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With the onset of areas such as complex systems, network science, and artificial intelligence, efforts have been
invested in modeling science itself. In the present work, we report a related approach to modeling the influence
of the complexity of knowledge on the respective prospects for scientific advancement. More specifically, we focus
on the question of how much the topological complexity of the knowledge network can influence the prospects for
scientific advancement. Once the knowledge has been represented as a complex network, we consider one of its
subnetworks, the nucleus, as representing the currently known portion of that network. The relative number of
nodes adjacent to the nucleus, and the ratio between this quantity and the quantity of edges interconnecting the
nucleus with the remainder of the network, are taken as quantifications of the potential for scientific advancement
and the efficiency with which these advances can take place. Subsequent nucleus sizes are considered in both a
simpler network (Erdos-Renyi) and a more complex model (Barabasi-Albert). The results surprisingly tended to
vary little between these two models, suggesting that the complexity of the knowledge network may have little
effect on the prospects for scientific advancement as modeled in the present approach.
Keywords: Complexity, complex networks, scientific advancement, network science.

‘Ma la città non dice il suo passato, lo contiene come le linee
d’una mano . . . ’

Italo Calvino, Le città invisibili.

1. Introduction

It took a long time to be discovered and, once discovered,
it took some time to be believed. But, yes, the paintings
in pre-historic caves were authentic indeed.

Dating back to as early as 30.000 years, rock art
as found in Chauvet and other locations worldwide, is
fascinating in so many aspects. Revealing a near perfect
balance of abstraction and realism, these paintings
represent one of the very few available direct links with
our remote ancestors. Though the paintings tell us little
about important questions such as language, other forms
of art as music, or the religious beliefs at the time,
they do conceive a message to us . . . and what an
impressive message it is! For one simple reason, at least:
these paintings represent the earliest evidence of the
importance of modeling for human beings.

As a matter of fact, rock art possesses virtually
every feature of scientific models. First, they provide a
simplified, though effective, representation of real world
entities and actions. Their traces concentrate on the
most intrinsic features of the objects (e.g. a rhino tusk,
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or the graceful moves of antelopes), which are skillfully
emphasized. Then, we have that rock art possibly con-
tributed to a better understanding of the represented
entities, in the sense that the painting, realized in dark,
hardly accessible depths of cave chambers, could not
have been accomplished without intentional preliminary
conceptualization of the entities being portrayed. Last,
but not least, rock art has an intrinsic simulation and
predictive role. For instance, the hunting scenes that
have come to us may have provided the opportunity
for mentally rehearsing strategies and possible events
in challenging hunting expeditions necessary to secure
food for their families and communities in those long
gone times.

Yet, precocious and precious as it was, the human
predisposition to modeling continued to blossom in an
inexorable manner. It is one of the hypothesis of the pre-
sent work that performing some kind of modeling, even
if unconscious, constitutes an intrinsic characteristic of
humans, especially in the medium and long terms. Or,
in other words, human beings are, intrinsically, modeling
agents not only of their environment, but also of other
individuals (e.g. [1]). We could go as far as understanding
much of the human history—not only in science and
technology but also in politics, agriculture, and so many
other activities—as being, to a good extent, the history
of modeling.

Though several elements substantiate this surprising
approach, one is of particular importance: the prediction
ability endowed to humans by the modeling activity.
As such, many of the human decisions along history have
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been based on the available respective models, even if
performed unawarely. For instance, much thought was
invested in foreseeing the result of actions such as foun-
ding a new city, planning crops, and organizing defenses.
All these actions relied critically in intrinsic modeling
activities, in which the most important elements, as well
as their properties and interrelationships, were carefully
taken into account, so that possible outcomes of specific
decisions could be predicted as precisely as possible. As a
consequence, modeling was progressively acknowledged
as a sound approach, and the ultimate consequence was
the consolidation of science and technology as we know
them nowadays.

With continuous advances in statistics, pattern re-
cognition, and artificial intelligence, the own modeling
approach became the subject of its attention. In other
words, people got interested in better understanding,
through meta-modeling and simulation, the modeling
approach characterizing science.

As an example, any body of knowledge can be re-
presented as a complex network, in which each node
represents a portion of knowledge while the respective in-
terconnections express interrelationships between those
pieces of knowledge (e.g. [2–8] and references therein).
A specific example of this approach are the citation
networks, where each node corresponds to a scientific
article, while the links indicate citations between arti-
cles, giving rise to a directed graph or complex network.
Other types of interrelationships are possible between
the pieces of knowledge represented as nodes, inclu-
ding content similarity and pre-requisite conditioning.
Observe also that the piece of knowledge represented
as a node in this type of complex network approach
can vary substantially along scales, ranging from single
concepts to more complete subparts such as an abstract,
a theorem, a procedure, individual models, complete
articles, or even books and theories.

While knowledge can be represented as a complex
network, the act of scientific investigation can be un-
derstood as the means to unveiling this network in an as
effective as possible manner (e.g. [2, 7, 9–11]). Observe
that part of the knowledge network is typically known
already when these explorations begin. For simplicity’s
sake, this portion of the network, which corresponds to
a subgraph or subnetwork, will henceforth be referred to
as the nucleus of a given research program. The objective
of these researches can then be understood as means of
complementing the nucleus (e.g. [2]) by moving into yet
unexplored adjacent pieces of knowledge (neighboring
nodes). Therefore, the adjacency between the nucleus
and the nodes connected to it provides a basis for con-
ceptualizing the potential scientific advancement with
respect to the currently available knowledge.

The effectiveness of these explorations can be esti-
mated by using distinct metrics that take into account
the aimed results. For instance, if one is interested in
expanding the nucleus as fast as possible, the number

of new nodes discovered after a given number of steps
can be taken as respective metric. If what is desired
instead is to connect two separate concepts (nodes),
the distribution of distances between these two res-
pective nodes can be taken into account. In the pre-
sent work, we will consider the number of adjacent
links and nodes reachable from the current nucleus
as possible quantifications of the prospect or potential
for scientific advancement implied by the interconnec-
tions between nucleus and an the overall knowledge
network.

There are at least two interesting aspects that can
directly impact the current potential for scientific ad-
vancement as conceptualized above: (a) the topological
characteristics of the subnetwork corresponding to the
already known body of knowledge (i.e. the nucleus),
which is greatly influence by the manner in which the
nucleus is chosen; and (b) the topology of the overall
knowledge network itself (e.g. uniformly random or
scale free). Several interesting questions are respectively
implied. For instance, it would seem that a more sparse
nucleus can promote scientific opportunity. If so, would
this tendency be similar in complex knowledge networks
with simpler or more complex topologies? This is one
of the main questions addressed in the present work,
reflecting the current interest in complexity and complex
systems (e.g. [4, 12–16]).

As we develop our study, we will see that that the
relative number of nodes (n/N), where N stands for the
total number of nodes in the knowledge network, and
links (e) adjacent to the nucleus provide particularly
interesting quantifications of the respective prospects for
scientific advancement. In particular, we will consider
the ratio s = n/e as a particularly informative indication
of the efficiency in which scientific advancement takes
place. Observe that this index is favored by large n,
characterizing that more pieces of knowledge can be
reached from the nucleus through e links.

The ratio s can be interpreted as a measurement of
efficiency or facilitation, as it corresponds to the average
number of interconnections between the nucleus nodes
and their respective still unexplored neighbors. In other
words, if the nodes adjacent to the nucleus are accessible
through alternative manners, they will be more likely to
be discovered at any given time. As an example, node
5 in Figure 1 can be accessed both from nodes 3 and 6.
Therefore, relatively large values of s can be taken as
being favorable for scientific advancement.

We shall start by presenting the main hypothesis and
representations, and introducing the two adopted indices
for quantification of the degree of scientific prospect,
and follow by presenting simulation results considering
uniformly random networks (more specifically the Erdős-
Rényi model) and a scale free model (the Barabási-
Albert model), which are respectively understood as
representing a simpler and a more complex structure.
We hope for good prospects in our developments.
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Figure 1: A given overall knowledge network with N = 14 nodes
and a possible nucleus (red nodes), corresponding to the portion
of the overall network that is currently known. In the present
work, we quantify the prospect for discovery established by such
configurations in terms of the number of nodes n and links e not
yet known that are adjacent to the nucleus (shown in yellow)
and which can, therefore, be discovered while exploring from the
nucleus (through links shown in orange). More specifically, we
will give special attention to the ratio r = n/N as a relative
indication of the prospect for scientific advancement and a
ratio s = n/e taken as a measurement of the efficiency of the
scientific advancement (observe that 0 ≤ s ≤ 1). In the case
of the example in this figure, we have r = 3/14 and s = 3/5.
How will the potential for scientific discovery defined by specific
types of nucleus vary with respect to the topological structure
and complexity of the nucleus and overall knowledge network?

2. Hypotheses, Representations
and Measurements

Reflecting the fact that all the universe may be fully
interrelated (e.g. Bell’s theorem), especially through
fields of asymptotic decay, the overall network can be, in
principle, assumed to constitute a connected component.
However, this characteristic may not be required from
the nucleus, as not every piece of available knowledge
is taken as being interconnected while performing some
particular research program, which can also be develo-
ped possibly independently by different research groups
or along distinct periods of time.

In order to study the influence of complexity on the
prospects for scientific advancement, we will resource
to two well-known distinct theoretical models of com-
plex networks for representing the overall knowledge
network (e.g. [17]). The ‘simpler’ model will correspond
to a uniformly random network, more specifically the
Erdős-Rényi model. The Barabási-Albert model will be
adopted for representing a more ‘complex’ topology kno-
wledge network. Throughout this article, all networks to
be compared will have the same number N of nodes and
average degree 〈k〉. The reason for the quotations is that
complexity remains an elusive and somehow subjective
concept (e.g. [16]). For simplicity, we will be restricted to
a fixed undirected network with size of N = 1000 nodes.

Though several different approaches could have been
used for specifying the nucleus, we will limit our research
to a simple but effective method. More specifically, a set

Figure 2: The adjacency matrix K of the network in Fig. 1. The
columns corresponding to the nucleus nodes (i.e. 1, 3, 6, 7) are
marked in red. The rows corresponding to still unexplored nodes
covered by the red columns (i.e. 4, 5, 8) are marked in yellow.
The number of connections between the nucleus and the nodes
to be discovered can be obtained by adding the entries along
the respective red rows intersected with the red columns.

of C nodes will be chosen uniformly among the N nodes
of the overall knowledge network. For generality’s sake,
we take the relative number c = C/N into account to
express the nucleus size in relative terms. Then, in order
to infer how the prospects for scientific advancement
change as the overall network becomes more understood,
we will vary c between 1 and N , therefore defining
respective signatures of the considered measurements in
terms of the free variable c.

For instance, the number of discoverable nodes for a
nucleus of size c will be henceforth expressed as n(c).
A possible manner to identify these nodes, illustrated
in Figure 2, corresponds to finding, along the columns
of the respective adjacency matrix K corresponding to
the nucleus nodes, all those nodes have not yet been
explored. Observe that the degree of each of the network
nodes can be readily obtained by adding the entries
along the respective adjacency matrix column. The
average degree 〈k〉 of a network therefore corresponds
to the average of its nodes degrees. The number of
connections between the nucleus and the nodes to be
discovered can be readily calculated by adding along the
respective red rows intersected with the red columns.

Interestingly, the results obtained in this work revea-
led little variation of the two adopted indices (r(c) and
s(c)) with respect to distinct nucleus of the same size in
the two considered network models.

In order to perform our simulations, we will consider
R = 20 realizations of each experiment configuration,
which will allow us to develop our comparative discus-
sion in terms of the average ± standard deviation of each
of the two considered measurements r(c) and s(c).

3. Scientific Prospect in ‘Simple’
and ‘Complex’ Knowledge Networks

Figure 3 depicts the results obtained for r(c) and s(c)
for N = 1000 and average degree 〈k〉 = 6, 20 and
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Figure 3: The two parameters r(c) and s(c) quantifying the current scientific prospects (left-hand side) and the efficiency (right-hand
side) in terms of the relative size of the nucleus c. These results were obtained for an overall knowledge network with N = 1000 and
〈k〉 = 6, 20 and 100, for R = 200 realizations. The nodes constituting the nucleus were drawn with uniformly random probability
among the N = 1000 nodes of the overall network. Interestingly, quite similar results have been obtained for both the ‘simpler’
(ER) and more ‘complex’ (BA) network, suggesting that the intrinsic complexity of the overall knowledge network had little impact
on both r(c) and s(c). In addition, a peak of scientific opportunity is observed for r(c) in all cases, which is followed by a regime
of linear decrease. This peak tends to be displaced to the left with increasing average degrees. The last point in each of the s(c)
curves does not follow from the simulations and serves only as a reference. See text for a discussion of other interesting aspects
implied by these results.

100 considering a ‘simpler’ (ER) and a ‘more complex’
(BA) network. A total of R = 20 realizations of this
configuration were performed in order to estimate the
average ± standard deviation of the two indices shown
by the curves in Figure 3.

Several interesting, and even surprising, aspects are
suggested by the simulation results shown in Figure 3.
First and foremost, we have that the intrinsic topology
of the overall knowledge network had little influence on
the two indices r(c) and s(c), yielding similar curves
for both ER and BA networks throughout. This would
suggest that the topological ‘complexity’ of the overall
considered network tended to have little effect on both
the prospects and efficiency defined by any size of
nucleus. This is surprising, as it could be expected that

the degree heterogeneity of the BA model would have
somehow impacted the number of reachable nodes from
the nucleus (e.g. through the presence of hubs).

The important point here is that the several nodes
in the nucleus effectively provide an effective probing
even of heterogeneous structures such as a BA network.
In other words, given a nucleus with not too small size,
its nodes will be likely to encompass hubs as well as
nodes with very small degree, providing a representative
sampling of the network topology (e.g. average node
degree) while reflecting the average degree to a good
extent. Figure 4 provides an illustration of this possible
effect respectively, for simplicity’s sake, to a small BA
network: a similar number of yet unexplored nodes are
accessible from different choices of nuclei.
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Figure 4: Illustration of the basic result in which the number o nodes reachable (yellow) from the nodes in the nucleus (red) does
not change substantially with different uniform choices of node to constitute the nucleus. The novel and non-reachable nodes are
shown in green. Though this interesting property could be expected in the case of uniformly random network models such as ER, it
is relatively surprising to be observed in a network presenting higher levels of degree heterogeneity, as is the case with the BA model.
The network in this example is a realization of the BA network with N = 30 nodes, C = 4 nodes, and 〈k〉 = 2. This property is
believed to underly several of the obtained results.

The above identified effect is believed to account
for several of the here presented results. Therefore,
situations in which the nodes composing the nucleus
are chosen in non-uniform manner, e.g. according to
some preferential rule (e.g. favor higher or lower degrees,
clustering coefficient, etc.), are expected to lead to
differentiation of the way in which the two considered
types of networks are explored. For instance, if the
nucleus nodes are chosen proportional to their degree
in a BA network, we will have a markedly enhanced
prospect to scientific advancement as compared to a
more uniform topology as in ER networks.

The little influence of complexity on r(c) and s(c) has
been verified, at least for the adopted configurations, to
be irrespective of the average degree of the knowledge
network. At the same time, the curves of r(c), which
are here understood to reflect the prospects for scien-
tific advancement given a specific nucleus, presented a
maximum peak in every case. After reaching the peak,
all obtained signatures tended to undergo a regime
of monotonic linear decay with c, which can actually
be verified to readily converge to a straight line with
inclination −1.

The overall unfolding of r(c) in terms of c can be
conceptualized in terms of the following three main
events: (i) the number of reachable nodes n increases
quick and steadily with c up to a maximum peak,
(ii) subsequently enters a saturation regime, followed by
(iii) a linear decrease. In other words, we have a period
of fast increasing prospects for scientific advancement,
followed by a longer period of more moderate, nearly
linear decrease of prospects. This has been observed, at
least for the adopted configurations, for both ER and BA
structures irrespectively of node degree 〈k〉 and overall
number of nodes N .

All obtained signatures are also characterized by
substantially small standard deviations (short error bars

in the graph), corroborating that the obtained values
vary little with different choices of the nucleus. As could
be expected, the dispersion is typically larger in the BA
than in the ER mode. Observe also that larger dispersion
is observed especially for smaller average degree, in the
case of the BA model at values of c immediately before
the peak. In the case of the largest average degree
(〈k〉 = 100), a particularly large standard deviation
was observed for C = 1, which can be understood as
a moderate manifestation of the degree heterogeneity
characteristic of scale free network models, including
hubs.

In order to better appreciate the change of the value
and position of the peak of scientific opportunity defined
by the r(c) signatures in every case, the averages of these
two values have been estimated for average degree 〈k〉
varying from 1 to 100 for both the ER and BA configu-
rations with N = 1000. These results are presented in
Figure 5.

Again, both considered network models led to quite
similar behavior regarding the prospects for scientific
advancement as modeled in the current work.

Interestingly, the peak values of r(c) quickly saturate
as 〈k〉 increases. This means that the prospects for scien-
tific advancement tend to vary little with 〈k〉, except for
a relatively short initial range of this parameter. Once
in the saturation regime, further increases in the overall
network connectivity have little effect on the peak of the
r(c) curve.

The positions of the peaks of r(c), shown in the right-
hand curves in Figure 5, which corresponds to the value
C of 〈k〉 for which the peak of r(c) is observed, tend to
decrease quick and steadily from a relatively small initial
value of c = 9 to even smaller values of 2 or 3. Indeed,
for 〈k〉 above 20, the peak of scientific prospect takes
place for nuclei with just C = 2 or 3 nodes. It is also
interesting to observe that the decrease of the efficiency
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Figure 5: The values and positions of the peaks defined by the r(c) curves for average degree 〈k〉 varying from 0 to 100 and
considering the ER and BA models with n = 1000 nodes, for R = 50 realizations of each configuration. The peak position is shown
in terms of C, i.e. the number of nodes in the respective nucleus where the peak of r(c) is observed.

parameter with c (Fig. 3) tends to be more accentuated
for larger values of average degree.

4. Concluding Remarks and Prospects

Science, which depends critically on the development
of models, has progressed a long way since its remote
beginnings crystalized in rock art, to the point that
it became the subject of its own investigation. We got
interested in studying and modeling science not in order
to better understand this unique human initiative, but
also to try to enhance it and make its pursuit even more
effective.

Along the history of science, the simpler problems
tended to be solved first, so that we the standing
problems concentrate among those that are among the
most challenging and complex. This trend has mo-
tivated new areas in complex systems, such as non-
linear dynamic systems, network science and artificial
intelligence, aimed at paving the way to new scienti-
fic advancements. These concepts and methods have
been applied more and more broadly, including the
representation of knowledge as complex networks. A
particularly interesting question then arises: how would
the topology of knowledge networks, and in particular
their ‘complexity’, impact the prospects for scientific
advancements defined by a given already known portion,
or nucleus?

This question has been addressed in the present work
with the help of network science. More specifically, we
considered two well-known theoretical models of com-
plex networks, namely the Erdős-Rényi and Barabási-
Albert approaches, representing respectively ‘simpler’
and ‘more complex’ topologies. Then, the available
body of knowledge was assumed to be represented as a
subgraph of these overall knowledge networks, which was
called nucleus. The number n of yet undiscovered nodes
that are adjacent (and therefore potentially accessible)
to this nucleus, as well as the number e of respective links
defining these adjacencies, were then taken into account
in order to defined two indices, namely r(c) = n/N and

s(c) = n/e that were understood as possible indications
of the current potential for scientific advancements and
their respective efficiency.

Despite the simplicity of the approach developed in
this work, several interesting, and even intriguing, results
have been derived. First, we have the surprising observa-
tion that the obtained curves of r(c) and s(c) vary little
between the ER and BA model (considering the adopted
configurations), also presenting an overall qualitative
tendency which is, to a large extent, irrespective of the
node average degree and network size. These results
seem to lead to the surprising implication that the
topological complexity underlying the overall knowledge
network may have little impact on the prospects for
scientific advancement and related aspects.

It should be nevertheless observed that it has been
argued [13] that the complexity of a network goes
beyond heterogeneity of node degree distribution, also
encompassing the distribution of many other topological
properties that are required in order to obtain a more
complete mapping from the network properties into the
respective measurement-based characterization. Indeed,
a good deal of the similarity of the dynamics obtained
in ER and BA structures stems from the fact that
these models were assumed to have the same average
node degree, which ended up not only influencing the
performed dynamics, but also effectively inferred by
the uniformly random choice of nodes to compose the
nucleus. As such, the performed dynamics ultimately
depended strongly on topological properties shared by
the two types of considered networks.

More generally, we can postulate that this type of
insensitivity of a given dynamics to two or more to-
pological network models can be possibly accounted
by at least the two following issues: (i) the dynamics
depends strongly on topological features shared by the
considered overall networks; and/or (ii) the considered
types of networks differ only with respect to a relatively
restrict set of properties, such as average node degree,
that are not differentiated among the considered overall
networks.
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In the present case, the similarity of the obtained
dynamics can be to a good extent explained by the
fact that the two considered models distinguished one
another in complexity mainly with respect to their
degree distribution while sharing the same average value.
Another important aspect is that the nodes composing
the nucleus were chosen uniformly along time time.

It would be interesting to study if the trends suggested
in the present work would hold for networks presenting
complexity also of other topological measurements as
well as for other types of exploratory dynamics. It could
be expected that non-small world networks presenting
nodes with modularized topological features may reveal
a stronger influence of the overall network structure
on the prospects for complementing distinct types of
nucleus, especially when the nodes in the nucleus are
chosen in non-uniform manners.

In addition, in all the considered situations, the
prospects for scientific advancement as modeled by
the present approach exhibit a characteristic unfolding
pattern corresponding to a quick increase of r(c) with
c, up to a maximum peak (saturation), followed by a
longer period of more moderate, nearly linear decrease.
The efficiency parameter presented a continuously de-
creasing trend, nearly exponential, characterized by a
quick reduction of efficiency followed by stabilization at
very small values. These signatures tended to directly
accompany the unfolding of r(c), with the initial interval
of fast increase of scientific prospects coinciding with
the interval in which the efficiency s(c) decreases more
steeply. The duration and sharpness of the unfolding
along each of these regimes was found to depend strongly
on the average node degree of the knowledge network.

Other interesting results include the relatively little
dispersion observed around the average of r(c) and s(c)
in all considered situations, which corroborates that the
specific topological features of the nuclei had little influ-
ence on those two measurements. We also investigated
the dependency of these features respectively to the
average degree 〈k〉, having observed that the maximum
peak value tends to increase quickly to approximately
0.9N with 〈k〉, while the peak position decreases steeply
to very small nucleus sizes of 2 or 3 in both considered
network models.

It is observed that the interpretation of the concepts
and measurements adopted in the present work respec-
tively to the overall topics of prospects for scientific
advancement are intrinsically specific to the respecti-
vely adopted approach and parameter configurations.
In other words, it is by no means meant that the
prospects for scientific advancement in the real-world
necessarily follow the model or results reported here.
However, it is expected that these results can shed some
light on instigating related questions, perhaps providing
subsidies for better understand the dynamics of science.

It is also hoped that the present work can serve as a
didactic example of how network science renders itself as

a relatively simple and effective means of developing a
simple model of an important problem, with potentially
interesting results that can be further investigated.

The presently reported approach and respective re-
sults paves the way to a number of possible extensions.
For instance, it would be interesting to consider other
network topologies, such as Watts-Strogatz, modular,
and geographic network models, as well as networks
incorporating weights and directionality. It would also
be interesting to verify the effect of choosing the nucleus
nodes in a non-uniform way, such as by using rules
preferential to some topological properties of the nodes.
Better understanding about the observed phenomena
can also be obtained by developing analytical expres-
sions for r(c) and s(c).

It would also be promising to adopt diverse types
of nucleus topology, such as strings of interconnected
nodes, trees, or cliques. A related question would be
to try to identify, through optimization, the nuclei of
a given size that leads to the smallest or largest number
of reachable nodes.

Also of interest is to verify if real-world networks lead
to signatures of r(c) and s(c) that are different from a
respective null model (e.g. ER network with the same
number of nodes and average degree). In this respect,
this methodology could provide an interesting statistical
test about the sensitivity of a given network to different
choices of nucleus, providing complementary indication
about the heterogeneity of the topological features of the
overall network and each given type of nucleus.

Addditional possibilities consist in considering the
reported approach and results to problems other than
scientometrics. Indeed, it would be interesting to apply
the proposed methodology and measurements to charac-
terize and better understand complex systems involving
the interaction between a subnetwork (nucleus) with the
remainder of the system, such as it is often verified
in biological molecules interactions, epidemics, social
networks, ecology, linguistics, urbanism, economics, neu-
ronal networks, philogenetics, among many other pos-
sibilities. Given that the proposed approach provides
information about the interface between the nucleus and
the overall network, it also has potential for applications
in the analysis of the robustness of networks. Another
interesting problem is, given an overall network, how
can specific nuclei be designed so that specific considered
dynamics progress in similar ways in distinct networks,
including those presenting rather distinct complexity?

The approach reported in this work can also be un-
derstood as implying an interesting respective paradigm,
namely the study of dynamic processes in networks that
are insensitive to specific topological features of the
overall network. This kind of research could contribute
to devising approaches that can be used to eventually
circumvent the complexity of some topological and
dynamical structures while providing possible means for
their control.
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Some of the above possibilities are currently being
developed and future results could be expected.
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