is to study special relativity under such
a transformation of frame of references and see the consequences thereof.
Keywords: Minkowski space, Lorentz transformations, Quantum propagator.

1. Introduction

In relativity courses in general, it is studied that
Lorentz transformations are defined in a space with
four dimensions: three spatial and one temporal. In this
work we discuss an alternative way to define Lorentz
transformations in the light front, through of Minkowski
space and its properties. This work is accessible to
undergraduate physics students who have attended a
course in quantum mechanics and special relativity and
want to explore these themes in another proposal, such
as coordinating information in the light front.

In classical physics, the time coordinate is not affected
by a transformation carried out from one inertial frame
to another one. The time coordinate t of an inertial
frame does not depend on the spatial coordinates x, y, z
of another frame of reference, that is, the transformation
equation for the time coordinate is simply t′ = t. This is
no longer true in special relativity, where time and space
are dependent on each other. The time coordinate in one
inertial reference frame depends both on the time and
space coordinates of another inertial reference frame. For
example, the time coordinate in the primed frame that
moves along the x- and x′-axis with a relative speed v
reads now

t′ =
t− v

c2x√
1− v2

c2

* Correspondence email address: jhosales@uesc.br

Thus, instead of treating space and time separately as in
the classical theory was appropriate to do so, it is now
natural to treat them simultaneously. H. Minkowski [1]
was the first one to clearly show how this could be done.

In special relativity then we have to abandon this idea
of an absolute time and start considering the proper time
for each inertial frame of reference. As a consequence
what emerges is a space-time or a four-dimensional
continuum, in which the time is considered as the fourth
dimension. Although other metrics can be considered
in such a space, we can use a metric which resembles
the Euclidean metric, in everything similar to the three-
dimensional metric of the ordinary space. This four-
dimensional structure is called Minkowski universe. An
event is defined by four coordinates in the Minkowski
space and the distance between two events – called
the universe interval – is invariant. Thus, the universe
interval assumes the role of the distance between two
points in the ordinary three-dimensional space.

The vectors (four-vectors) defined in the Minkowski
space and which obey the Lorentz transformations are
called vectors in the Minkowski universe. In this work we
consider how to explore these same concepts defined in
the Minkowski space on a hyperplane known as the light
front. In the literature we can find different definitions
for the light front which are distinguished from each
other by a numerical factor, say α for which typical val-
ues are α = 1, 2,

√
2. Then, utilizing a transformation of

the Minkowski space into the generalized light front, we
obtain the transformations for the differentiation opera-
tors, general metric and Jacobian for the transformation.
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e20210042-2 Special relativity on the light-front

Afterwards, we express the Lorentz transformations in
the light front and study their consequence for particular
three inertial frames of reference. Finally, we compare
the Klein-Gordon equation in the Minkowski space with
its light front representation and draw some conclusions.

2. Basics on the Light-Front

We shall start off by considering Einstein’s special
relativity defined in the usual Minkowski space-time and
then we shall make a transformation to the light-front
coordinates.

In dealing with tensor structures for a given finite
dimensional space we consider linear transformations of
them and intrinsec to this is the subjacent structure for
the space – which by and large is a metric space, that is,
a space wherein we have defined definite rules governing
lengths between two pairs of neighbouring points of such
a space. For all riemannian type of spaces there exists a
quadratic differential form

ds2 = gijdx
idxj , j = 1, 2, . . . , N,

in which the metric elements gij are in general functions
of position with a subsidiary condition det(gij) 6= 0 so
as to guarantee the existence of the inverse transforma-
tion. The very structure of the quadratic form above
suggests that this metric must be symmetric under the
interchange of indices (i, j).

Since the metric for special relativity space-time is the
Minkowski metric rather than an Euclidean one, first
of all we mention that the convention choice for this
metric is important right from the beginning, since upon
this choice will depend the set up for our transformation
properties from covariant to contravariant tensor struc-
tures.

One possible choice, which we shall call Minkowski
convention is

gµν = gµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

In this convention the time component of the four-vector
xµ, µ = 1, 2, 3, 4 is pure immaginary defining the fourth
component of it as x4 ≡ ict.

Another possibility is what we call the Bjorken-Drell
convention – which we prefer and shall use henceforth –
because it is increasingly popularized by its frequent
usage among field theoreticians. In the Bjorken-Drell
convention we have

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

.
Here the four vector is given by xµ, µ = 0, 1, 2, 3 and
x0 ≡ ct is the time component.

Consequently, any arbitrary (contravariant) four vec-
tor in the Bjorken-Drell convention is written down as

Aµ = (A0, A1, A2, A3),

whereas the covariant version of it is written down as

Aµ = (A0,−A1,−A2,−A3),

We want to express these in terms of light-front coor-
dinates. Dirac [2] showed that it is possible to construct
dynamical forms starting from a description of the initial
state of a relativistic system in any space-time sur-
face, whose distances between points are not connected
causally. The dynamical evolution corresponds to the
system following a trajectory through the hypersurfaces.
For example, the hypersurface t = 0 is our three-
dimensional space. It is invariant under translations and
rotations. However, in any transformation of inertial
frame of reference that involves “boosts” the time
coordinate is modified and therefore the hypersurface
t = 0. Other hypersurfaces can be invariant by some
type of “boost”; it is the case of the hyperplane called
light-front, defined by x+ = t+ z/c, which is the “time”
coordinate for the light front. The traditional light-front
coordinates[3–5] are defined as

x+ = 1√
2
(
x0 + x3)

x− = 1√
2
(
x0 − x3)

~x⊥ = x1 ı̂+ x2̂,

in which the normalization factor in the first and second
lines are somewhat arbitrary. Inverse transformation can
be pulled out without difficulty from these:

x0 = 1√
2
(
x+ + x−

)
x1 = x1

x2 = x2

x3 = 1√
2
(
x+ − x−

)
(1)

The Jacobian for the transformation from one to
another can be evaluated through the following deter-
minant

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x0

∂x+
∂x0

∂x−
∂x0

∂x1
∂x0

∂x2

∂x1

∂x+
∂x1

∂x−
∂x1

∂x1
∂x1

∂x2

∂x2

∂x+
∂x2

∂x−
∂x2

∂x1
∂x2

∂x2

∂x3

∂x+
∂x3

∂x−
∂x3

∂x1
∂x3

∂x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)
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For our present choice for the normalization factor in
x0 and x3 (or equivalently for x+ and x−), the Jacobian
is equal to 1. Then, for the light-front coordinates, the
position four-vector is written as

xµLF =
(
x+, x−, ~x⊥

)
3. Generalized Light-Front

Instead of the traditional light-front normalization factor
2− 1

2 utilized for the plus and minus components, we
introduce the generalized normalization factor α−1:

x+ = 1
α

(
x0 + x3) (3)

x− = 1
α

(
x0 − x3) (4)

~x⊥ = x1 ı̂+ x2̂ (5)

In a similar way for the conjugated moment

k+ = 1
α

(
k0 + k3) (6)

k− = 1
α

(
k0 − k3)

~k⊥ = k1 ı̂+ k2̂

Clearly, equation (5) does remain invariant no matter
the value of the parameter α that is chosen. For the
coordinates that are affected, the inverse transformation
becomes

x0 = α

2 (x+ + x−) (7)

x3 = α

2 (x+ − x−), (8)

and

k0 = α

2
(
k+ + k−

)
(9)

k3 = α

2
(
k+ − k−

)
Partial differentiation in Eqs. (3)–(4) with respect to

x+, yields:

∂x+

∂x+ = 1
α

∂

∂x+

(
x0 + x3) ⇒ ∂x0

∂x+ + ∂x3

∂x+ = α

(10)

∂x−

∂x+ = 1
α

∂

∂x+

(
x0 − x3) ⇒ ∂x0

∂x+ −
∂x3

∂x+ = 0

(11)

By adding Eqs. (10) and (11), we get:

∂x0

∂x+ = α

2 (12)

Similarly, by subtracting Eq. (11) from Eq. (10) we
get:

∂x3

∂x+ = α

2 (13)

An analogous differentiation analysis with respect to
the x−-component in Eqs. (3)–(4) leads to:

∂x0

∂x−
= α

2 (14)

∂x3

∂x−
= −α2 (15)

For a given function f = f
(
x0, x3) differentiation

with respect to x+ and x− can be evaluated through
linearity properties of the differentiation operator

∂f

∂x+ = ∂f

∂x0
∂x0

∂x+ + ∂f

∂x3
∂x3

∂x+ (16)

Utilizing Eq. (12) and Eq. (13), we get:

∂f

∂x+ = α

2

(
∂f

∂x0 + ∂f

∂x3

)
(17)

Similarly

∂f

∂x−
= α

2

(
∂f

∂x0 −
∂f

∂x3

)
(18)

The corresponding inverse transformation reads:

∂f

∂x0 = 1
α

(
∂f

∂x+ + ∂f

∂x−

)
(19)

∂f

∂x3 = 1
α

(
∂f

∂x+ −
∂f

∂x−

)
(20)

As expected, differentiation operator for + and −
components change roles when compared to the position
vector + and − components:

∂+ = ∂

∂x+ = α

2 (∂0 + ∂3) (21)

∂− = ∂

∂x−
= α

2 (∂0 − ∂3) (22)

∂⊥ = ∂

∂x⊥
(23)

Inverse differentiation is

∂0 = ∂

∂x0 = 1
α

(∂+ + ∂−) (24)

∂3 = ∂

∂x3 = 1
α

(∂+ − ∂−) (25)

3.1. Generalized light-front metric

The metric tensor gµν connects contravariant and covari-
ant tensor indices, a property we often refer to as
the raising and lowering of tensor indices. So, for a
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given contravariant tensor, its covariant version can be
determined straight away:

Aµ = gµνA
ν

To determine the metric structure for the light front,
we may consider the infinitesimal distance between two
points in the Minkowski space-time, given by

ds2 =
(
dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 ,

which, after transforming into light-front coordinates, we
get

ds2 = α2dx+dx− −
(
dx⊥

)2
.

The most common normalization parameters that
appear in the literature are α = 1, 2,

√
2 for which we

have, respectively,

ds2 = dx+dx− −
(
dx⊥

)2
, α = 1, (26)

ds2 = 4dx+dx− −
(
dx⊥

)2
, α = 2, (27)

ds2 = 2dx+dx− −
(
dx⊥

)2
, α =

√
2 (28)

We can now infer that the general light front metric
tensor may be written as

gµν =


0 α2/2 0 0

α2/2 0 0 0
0 0 −1 0
0 0 0 −1

 (29)

Thus, we have for

x+ = g+νx
ν = g+−x

− (30)

x− = g−νx
ν = g−+x

+, (31)

the following results

x+ = α2

2 x− (32)

x− = α2

2 x+. (33)

For the tansverse components we have the expected
change of signs

x⊥ = g⊥⊥x
⊥ = −x⊥ (34)

3.2. Generalized light-front: the Jacobian

The Jacobian transformation for the generalized light
front is given by

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α

2
α

2 0 0

0 0 1 0

0 0 0 1

α

2 −α2 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= α2

2

where we used the expression for the Jacobian in Eq. (2)
and the partial derivatives Eq. (24) and (25). For the
common values of α = 1, 2,

√
2, we have: J = 1/2, 2, 1

respectively. These values has to be carefully laid down
within integration measures.

3.3. Integration in the light front

To go from one coordinate system to another requires the
use of Jacobian. Then, to go from the usual Minkowski
coordinate system four-dimensional integration to the
generalized light-front coordinate system integration we
need ∫

dx0dx1dx2dx3 = J

∫
d2x⊥dx+dx−

= α2

2

∫
d2x⊥dx+dx−

For the most common choices for the light front,
α = 1, 2,

√
2, we have, respectively:

∫
dx0dx1dx2dx3 =



1
2

∫
d2x⊥dx+dx−

2
∫
d2x⊥dx+dx−

1
∫
d2x⊥dx+dx−

3.4. D′ Alambertian

An application for (24), (25) and (29), is the scalar
product:

∂µ∂
µ = gµν∂

µ∂ν

= g+−∂
+∂− + g−+∂

−∂+ + g++∂
+∂+

+g−−∂−∂− + g⊥+∂
⊥∂+

+g⊥−∂⊥∂− + g+⊥∂
+∂⊥ + g−⊥∂

−∂⊥

+g⊥⊥∂⊥∂⊥

∂µ∂
µ = α2

2 ∂+∂− + α2

2 ∂+∂− −
(
∂⊥
)2
, (35)

where α = 1, 2,
√

2 for some of the most common nor-
malization factors.In the light front, it can be obtained
with the help of the generalized light front metric as
follows

∂µ∂
µ = α2∂+∂− −

(
∂⊥
)2
. (36)

4. Examples in the Light Front

4.1. Lorentz transformation

Without loss of generality, as is common, we look at
the Lorentz transformation for two inertial frame of
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references which move along the z direction with respect
to each other, for example,{

z′ = zcoshϕ− ctsinhϕ
ct′ = ctcoshϕ− zsinhϕ

(37)

where

ϕ = 1
2ln
(

1 + v/c

1− v/c

)
. (38)

Substituting z = x3 and t = x0, with c = 1 (in the
natural units system), and using the definitions for the
light front coordinates, we get the following system:{

x′+ = x+coshϕ− x+sinh ϕ
x′− = x−coshϕ+ x−sinh ϕ (39)

The system in Eq. (39) is the Lorentz transformation
in the Minkowski space-time expressed in terms of light
front coordinates. We may simplify these noting that
coshϕ± sinhϕ = e±ϕ so that

x′+ = x+e−ϕ (40)

x′− = x−eϕ (41)

This result tells us that Lorentz transformations in the
light front are very peculiar, behaving just like a kind of
“scaling” factor. It is rather peculiar in that it does not
mix different coordinates like it happens in the usual
Minkowski space-time Lorentz transformation.

If the frame in movement is going in the opposite
direction with respect to the “rest” frame, we use, as
usual, the −v for the relative velocity. This implies that
Eq. (38) changes sign

ϕ = 1
2ln
(

1 + (−v/c)
1− (−v/c)

)
= −1

2 ln
(

1 + v/c

1− v/c

)
. (42)

In the light front therefore, the equivalent to the frame
of reference going into the opposite direction in relation
to the “rest frame”, i.e., v < 0, is the change of sign in
the argument of the exponential ϕ, which means Eq. (40)
and Eq. (41) become:

x′+ = x+eϕ

x′− = x−e−ϕ

4.2. Two successive Lorentz transformation in
the light front

Considering two parallel and consecutive Lorentz trans-
formations between the referentials R1 e R2, moving
away with constant speeds v1 and v2 in relation to the
reference R. Two successive transformations in special
relativity [6] we also have time dilation and space
contraction for these moving systems of inertial frames,

which are known to be given by

∆t = γ2γ1

(
1 + v1v2

c2

)
∆tR (43)

∆z = 1
γ1γ2

 1
1 + v1v2

c2

∆LR (44)

in which we have introduced the proper time ∆tR (time
in the referential at rest) and proper length ∆LR (length
in the referential at rest) in the above formulae.

For n successive transformations of the Lorentz trans-
formation, we have:

∆t =
n∏
i=1

γi

(
1 +

∏n
i=1 vi
c2

)
∆tR (45)

∆z = 1∏n
i=1 γi

 1

1 +
∏n
i=1 vi
c2

∆LR (46)

One particular interesting case occurs when the refer-
ence frames happen to be moving in opposite directions
in relation to the one “at rest”. In this case, Eq. (43) and
Eq. (44), with for example ~v1 = −~v2, become

∆t = γ2γ1

(
1− v1v2

c2

)
∆tR (47)

∆z = 1
γ1γ2

 1
1− v1v2

c2

∆LR

In the special case ~v1 = −~v2 e |~v1| = |~v2| = v (43),
which implies in

∆t = ∆tR (48)

If we consider two parallel and consecutive Lorentz
transformations between reference frames R2 and R1,
moving away with velocities v2 and v1 respectively in
relation to a rest frame R, in the light-front we have:

x+ = e−(ϕ1+ϕ2)x+
R

x− = e(ϕ1+ϕ2)x−R

where, of course, ϕ is defined for each successive moving
frame, using (38).

In general, in the ligth-front,

x+ = e
−

(
∞∑

i=1

ϕi

)
x+
R,

x− = e

(
∞∑

i=1

ϕi

)
x−R.

Now, because in the light front we have this peculiar
form of Lorentz transformation that is tantamount as
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a scaling factor, an interesting particular case of three
inertial frames of reference can be considered such that
the first one we take as the “proper” inertial frame, that
is, in which we have the proper time and proper length;
the second one is the usual inertial frame that moves
along the positive z direction with velocity v relative
to the proper frame and the third one an inertial frame
that moves along the negative z direction with velocity v
relative to the first frame, Eq. (42). In such a particular
case, we can see the same result of special relativity

x+ = e−(ϕ1+ϕ2)x+
R.

This happens because |v1| = |v2| = v implies that |ϕ1| =
|ϕ2| = ϕ. However, for one of the reference frames going
in the opposite direction, e.g., v1 < 0, ϕ < 0, Eq. (42)
while v2 > 0, ϕ > 0 we conclude that

x+ = x+
R

In this way, the light front is coherent with special
relativity (48).

4.3. Canonical conjugate momentum in the light
front

In relativity, the mass squared is an invariant scalar
which equals the four-momentum squared, that is

kµk
µ = k2 = m2. (49)

This entails an energy-momentum relation in the
following manner

k2 = k2
0 − ~k2 = m2 (50)

k2
0 = ~k2 +m2 (51)

k0 = ±
√
~k2 +m2 (52)

This quadratic relation that comes up between energy
and three-momentum has been the source of difficulty
until an adequate interpretation for the negative energy
state could be given by Feynman. Moreover, in the quan-
tum description of fields, both energy and momentum
become hermitian operators, so that there is also this
additional burden of defining what a square root of an
operator might be [7].

The usual method of finding the energy ratio in the
coordinates of the light front and calculating the scalar
product kµkµ = m2 of the quadri-moment in these
coordinates, with rest mass m. Therefore:

kµkµ = gµνk
µkν = α2

2 k+k− + α2

2 k−k+ = m2

where we use (29).
For the light front formulation, these difficulties are

avoided simply because the energy momentum relation
now reads

k− = k2
⊥ +m2

α2k+ , (53)

which means that the sign for the light front energy
k− is always correlated to the sign of the longitudinal
momentum k+. Moreover, the relation between energy
and momentum becomes linear, and so to speak like
the usual non-relativistic quantum mechanics situation.
Since this is so and knowing that in the usual non-
relativistic quantum mechanics the Schrödinger’s equa-
tion is invariant under Galilean transformation, we were
led to ask whether there could exist a similar situation
or a situation in which one could mimic such a Galilean
invariance in the transformations from one relativistic
inertial frame of reference to another one [8]. And the
answer becomes yes thanks to the structure of the
Lorentz transformations when expressed in terms of light
front coordinates.

4.4. Schödinger equation: quantum propagator

In Quantum Mechanics the wave function completely
defines the state of the system and satisfies the
Schrödinger equation [9, 10]:

H |Ψ(t)〉 = i
d

dt
|Ψ(t)〉 , (54)

where H is the Hamiltonian of the system
The wave function, |Ψ(t)〉, evolves over time and its

evolution can be described by the unit operator U(t−t′):

|Ψ(t)〉 = U(t− t′) |Ψ(t)〉 . (55)

The operator U is unitary, because the evolution given
by Eq. (54) preserve the probability

d

dt
〈Ψ(t) |Ψ(t)〉 = 0. (56)

Introducing the Eq. (55) in Eq. (54)we have:

HU(t− t′) = i
d

dt
U(t− t′), (57)

where U(0) = 1.
Through the evolution operator, we can introduce the

propagator of the Schröendiger equation

S(t− t′) = U(t− t′)θ(t− t′), (58)

where θ(t) = 1 to t > 0 and t = 0 to t < 0.
We conclude that the propagator is associated with

the Green function of the Schroedinger equation as:

G(t− t′) = −iS(t− t′). (59)

Green’s function or the propagator completely describes
the evolution of the quantum system. In this case we are
using the spreader for “future times”. We could also set
the spreader to “back” in time.

We are going to study the spreader on a basis of H
autofunctions. The operator evolution and diagonal in
this representation and its matriz element and a phase:

U(t− t′) =
∑
|ΨE〉 e−iE(t−t′) 〈ΨE | (60)

and where H|ΨE〉 = E|ΨE〉 and } = 1.
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Thereby the propagator is given by:

S(t− t′) =
∑
|ΨE〉 e−iE(t−t′)θ(t− t′) 〈ΨE | . (61)

Defining the function SE(t):

SE(t) = e−iEtθ(t). (62)

The Fourier transform of SE(t) is:

SE(E) = 1√
2π

∫ +∞

−∞
eiEtSE(t)dt

= 1√
2π

∫ +∞

0
ei(E−E)tdt.

SE(E) = i√
2π

1
E − E

where we use [11]∫
eax cos (bx)dx = eax [a cos (bx) + b sen [bx]]

a2 + b2

Introducing the convergence factor, modifying
E → E + iε, ε > 0:

SE(E) = i√
2π

1
E − E + iε

. (63)

The contour condition corresponding to propagation
to “Front” in time appears through the convergence
factor iε in (63). Noting that,

SE(t) = 1√
2π

∫ +∞

−∞
dESE(E)e−iEt. (64)

We have that the propagator is given by:

S(t− t′) = i

2π

∫ +∞

−∞
dE
∑
E

|ΨE〉
e−iE(t−t′)

E − E + iε
〈ΨE | .

(65)
Formally the Eq. (65) can be rewritten as:

S(t− t′) = i

2π

∫ +∞

−∞
dEe−iE(t−t′)SF (E), (66)

where the Feynmam spreader is given by:

SF (E) = i

E −H + iε
. (67)

The great utility of Feynmam’s idea in introducing
propagators and in the construction of the perturbative
series related to the breadth of a physical process.

4.5. Klein-Gordon equation:
quantum propagator

Let us consider the Klein-Gordon equation with a source
field,[
∂µ∂

µ +m2]ψ(x) =
[(
∇2 − ∂2

∂t2

)
+m2

]
ψ(x) = −j(x)

(68)

in which we are using c = 1. A Green’s function G(x−y)
associated to this equation is the solution of[(

∇2 − ∂2

∂t2

)
+m2

]
G(x− y) = −δ4(x− y) (69)

Once the Green’s function is determined, the solution
for the original differential equation with source is given
by

ψ(x) =
∫
d4yG(x− y)j(y).

Finding the Green’s function therefore is our first step
to solve the problem of the field interaction with the
source. As it is usual, we redefine the Green’s function
G(x−y) by the propagator S(x−y) in which G(x−y) =
−iS(x− y). Then[

∂µ∂
µ +m2]S(x− y) = −iδ4(x− y) (70)

where δ4(x− y) =
∫

d4k
(2π)4 e−ik(x−y).

Defining now the Fourier transform S(x)

S (xµ) =
∫

d4k

(2π)4S(k)e−ikx (71)

By the standard resolution method putting Eq. (71)
into Eq. (70) we get:

S (k) = i

k2 −m2 + iε
(72)

This, of course, is the covariant Feynman propagator
for the Klein-Gordon field, where the infinitesimal imag-
inary part iε is chosen in such a way so as to guarantee
time evolution of the system into the future. From
Eq. (72) we observe that in the complex k0 plane energy
has two simple poles, one for each of the two solutions for
the energy. Thus, we can interpret it as two propagations
with positive energy, one forward in time t and the other
one backward in time t. Of course, physically speaking
this does not make sense, so Feynman interpreted it as
an antiparticle traveling forward in time t [4].

4.6. Klein-Gordon equation: quantum
propagator in the light-front

Using the coordinate transformation properties for the
light front, in (71), for the special choice of α =

√
2

which for us is the most convenient choice because the
Jacobian of the transformation, |J | = α2

2 , turns out to
be unit, we have

S (xµ) =
∫
dk−dk+d2k⊥

(2π)4 S(k)e−i[k
−x++k+x−−k⊥x⊥].
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Since Eq. (70) is built supposing a source, it means
that for the light front case we have

[2∂+∂− − (∂⊥)2 +m2]∫
dk−dk+d2k⊥

(2π)4 S(k)e−i[k
−x++k+x−−k⊥x⊥]

= −i
∫
dk−dk+d2k⊥

(2π)4 e−i[k
−x++k+x−−k⊥x⊥]

(73)

or ∫
dk−dk+d2k⊥

(2π)4 S(k)
[
2∂+∂− −

(
∂⊥
)2 +m2

]
e−i[k

−x++k+x−−k⊥x⊥]

= −i
∫
dk−dk+d2k⊥

(2π)4 e−i[k
−x++k+x−−k⊥x⊥]

consequently∫
dk−dk+d2k⊥

(2π)4 S(k)
[
−2k+k− +

(
k⊥
)2 +m2

]
e−i[k

−x++k+x−−k⊥x⊥]

= −i
∫
dk−dk+d2k⊥

(2π)4 e−i[k
−x++k+x−−k⊥x⊥]

this equality is only verified if the integrand are equal,
i.e :

S(k)
[
−2k+k− +

(
k⊥
)2 +m2

]
= −i

result

SLF (k) = i

2k+
[
k− − k⊥2 +m2

2k+ + iε
2k+

] (74)

This last Eq. (74) is the Klein-Gordon field propagator
in the light front. Here, because there is a linear relation
between the light front energy k− and the longitudinal
momentum component k+, particle and/or antiparticle
propagation depends on the choice for the sign of the
longotudinal momentum. We can interpret the simple

pole k− = k⊥
2 +m2

2k+ as the energy that the parti-
cle possess. That means that describing a relativistic
particle propagating forward in the light front time is
tantamount to a propagation of the particle in the non
relativistic quantum mechanics (67) [8, 12–16].

5. Conclusions

Using the defiition for the coordinate transformation to
the light front, we deduced the Lorentz transformations
in the light front, were we applied this to analyse Lorentz
transformation for three particular inertial reference

frames. We also obtained the general metric in the light
front gauge and the form of its internal (scalar) product.

With these results we applied to the case of the Klein-
Gordon field to illustrate how the relativistic quantum
propagator for particles with spin 1 (bosons) can be
obtained in the light front.

The advantage of using the quantum propagator in
the light front is that its description is similar to the
non relativistic quantum mechanics. In this sense –
at least in principle – the quantum field formulation
would be simpler. This is the very fact that have
encouraged many to apply this formulation in the light
front for more complex cases like gauge fields in quantum
electrodynamics [17, 18] and quantum chromodynamics.

Acknowledgments

JHS thanks CNPq, FAPESB and CAPES; DNP thanks
FAPESB for support and GSS thanks IFBA.

REFERENCES

[1] H. Minkowski, Jahresbericht der Deutschen Mathe-
matiker-Vereinigung 18, 75 (1909).

[2] P.A.M. Dirac, Rev. Mod.Phys. 21, 392 (1949).
[3] J.H.O. Sales and A.T. Suzuki, Communications in The-

oretical Physics 60, 55 (2013).
[4] J.H. Sales, A.T. Suzuki and L.A. Soriano, Revista

Brasileira de Ensino de F́ısica 37, 3309 (2015).
[5] J.H. Sales, A.T. Suzuki, D.N. Possidonio, I.G. Oliveira

and P.H. Girotto, Revista Brasileira de Ensino de F́ısica
42, e20190290 (2020).

[6] J. Loureiro, F́ısica Relativ́ıstica (Editora IST Press,
Lisboa 2008).

[7] J.H.O. Sales, T. Frederico, B.V. Carlson and P.U. Sauer,
Phys. Rev. 61, 044003 (2000).

[8] S.J. Brodsky, H.C. Pauli and S. Pinski, Phys. Rep. 301,
299 (1998).

[9] A. Messiah, Quantum Mechanics (Dover Publications,
Mineola, 1999).

[10] J.J.J. Sakurai and J. Napolitano, Modern Quantum
Mechanics (Addison Wesley Publishing Company Incor-
porated, Boston, 2010).

[11] M.R. Spiegel and R. Murray, Manual de Fórmulas e
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