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What if Planck had known about these calculations?
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Here we present some results that would possibly have attracted the attention of the physics community in
the early days of quantum mechanics in such a way that its development could have been different from what we
see today. We will first present a derivation of Planck’s blackbody spectrum radiation without the hypothesis of
quantized energy levels of the oscillator, the only additional hypothesis to the classical theory being the existence
of zeropoint fluctuations in the electromagnetic field, and this would stand as a nontrivial vacuum which could
be inferred by classical means. After doing this, we derive the Unruh-Hawking effect for the electromagnetic field
in a purely undulatory context, without dualities and without photons, and one question, among many others,
arises after these statements: What would be the development of quantum mechanics if Planck was aware of these
possibilities?
Keywords: Blackbody Radiation, Foundation of Quantum Mechanics, Unruh Effect.

1. Introduction

The derivation of the blackbody spectrum due to Planck
in 1900 is taken as the birth of a new theory, quantum
mechanics, whose consequences after more than 120
years are still intriguing, fascinating, and astonishing,
besides the fact that its foundations are still a question
under discussion.
The consequences of a deep knowledge of the micro-

scopic world have led civilization to many achievements
regarding the understanding of reality and the devel-
opment of new technologies. However, despite all the
knowledge acquired, many questions still persist and
deserve to be examined. In this article we will insist in
one specific issue, although the reader could think the
question is already answered: can quantum phenomena
be interpreted by classical means or do we need to
reorganize our logic and our concept of determinism
in order to understand the microscopic world? At
least some phenomena can be interpreted by classical
means [1], although many others can not. One of the
most impressive examples of quantum phenomena are
the entangled states conceived by Schrödinger and easily
performed in laboratories today. These are the typical
quantum states whose interpretation has no classical
counterpart, according to the vast majority authors, but
reinterpreted by others in the sense of reestablishing the
realistic view of quantum mechanics [1–3].
A few authors realized that some quantum features of

the physical world could be obtained within the classical
framework, simply including in the theory a missing
ingredient, the zeropoint field fluctuations, which could
be considered and obtained in classical theory without
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any reference to the quantum theory [1]. In some sense,
these authors believe that quantum mechanics is a
consequence of the existence of a nontrivial vacuum, but
no convincing derivations have been presented so far.
On the other hand, the generation of quantum results

employing just classical physics, empowered by this non
trivial vacuum, is a great puzzle and deserves some
attention. In this sense, we propose the question of this
article’s title, how would be the development of quantum
theory if the perception of the vacuum fluctuations were
known in its beginnings? Quite probably the develop-
ment would be the same since Planck, in his second
theory of the blackbody spectrum, obtained the missing
part in spectrum, due to the vacuum contribution [4].
However another path could be taken with consequences
difficult to imagine, as we shall discuss in the end of this
paper.
Most of the present work is based on the ideas of T. H.

Boyer on derivation in the spectrum of blackbody radia-
tion in the realm of stochastic electrodynamics (SED), a
classical electrodynamics theory that includes vacuum
fluctuations as a physical reality [5–10], although we
have implemented some of our own ideas. We also follow
the achievements presented in the book of Peter Milloni
related to the quantum vacuum in the theory of quantum
electrodynamics [4]. In particular, it is important to
quote reference [11], where we find an elegant and ped-
agogical derivation of the Unruh-Davis-Hawking effect,
and we follow the same line of reasoning to derive it, but
now in the scope of stochastic electrodynamics, that is,
instead of noncommuting bosonic operators describing
quantized field, we use stochastic amplitudes to mimic
vacuum fluctuations.
The article follows the sequence: we begin by briefly

presenting Planck’s achievements and the connections
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of his work with the zeropoint field. Then we discuss
how the vacuum fluctuation spectrum can be obtained
using two fundamental theories, classical electrodynam-
ics and thermodynamics. This is important since most
people think that vacuum fluctuations are strictly an
achievement of quantum mechanics, while we argue here
that they can be inferred as a consequence of very well-
established classical theories.

Furthermore, the importance of introducing vacuum
fluctuations within the classical framework is that it
allows us to derive the blackbody radiation spectrum
without the quantization hypothesis, only assuming that
there are two contributions to the fluctuations of the
electromagnetic field in free space, one thermal and
the other independent of temperature (vacuum fluctu-
ations), both uncorrelated (additive), but generating a
non-additive energy composition. This is the main point
of the article, since quantum mechanics was introduced
by Planck when he quantized the harmonic oscillator’s
energy to derive the blackbody radiation spectrum, and
here we show another way to obtain the same spectrum,
without the quantization assumption.

Finally, we proceed to discuss the vacuum field in an
accelerated frame in order to obtain the Unruh-Davis-
Hawking effect in the classical domain, and we conclude
our work with a speculation on how the development
of quantum mechanics would have unfolded under this
scenario.

2. A Quick Glance at Planck’s Results

In this section, we intend to briefly describe Planck’s
derivation of the blackbody spectrum, and point out
some connections with vacuum energy. It is interesting
to note that, while the blackbody problem is celebrated
for inaugurating quantum mechanics, it also led to the
concept of zeropoint energy.

To fulfill his purpose of theoretically obtaining the
curve that fits the blackbody spectrum, Planck [12]
thought of determining the entropy S of a monochro-
matic electromagnetic resonator as a function of its
mean energy 〈E〉, that is, he was working on what
would now be called a microcanonical ensemble. Once
the relationship was established, one could, from the
thermodynamic relation 1/T = dS/d 〈E〉, obtain 〈E〉 as
a function of the temperature T .
To calculate S, Planck made his famous hypothesis

that 〈E〉 must be interpreted as a discrete quantity,
an integer multiple of an energy element ε. Using the
Boltzmann entropy, S = kb lnW , where kb is the
Boltzmann constant, and W = W (〈E〉) is the number of
microstates compatible with the system having energy
〈E〉, one gets, after a combinatorial calculation,

S = kb

[(
1 + 〈E〉

ε

)
ln
(

1 + 〈E〉
ε

)
− 〈E〉

ε
ln 〈E〉

ε

]
.

(1)

The energy as a function of temperature would then
be obtained by calculating

1
T

= dS

d 〈E〉
= kb

ε
ln
(

ε

〈E〉
+ 1
)
, (2)

which leads to

〈E〉 = ε

exp (ε/kbT )− 1 . (3)

Finally, by applying Wien’s law, which states that
〈E〉 (ω, T ) = ω φ(ω/T ) for some single variable function
φ, as we will discuss later, Planck concluded that the
energy elements must be proportional to the frequency:
ε = ~ω. Briefly, this was the procedure followed by him
to derive the blackbody radiation spectrum.
It is expected that, in the limit of high temperatures,

one should recover the classical result of 〈E〉 = kbT ,
which is provided by the equipartition theorem. But, by
taking this limit in (3), we get

〈E〉 ≈ ~ω
~ω/kbT + (~ω/kbT )2

/2
= kbT

1 + ~ω/2kbT

≈ kbT −
~ω
2 . (4)

This discrepancy can actually be seen as a first hint of
the presence of zeropoint radiation. If we add to equation
(3) a temperature independent correction of ~ω/2, that
is, if we take

〈E〉 = ~ω
exp (~ω/kbT )− 1 + ~ω

2 , (5)

which gives an energy 〈E〉 = ~ω/2 at T = 0, the classical
result is recovered.
In fact, in 1912, Planck developed a second theory

for the blackbody radiation [13], in which he assumed
that the absorption of electromagnetic radiation by
a charged oscillator occurs continuously according to
the classical electromagnetic theory, while the emission
proceeded discontinuously in discrete quanta of energy.
Under this hypothesis, when analyzing the balance
in the interaction between radiation and matter, he
obtained the expression (5) for the energy in each
mode of the spectrum, later confirmed by the quantum
electrodynamics.

3. The Electromagnetic Vacuum
Fluctuations

The reality of the zeropoint fluctuations in the electro-
magnetic field seems to be an irrefutable fact. There
are many theoretical and experimental evidences for its
existence. Effects such as spontaneous emission, Lamb
shift, Casimir effect and some others would be very
difficult to explain without taking into account the
electromagnetic fluctuations of the vacuum [4, 14].
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Regardless of the different assumptions about its
origin, the spectral density of these fluctuations can be
deduced in the scope of classical theory, and also from
quantum electrodynamics (QED), where vacuum fluctu-
ations appear as a consequence of the field quantization.
As we show below, both theories yield the same spectral
distributions of these fluctuations.
The power spectrum of the radiation field is defined

as the product of the density of modes inside a cavity,
that is, the number of modes in the cavity which
supports radiation frequencies between ω e ω+δω, by the
mean energy that excite each of these modes. In three
dimensions this density of modes scales with ω2, and the
spectral density is given by the expression:

ρ(ω, T ) = ω2

2π2c3
〈E〉. (6)

For instance, if we assume the mean energy being 〈E〉 =
kT for any normal mode of the field, as prescribed by the
energy equipartition in canonical ensemble, the result
will be the Rayleigh-Jeans spectrum.
In the vacuum state (T = 0) the energy of each

mode predicted by quantum theory is ~ω/2, and taking
into account that each mode supports two polarization
states, the spectrum of the electromagnetic field is:

ρ(ω, T = 0) = ~ω3

2π2c3
. (7)

However, without going beyond thermodynamics and
the special theory of relativity, it is possible to infer
the existence of athermic zeropoint fluctuations of the
electromagnetic field given by equation (7), and this is
what we are going to show next.

3.1. The vacuum spectrum as a Lorentz invariant

The zeropoint fluctuation that pervade the whole space
as a fundamental background should have the same
spectrum for all inertial reference frames, since all these
frames are equivalent. As a consequence, the electromag-
netic vacuum fluctuations must be a Lorentz invariant in
the following sense: if an observer measures the zeropoint
energy density in a frequency interval, in a given inertial
reference frame, then the observer will find the same
spectral energy density in any other inertial frame.
To find the energy spectrum that satisfies this con-

dition, we will follow T.H. Boyer [5, 10]. Let us write
the density of electromagnetic energy of this radiation
background through the relation

u = 2
8π
〈
E2〉 = 2

8π

∫
d3k f(ωk) (8)

where u is the electromagnetic energy density (energy
per unit of volume), f(ωk) is the energy density associ-
ated with a given wave vector k, and E is the electric
field vector. The factor 2 appears due to the fact that,

in vacuum, electrical and magnetic energies contribute
equally to the total energy.

In another reference system that moves with velocity
v = v x̂ along the x-axis in relation to the previous one,
the components of the four-wave vector are given by

ω′k = γ(ωk − vkx) k′x = γ
(
kx −

v

c2
ωk

)
k′y = ky k′z = kz, (9)

while the electromagnetic energy density will be

u′ = 2
8π
〈
E′2
〉

= 2
8π

∫
d3k′f ′(ω′k′) (10)

By Lorentz invariance of the vacuum spectrum we
mean that the energy density measured in an narrow
interval of frequency is the same for all inertial frames,
that is f = f ′. Therefore we should have

u′ = 2
8π

∫
d3k′ f(ω′k′)

= 2
8π

∫
d3k′ f

[
γ

(
1− vkx

ωk

)
ωk

]
(11)

On the other hand, the electric field seen in the new
reference frame is related by a Lorentz transformation
to the electromagnetic field seen in the old frame. This
allows us to express

〈
E′2
〉
in terms of quantities related

to the old frame, as done in [5], resulting in

u′ = 2
8π
〈
E′2
〉

= 2
8π

∫
d3k′ f(ωk)γ

(
1− vkx

ωk

)
(12)

Comparing the two expressions for u′, equations (11)
and (12), we conclude that f must satisfy

f

[
γ

(
1− vkx

ωk

)
ωk

]
= f(ωk)γ

(
1− vkx

ωk

)
, (13)

that is, f must be of the form f(ωk) = αωk for
some constant α. We see that this result is exactly the
same predicted by quantum mechanics for the harmonic
oscillator, that is, its energy is proportional to the
frequency of the oscillator.

There are, therefore, two invariant spectral densities
under Lorentz transformation: one is the trivial vacuum
with zero energy in each mode, the classical choice,
and the other that considers an energy of ~ωk/2 per
mode, and responsible for many quantum effects. It is
important to emphasize that, in this context, the Planck
constant is a measure of intensity of these fluctuations,
and not a quantum of action, as stated by Bohr. We
are not saying Bohr was wrong, we are just looking at
different contexts of the meaning of Planck’s constant.

With the second choice, the energy density can be
written as

u = 2
8π
〈
E2〉 = 2

8π

∫
d3k f(ωk) =

∫ ∞
0

dω
~ω3

2π2c3

(14)
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where we have fixed the constant as α = ~/2π2, and
due to spatial isotropy we write d3k = 4πk2dk. Finally,
we used the plane wave mode relation kc = ωk. The
integrand is exactly the zeropoint spectrum, that is
invariant under Lorentz transformation.
As can be seen, the vacuum energy diverges when

we include the entire frequency spectrum, and this
is well known in quantum electrodynamics where the
renormalization program is used to obtain finite phys-
ical quantities when matter and electromagnetic field
interact, but this discussion is beyond the scope of this
article.

3.2. The vacuum spectrum as a consequence
of Wien’s Law

Without going beyond thermodynamics and the classical
theory of electromagnetism, it is possible to have impor-
tant information about the electromagnetic vacuum,
based on Wien’s displacement law particularized for zero
temperature.
Wien’s law concerns about the behavior of the radia-

tion spectral density function contained in a bulk, with
perfectly reflecting internal walls, where a quasistatic
transformation takes place. The question to be answered
is how the spectral density function ρ(ω, T ) changes
after an arbitrary quasistatic transformation. If, for
example, the transformation is adiabatic, the change
of this function should be given by the solution of the
equation (for details, see reference [15]):

δρ(ω, T ) =
[
ω

3
∂ρ(ω, T )
∂ω

− ρ(ω, T )
]
δV

V
, (15)

where V is the volume containing the radiation.
This expression must be satisfied by the spectral

distribution ρ(ω, T ) that characterizes electromagnetic
radiation at any temperature T that undergoes an
adiabatic transformation. At zero temperature, we must
have a “vacuum” inside the container. The vacuum can
be described by a spectral density function that does
not change (δρ(ω, T ) = 0) even if there is a variation
in the volume that contains the radiation. This implies
that there will be no change in the electromagnetic
spectral energy density inside the container, whatever
the compression (or expansion) made on the system.
From equation (15), we see that the spectral distribu-

tion at zero temperature must satisfy:

ω

3
∂ρ(ω, T )
∂ω

− ρ(ω, T ) = 0. (16)

There are two possible solutions for this equa-
tion, ρ = 0, the vacuum of classical electrodynam-
ics, and ρ = aω3, which is the vacuum of quantum
electrodynamics.
The constant a is a proportionality factor associated

with the intensity of the field fluctuations at zero
temperature, and to fix this constant to adjust the

experimental data associated with the vacuum effect
like Lamb shift and Casimir force, for example, it is
useful writing a = ~/2π2c3, where ~ is Planck’s constant
divided by 2π and c is the speed of light in vacuum.
The original (and perhaps better known) form of

Wien’s law, results that every “thermodynamically cor-
rect” spectral density function must take the form [1]:

ρ(ω, T ) = ω3φ
(ω
T

)
, (17)

where φ is an arbitrary function of a single variable ω/T .
Although the Wien’s law does not determine ρ(ω, T )

(both Planck and Rayleigh-Jeans distribution satisfy
it, for example) it is able to provide us the form of
zeropoint spectrum. In fact, assuming that limx→∞ φ(x)
is a finite constant a, we recover the previous result,
ρ(ω, T = 0) = aω3.

4. The Planck Spectrum without
Quantization

Now we proceed to derive the Planck’s blackbody spec-
trum without the quantization hypothesis. The starting
point is the classical statistical mechanics developed by
Boltzmann and Gibbs, and the existence of athermic
fluctuations in the electromagnetic field.
In the canonical ensemble, the system temperature

is fixed by a thermal reservoir, and the system energy
fluctuates. The mean thermal energy of the system in
contact with a thermal reservoir at temperature T is
given by the expression

〈E〉 =
∑
r Er exp(−βEr)∑
r exp(−βEr)

, (18)

where Er represents the microscopic energy of a possible
state, and the whole energy is distributed among all
possible microstate weighted by the Boltzmann factor,
and β = 1/kbT . Thermal fluctuations in energy are,
consequently, given by the expression

[
〈E2〉 − 〈E〉2

]
T

= −∂〈E〉
∂β

= kbT
2 ∂〈E〉
∂T

. (19)

As a hypothesis, we think that the energy fluctuations
of each field mode have two origins, one thermal, depen-
dent on the reservoir temperature, and other athermic,
universal and independent of temperature. These fluc-
tuations are assumed to be statistically independent, so
that we can write:[
〈E2〉 − 〈E〉2

]
T

=
[
〈E2〉 − 〈E〉2

]
Tot
−
[
〈E2〉 − 〈E〉2

]
ZP

,

(20)

where these three terms represent the thermal, total and
zeropoint fluctuations, respectively.
At this point it is worth remembering the principle of

maximum entropy, which states that in possession of the
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incomplete information we have about the system, where
we only know that it is in thermodynamic equilibrium,
the best probability distribution we can adopt is such
that P (E) maximizes the functional [16]:

S[P (E)] = −kb
∫ ∞

0
P (E) ln [P (E)] dE , (21)

with the constraints that the distribution should be
properly normalized, and that the expected value for
the energy 〈E〉 is fixed, a condition that is enforced by
the contact with the thermal reservoir. Therefore, it is
possible to show that P (E) must be given by

P (E) = 1
〈E〉

e−E/〈E〉. (22)

Using equation (22) for the probability distribution,
we obtain 〈

E2〉 =
∫ ∞

0
E2P (E)dE = 2 〈E〉2 , (23)

and, therefore, the variance results in σ2 =
〈
E2〉−

〈E〉2 = 〈E〉2.
Thus, using the definition of spectral density function,

equation (6), the equation (7) for the vacuum spectrum,
equation (23), and the expression for thermal fluctua-
tions in the canonical ensemble, equation (19), we can
write a differential equation for the spectral density
function ρ as follows,

kT 2 ∂ρ

∂T
= π2c3

ω2

[
ρ2 −

(
~ω3

2π2c3

)2]
. (24)

If we take ~ → 0, the solution of equation (24) is
the Rayleigh-Jeans spectrum, however, if we take the
scale parameter of vacuum fluctuations ~ to be given
by Planck’s constant, the solution will be given by the
following spectral function (in both cases, the solution
is given by the method of separation of variables)

ρ(ω, T ) = ~ω3

2π2c3
coth

(
~ω

2kbT

)

= ~ω3

π2c3

[
1
2 + 1

exp ( ~ω
kbT

)− 1

]
. (25)

This is exactly the blackbody radiation spectrum
with addition of the zeropoint vacuum spectrum, that
correspond to a mean energy

〈E〉 = ~ω
2 + ~ω

exp ( ~ω
kbT

)− 1
, (26)

for each normal mode.
It is interesting to note that the blackbody radiation

spectrum was obtained assuming that the field has two
statistically independent sources of energy fluctuations,
while the average energy of each electromagnetic mode

appears as a combination, not a simple sum. This
is because, in this case, you cannot satisfy both the
additivity of the variances and the additivity of the
energies for the same system. The physical meaning of
this, however, needs further study.

5. The Vacuum Seen from a Constant
Accelerated Reference Frame

One of the most striking effects associated with the
existence of a nontrivial vacuum is its behavior seen
from a reference frame in accelerated motion or at rest
in a gravitational field. As we have seen, the vacuum
spectrum is a Lorentz invariant quantity, any observer
in an inertial reference frame sees the same vacuum
spectrum. However, when viewed from a uniformly
accelerated reference frame, the new vacuum spectrum
seems to come from a thermal source. This result was
obtained by Unruh and Davis, in the context of quantum
field theory, and by Hawking in the context of black hole
evaporation [4], and suggests the appearance of photons,
which are quantum excitation of the electromagnetic
field (and are particles in the quantum sense), due to the
state of motion of the frame, and this is very intriguing.

Here we propose to obtain the same result in the
scope of classical field theory. For this purpose we will
follow the same construction done in reference [11], in
a very nice and pedagogical derivation, but now using
stochastic c-number field amplitudes instead of field
operators, and pointing out the differences between the
two interpretations.

5.1. Motion with an uniform relativistic
acceleration

The uniformly accelerated relativistic motion is one
in which the acceleration a is constant, and the four-
acceleration in the proper reference frame is given by

aµ = (0, a, 0, 0). (27)

Using the Lorentz transformation law for four-vectors
(let’s imagine an inertial frame that will be instantly at
rest in relation to the accelerated frame), we have

aν = Lνµaµ = (βγa, γa, 0, 0). (28)

where Lνµ is the 4 × 4 Lorentz transformation matrix,
β = v/c, and γ = (1−v2/c2)−1/2. Note that aµaµ = −a2

is an invariant (scalar) quantity.
In an inertial frame, the movement of a particle with

constant proper acceleration should be described by
equation

aµ = dvµ

dτ
=
(
d

dτ

[
c√

1− v2/c2

]
,
d

dτ

[
~v√

1− v2/c2

])
.

(29)
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From equations (28) and (29) one can write, assuming
motion in the x direction, that is, v = vx, the following
equation,

γa = γ
d

dt

[
v√

1− v2/c2

]
. (30)

This equation can be integrated assuming as initial
condition that the particle was at rest when the move-
ment started, and we obtain

v(t) = at√
1 + a2t2/c2

, (31)

and integrating once more, we obtain the position
function,

x(t) = c2

a

(√
1 + a2t2/c2 − 1

)
. (32)

We can express the last expressions in terms of the
proper time τ using the relation

dt

dτ
= γ ⇒ τ =

∫ t

0

√
1− v2/c2dt′

⇒ t(τ) = c

a
sinh

(aτ
c

)
, (33)

where in the second step we used equation (31), and
therefore the functions of the velocity and position
parameterized by the proper time are given by

v(τ) = c tanh
(aτ
c

)
,

x(τ) = c2

a

[
cosh

(aτ
c

)
− 1
]
. (34)

These functions characterize the relativistic motion
of a constant proper aceleration, and as expected the
velocity tends asymptotically to c, speed of light, and
the position grows exponentially with the proper time.

5.2. A plane wave seen from an accelerated frame

Before going on to the problem itself, that is, deter-
mining how the the vacuum spectrum is seen from an
accelerated frame, let’s ask how a monochromatic plane
wave, given by the expression

~E(x, t) = E0e
i(kx−ωt)êy, (35)

is seen in an accelerated reference frame.
It is known that when we change from one inertial

reference frame to another, a plane wave remains a plane
wave, and the angular frequency of this wave, as seen
before, transforms as follows

ω′ = γω

(
1− kv

ω

)
. (36)

The expression (36) shows how the frequency of a
monochromatic wave is transformed from one inertial

frame to another, which is called the Doppler effect.
However, we can go further and imagine that, in the
case of an accelerated referential, there will always be
an inertial reference frame that instantly has the same
speed of the latter in such a way that the Doppler
effect changes continuously in the time parameterized
by τ [11, 17],

ω′(τ) = γ(τ)ω
(

1− kv(τ)
ω

)
. (37)

where ω/k = ±c, depending on whether the plane wave
moves in the same direction or opposite to the observer.
Using the velocity function for the uniformly accelerated
motion obtained before, equation (34), we get

ω′(τ) = ω
1− tanh

(
aτ
c

)√
1− tanh2 (aτ

c

) = ωe−aτ/c, (38)

while in case of the frame moving in the opposite direc-
tion to the wave we have ω′(τ) = ωe+aτ/c. Expressions
(37) and (38) are referred to a time-dependent Doppler
shift observed in an accelerated frame. In summary,
when the observer is moving in the same direction as the
plane wave, he observes an exponential decrease in its
frequency, while when traveling in the opposite direction,
the frequency increases exponentially.

5.3. The vacuum spectrum seen from an
accelerated frame

In order to obtain the spectrum of the vacuum seen
from an accelerated reference frame, we will make use
of the Wiener-Kintchine theorem [18, 19] which says
that the power spectrum of the radiation field (for
a stochastic process, in general) is obtained from the
Fourier transform of the time correlation function of the
field.
In order to state more precisely this theorem, consider

a stationary stochastic process denoted by g(t), which
fluctuates in time. The time correlation function is
defined as

Γ(τ) = lim
T→∞

1
2T

∫ T

−T
g∗(t)g(t+ τ) dt. (39)

Note that, being a stationary process, Γ does not depend
on a specific instant, but only on the time interval τ
between two events.

The power spectrum S(Ω) associated with a stochastic
process g(t) is then defined as

S(Ω) = 1
2π

∫ ∞
−∞

Γ(τ)e−iΩτ dτ, (40)

and, in this sense, S(Ω) will measure the intensity fluc-
tuation associated with a Fourier component Ω of g(t).
As we are dealing with the stationary process, we can

change from an average over time, after a very long time
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process, to an average over an ensemble of all possible
realizations, where we fix two instants and perform the
average over the whole ensemble. In this way, the time
correlation can be obtained from the relation

Γ(τ) = 〈g∗(t)g(t+ τ)〉, (41)

where the brackets mean ensemble average. As a con-
sequence, the power spectrum of the fluctuations is
obtained from the relation

S(Ω)δ(Ω− Ω′) = 〈g∗(Ω)g(Ω′)〉, (42)

where g(Ω) is the Fourier transform of g(t).
There is a slight difference between power spectrum

S(Ω) defined here and spectral density ρ(Ω) defined
before in equation (6), and without going too far, here
we just put the conversion [19]: S(Ω) = 2π/3 ρ(Ω).
Now we turn our attention to the fluctuating field

that permeates the whole space at zero Kelvin, the
zeropoint field. To avoid confusion with cumbersome
vector calculations, let’s deal with a scalar field in one
dimension described by

g(t) =
∑

k

(
2π~c2

ωkV

)1/2 [
αke

−iωkt + α∗
k
eiωkt

]
, (43)

where the sum is over all possible wavevectors, and αk

is the complex amplitude of the mode k whose phase
is assumed to be randomly distributed in the interval
(0, 2π), satisfying the relation

〈α∗
k
αk′ 〉 = 1

2δk,k′ , (44)

the average being taken over the ensemble, and any other
correlation is zero. We are working with the field in the
vacuum state, and that is why only the term 1/2 will be
present in equation (44). Otherwise we should include
the thermal part.
The Fourier transform of g(t) will be given by

g(Ω) = 1
2π

∫ ∞
−∞

dt g(t)e−iΩt

= 1
2π

∫ ∞
−∞

dt
∑

k

(
2π~c2

ωkV

)1/2

×
[
αke

−iωkt + α∗
k
eiωkt

]
e−iΩt. (45)

We will now consider an observer with an uni-
form proper acceleration in the the vacuum field. This
observer measures each frequency of the field shifted by
a Doppler effect, and for this observer g(Ω) has the form

g(Ω) = 1
2π

∫ ∞
−∞

dτ
∑

k

(
2π~c2

ωkV

)1/2

×
[
αke

−i
∫ τ

ωk(t) dt + α∗
k
ei
∫ τ

ωk(t) dt
]
e−iΩτ ,

(46)

where the phase ϕ(τ) =
∫ τ

ωk(t) dt is integrated due
to the constant change of the angular frequency with
respect the proper time.
Using equation (38), the expression for g(Ω) is then

written as

g(Ω) = 1
2π
∑

k

(
2π~c2

ωkV

)1/2 ∫ ∞
−∞

dτ

×
[
αke

i(ωkc/a)e−aτ/c + α∗
k
e−i(ωkc/a)e−aτ/c

]
e−iΩτ .

(47)

In order to integrate equation (47), we consider the
new variable y = ωkce

−aτ/c/a, in terms of which we
have∫ ∞

−∞
dτ eiΩτ e±i(ωkc/a)e−aτ/c

= c

a

(
a

ωkc

)iΩc/a ∫ ∞
0

yiΩc/a−1e±iydy. (48)

The calculation of this integral is lengthy, and details
can be found in the appendix. The result is∫ ∞

0
yp−1e−iydy = (−i)pΓ(p), (49)

where Γ is the Gamma function.
With this formula we can go back and write the

expression for the scalar field in one dimension seen by
the uniform accelerated frame, which takes the following
form:

g(Ω) = 1
2π
∑

k

(
2π~c2

ωkV

)1/2
c

a
Γ
(
i
Ωc
a

)

×
[
e−πΩc/2aαk + eπΩc/2aα∗

k

]( a

ωkc

)iΩc/a
.

(50)

In possession of g(Ω), we are now in a position to
obtain the spectral density of the field. The Fourier
transform of the time correlation function of the present
scalar field is then given by

〈g(Ω)g∗ (Ω′)〉 =
( c

2πa

)2
Γ
(
i
Ωc
a

)
Γ
(
−iΩ

′c

a

)
×
∑

k

∑
k′

(
2π~c2

V

)
1

√
ωkωk′

×
(

a

ωkc

)iΩc
a
(

a

ωk′c

)−iΩ′c
a

×
〈[

e−πΩc/2aαk + eπΩc/2aα∗
k

]
[
e−πΩ′c/2aα∗

k′
+ eπΩ′c/2aαk′

]〉
.

(51)
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The brackets act on the random amplitudes, and
equation (44) tell us that different wavevectors are
uncorrelated, allowing us to eliminate one of the sum-
mations in the equation (51),

〈g(Ω)g∗ (Ω′)〉

=
( c

2πa

)2
Γ
(
i
Ωc
a

)
Γ
(
−iΩ

′c

a

)

×
∑

k

(
2π~c2

V

)
1
ωk

(
a

ωkc

)iΩc
a
(

a

ωkc

)−iΩ′c
a

×1
2

[
eπ(Ω+Ω′)c/2a + e−π(Ω+Ω′)c/2a

]
. (52)

At this point it is convenient perform the limit to
continuum by transforming the sum over wavevectors
into an integral following the relation

1
V

∑
k

=
(

1
2π

)D ∫
dDk

where D represents the dimension of the system.
In the simplest case we are working on, D = 1, we can

easily evaluate the integral

I = 1
2πc

∫ ∞
0

dωk
1
ωk

(
a

ωkc

)iΩc
a
(

a

ωkc

)−iΩ′c
a

, (53)

where we have used ωk = kc. Performing the change of
variable x = ln(ωkc/a), the integral can be calculated
resulting in∫ ∞

−∞
dx e−ix(Ω−Ω′)c/a = 2πa

c
δ(Ω− Ω′). (54)

Thus, the correlation function will be given by

〈g(Ω)g∗ (Ω′)〉 =
( c

2πa

)2
2π~a

∣∣∣∣Γ(iΩca
)∣∣∣∣2

× cosh
(
πΩc
a

)
δ(Ω− Ω′). (55)

Using the following relation for gamma function with
an imaginary argument [20]:∣∣∣∣Γ(iΩca

)∣∣∣∣2 = π

(Ωc/a) sinh(πΩc/a) , (56)

we finally get the result

〈g∗ (Ω′) g(Ω)〉 = ~c
2Ω coth

(
πΩc
a

)
δ(Ω− Ω′)

≡ S(Ω) δ(Ω− Ω′). (57)

This spectrum is the same as the thermal blackbody
spectrum with inclusion of the zeropoint term, see
equation (25), and we recognize the “temperature”

T = ~a
2πkbc

. (58)

The difference between the pre-factor in the equa-
tion (25) and the equation (57) is related to dimensional-
ity, whereas here we are working in one dimension, there
we were working in three dimensions.
What we have just seen here is that although the vac-

uum spectrum is a Lorentz invariant, when viewed from
a constantly accelerated frame of reference (or at some
point in a gravitational field, as the equivalence principle
does not distinguish these two cases) a thermal spectrum
is perceived, where instead of the temperature of the
space we have an effective temperature proportional to
the proper acceleration.
This phenomenon when associated with intense grav-

itational fields is known as black hole evaporation, and
in field theory as the Unruh-Davis effect, and is another
surprising effect due to the existence of a nontrivial
vacuum.

6. Some Comments and Conclusions

What we have seen in this article is that quantum
mechanics could have a different starting point if the
existence of vacuum fluctuations was predicted at the
beginning, as suggested by Nernst, Planck, Einstein and
others around the 1910s [4]. As Planck said, postulating
the quantization of energy was an “act of desperation”, it
worked, but the reason for it has not been satisfactorily
explained, and it may be asked whether he would
have preserved the continuous energy and maintained
the entire classical theory with just the addition of a
nontrivial vacuum.
We have also shown that the existence of a nontrivial

vacuum spectrum can be inferred in at least two distinct
ways, either by requiring the Lorentz invariance of the
vacuum spectrum or by the Wien displacement law
based on thermodynamics. Both predict the same two
possibilities: (i) the classical vacuum, which is “nothing”
or (ii) a nontrivial vacuum, the same present in the usual
quantum theory, full of fluctuations and responsible for
the many effects observed today in laboratories around
the world.
Planck’s blackbody radiation spectrum could be

derived without using the quantization hypothesis of
the oscillator energy levels, the existence of a nontriv-
ial vacuum spectrum that permeates all space, being
Lorentz invariant, was enough. However, a connection
between the existence of a nontrivial vacuum and the
quantization of the energy is a point to be questioned
and researched.
The Unruh-Davis-Hawking effect was obtained in

a purely classical wave theory, without any dualistic
context. Here, what is a wave in one frame is still a wave
in the other, and no particles were needed in theory,
while in the quantum mechanics view, photons, which
are seen as particles that excite the field, appear due to
the change from an inertial frame to a non-inertial frame.
We are not defending either theory, but just pointing
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out some strangeness of a particle concept that appears
when the reference frame is changed from inertial to
accelerated.
Another important issue to be highlighted is that any

field has its own vacuum [21], and although we are
talking about electromagnetic field, some of these ideas
could be thought for other fields.
All these results may suggest that quantum mechanics

is a consequence of the existence of a nontrivial vacuum.
Although this statement is very strong, it is not unrealis-
tic and there are some scientists who support it (see [22]
and references therein), but always having in mind that
quantum mechanics is a successful theory, that still seeks
a more solid foundation. Finally, a natural question can
be asked: If Planck knew about these results, would the
development of quantum mechanics be any different?

Supplementary material

The following online material is available for this article:
Appendix
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