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Small deflections in both a thin rectangular plate and a thin circular plate are studied via the variational
method. In order to apply Hamilton’s principle to this system, the potential energy is expressed in terms of strain
and stress tensors. Quantities such as the gradient displacement tensor and the traction vector are reviewed. It
is showed the advantage of the variational method as a technique which allows to obtain the equations of motion
and the boundary conditions simultaneously.
Keywords: Stress, strain, thin plate, Hamilton Principle.

Pequenas deflexões em uma placa retangular fina e uma placa circular fina são estudadas mediante o método
variacional. Para aplicar o prinćıpio de Hamilton neste sistema, a energia potencial é expressa em termos dos
tensores de deformação e tensão. Quantidades como o tensor gradiente de deformaçao e o vetor de tração são
revisadas. Mostra-se a vantagem do método variacional como técnica que permite obter as equações do movimento
e as condições de contorno simultaneamente.
Palavras-chave: Tensão, deformação, lâminas, Prinćıpio de Hamilton.

1. Introduction

The mechanics of continuous systems is one of the
branches of engineering and physics with most applica-
tions in the design of structures and tools that are stable
under stress and deformation. Moreover, the difficulty of
analytically solving the differential equations governing
the behaviour of these continuous systems is well known
in the literature. An example of these systems is a thin
plate subjected to vibrations, this kind of system was
studied throughout the 19th century.

In the late 18th century Ernst Florens Friedrich
Chladni noticed that any glass or metal plate produced
a variety of sounds whenever he held and stroked
it at different positions. Inspired by the experiments
of Lichtenberg, who had made the traces of electric
discharges visible in insulators by sprinkling dust on
the corresponding places, Chladni spread sand on a
brass plate, stroked it with the bow of a violin, and
the sand formed a star-shaped pattern with ten rays.
In 1787 Chladni published his experiments in his first
acoustic work [1]. Chladni’s experiment attracted a
great deal of attention in his time. Even Napoleon,
through the mediation of Laplace, offered a reward of
3000 francs to anyone who could give an explanation
of the phenomenon [2]. This award was given to Sophie
Germain, who between 1811 and 1815 formulated the
first mathematical model for the deformation of an

* Correspondence email address: valeria.pachas.y@uni.pe

elastic plate [3]. Although Sophie Germain’s work was an
essential breakthrough, her explanation was incomplete
until 1850, when Kirchhoff showed that the Chladni
figures for a square plate correspond to eigenvalues of
the biharmonic operator [4]. At the beginning of the
20th century, the expert in sound theory, John William
Strutt, later Baron Rayleigh, summarised the situation
in his treatise [5]. In the same document it is shown
that the oscillating thin plate problem has an analytical
expression involving the vibrations frequencies, only in
the case of a circular plate. Meaning that vibration
frequencies can be only computed by numerical means1,
i.e. the eigenfunctions are not computed. For more
historical details, the references [3, 6] are suggested.

Current work on Chladni figures focuses on finding
more accurate and efficient numerical solutions. There
are for example solutions via the Q-R and Lanczos
algorithms [3], the use of the Ritz-Galerkin method [7]
and application of the finite quadrature method [8, 9].
Studies on different geometries and the study of their
boundary conditions are also usual [8–11].

The aim of this paper is to present a modern version of
the derivation of the equations of motion and boundary
conditions of free vibrations of a continuous system via
the variational principle. In that perspective, the present
paper is organized as follows: In section 2, a summary
of the properties and interpretations of the stress and

1 Vibration frequencies are related to the zeros of Bessel functions
which are computed in an approximated way.
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unitary deformations in Cartesian and polar coordinates,
as well as the derivation of the energy associated with
the system, is given. In section 3, the derivation of
the equations of motion and boundary conditions is
carried out. This technique is applied for rectangular
and circular plates.

2. Continuum Dynamics

In this section, the deformations suffered by an elastic
body are analysed. Such deformations, characterized by
a mathematical entity known as tensor strain, are a
consequence of external forces which will be addressed
with the so-called tensor stress.

2.1. The strain matrix in Cartesian coordinates

An elastic solid is said to be deformed or strained when
the relative displacements between points in the body
are changed. This is in contrast to rigid-body motion
where the distance between points remains the same.
In order to quantify deformation, consider the general
example shown in Figure 1 where a continuum region V0
and a generic point P0(x), in such region are observed.
After deformation, the new configuration of the body is
denoted by V and the position of the generic point is
denoted by P (X).

The displaced position of P0 can be related to dis-
placement vector u by the relationship

X = x + u. (1)

Using a Cartesian coordinate system, vectors x,X and
u are expressed as

x = [x y z]T ,
X = [X Y Z]T ,
u = [u v w]T ,

(2)

where [ ]T refers to the transpose.
It is possible to express the equation (1) in terms

of a matrix representing the transformation that the
set of points that form the body undergoes when it is
deformed, i.e. the Jacobian will be found. To achieve

Figure 1: Deformation of the continuum region.

this, the vector u should be expressed as a Taylor
expansion. As an example will be shown the Taylor
expansion for the component u around zero, it is

u = ∂u

∂x
x+ ∂u

∂y
y + ∂u

∂z
z + ... (3)

Since this work is concerned with small deformations,
which means that linear elasticity is being developed,
terms higher than the first order can be neglected. Then,
from (1) and (3), the component X of the vector X is

X =
(

1 + ∂u

∂x

)
x+ ∂u

∂y
y + ∂u

∂z
z (4)

Similarly, the Y and Z components of the vector X are
obtained:

Y = ∂v

∂x
x+

(
1 + ∂v

∂y

)
y + ∂v

∂z
z (5)

Z = ∂w

∂x
x+ ∂w

∂y
y +

(
1 + ∂w

∂z

)
z (6)

From equations (4), (5) and (6), the equation (1) in its
matrix form is

X = Fx where F =


(
1 + ∂u

∂x

)
∂u
∂y

∂u
∂z

∂v
∂x

(
1 + ∂v

∂y

)
∂v
∂z

∂w
∂x

∂w
∂y

(
1 + ∂w

∂z

)
.
(7)

As a consequence of the linearity, the Jacobian |F |
must be invertible and therefore different from zero.
Furthermore, to be physically admissible it must also
be positive [12].

The Jacobian, also known as deformation gradients
matrix, can be written as F = I + F̂ , where I is the
identity matrix of order three and the matrix F̂ , called
displacements gradients matrix is

F̂ =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 , (8)

Each element of the matrix (8) comes from the Taylor
expansion of the displacement vector u, as shown in
(3), therefore this matrix describes the spatial change of
the displacement field. In general, such spatial changes
are the product of deformations and rotations of the
analyzed element. Thus, by representing the matrix F̂
as a sum of an antisymmetric matrix and a symmetric
matrix, that is F̂ = ω + ε, where

ω = 1
2

[
F̂ − F̂T

]
=

 0 ωxy ωxz
ωyx 0 ωyz
ωzx ωzy 0

 = −ωT

ε = 1
2

[
F̂ + F̂T

]
=

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 = εT .

, (9)
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it is observed that the spatial change due to rotations
is represented by the antisymmetric matrix w, while the
spatial change due to deformations is represented by the
symmetric matrix ε [13].

Since, in this study is considered that the infinitesimal
element analysed does not suffer rotation, but only
strain, just the symmetric part, called strain matrix, is
expressed explicitly as

ε =


∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)
1
2
(
∂u
∂z + ∂w

∂x

)
1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y

1
2

(
∂v
∂z + ∂w

∂y

)
1
2
(
∂u
∂z + ∂w

∂x

) 1
2

(
∂v
∂z + ∂w

∂y

)
∂w
∂z

 .

(10)
The diagonal elements of the matrix are called normal

or extensional strain components and represent the
change in length per unit length. While the elements
outside the diagonal are the shear strain components
and are associated with the change in the angle between
two originally orthogonal directions of the infinitesimal
element analysed in the continuous material.

2.2. The strain matrix in Polar coordinates

The aim of this section is to obtain the strain matrix in
polar coordinates from (10). It is necessary to use the
transformation matrix between Cartesian coordinates
(x, y, z) and polar coordinates (r, θ, z) to achieve such
a goal. It is straightforward to demonstrate, for the
displacement u in (1), the following transformation

relationshipuv
w

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

urvθ
w

 . (11)

Thus, the strain matrix in Polar coordinates, denoted by
εP is obtained in as shown bellow

εP =

εrr εrθ εrz
εθr εθθ εθz
εzr εzθ εzz


=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


×

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (12)

To give an idea of how εP is obtained, the term εrr will
be explicitly calculated. It is easy to obtain the following
from equation (12):

εrr = cos2 θ
∂u

∂x
+ sin2 θ

∂v

∂y
+ sin θ cos θ

(
∂u

∂y
+ ∂v

∂x

)
.

(13)

By replacing the partial derivative of (13) with the
transformed ones into polar coordinates, the term εrr
becomes

εrr = cos2 θ

(
cos2 θ

∂ur
∂r
− cos θ sin θ∂vθ

∂r
+ sin2 θ

r
ur −

sin θ cos θ
r

∂ur
∂θ

+ sin θ cos θ
r

vθ + sin2 θ

r

∂vθ
∂θ

)
+ sin2 θ

(
sin2 θ

∂ur
∂r

+ sin θ cos θ∂vθ
∂r

+ cos2 θ

r
ur + cos θ sin θ

r

∂ur
∂θ
− cos θ sin θ

r
vθ + cos2 θ

r

∂vθ
∂θ

)

+ sin θ cos θ
[

2 sin θ cos θ∂ur
∂r

+
(
cos2 θ − sin2 θ

) ∂vθ
∂r
− 2 sin θ cos θ

r
ur +

(
cos2 θ − sin2 θ

)
r

∂ur
∂θ

−
(
cos2 θ − sin2 θ

)
r

vθ −
2 sin θ cos θ

r

∂vθ
∂θ

]
.

(14)

Finally, it is straightforward to reduce (14) into

εrr = ∂ur
∂r

. (15)

By using the same procedure, the other elements of the strain matrix in polar coordinates has the following form

εP =


∂ur
∂r

1
2
(
∂vθ
∂r −

vθ
r + 1

r
∂ur
∂θ

) 1
2
(
∂ur
∂z + ∂w

∂r

)
1
2
(
∂vθ
∂r −

vθ
r + 1

r
∂ur
∂θ

)
ur
∂r + 1

r
∂vθ
∂θ

1
2
(
∂vθ
∂z + 1

r
∂w
∂θ

)
1
2
(
∂ur
∂z + ∂w

∂r

) 1
2
(
∂vθ
∂z + 1

r
∂w
∂θ

)
∂w
∂z

 . (16)
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2.3. The stress matrix in Cartesian coordinates

The application of external forces to a region of a contin-
uous and deformable-body will result in the development
of stresses within it. The measurement of the stress was
postulated by Augustin Louis Cauchy. Cauchy claimed
that internal stresses developed within a deformable
medium are similar, in character, to the stresses that
can be applied externally to create the internal state of
stress [14].

In order to quantify the nature of the internal dis-
tribution of forces within a continuum solid, consider
a general body subject to arbitrary (concentrated and
distributed) external loadings, as shown in Figure 2. To
investigate the internal forces, a section is made through
the body as shown in Figure 2. On the section S∗, which
divides the region V into two separate regions, consider
a small area ∆A with unit outward normal vector n. The
resultant surface force acting on ∆A is defined by ∆F,
then the traction vector is defined by

T = lim
∆A→0

(
∆F
∆A

)
. (17)

In the equation (17), ∆A is the current area of the
element under consideration. Therefore, T depends on
the point P and the orientation of ∆A. If the outward
unit normal to the surface at P is denoted by n, then
Cauchy showed that the three components of T can be
determined from the result

Ti = σikn
k, (18)

known as the Cauchy formula, where Einstein’s summa-
tion notation is used for the repeated index, and the
σik are matrix elements of stress tensor in Cartesian
coordinates as follow

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 . (19)

Now, the symmetric property of σ will be demon-
strated. Assume that the body is in equilibrium when it
is subjected to external tractions T acting on the surface
S of a body which has forces per unit volume denoted

Figure 2: Sectioned body subject to external loadings: concen-
trated (P1 and P2 ) and distributed (P).

by fi. From the Newton´s second law, it follows∮
S

TidS +
∫
V

fidV = 0, (20)

where the first term of the left hand side of (20) is
component i that comes from the definition of vector
strain on (17). By making use of the divergence theorem,
the surface integral can be transformed into a volume
integral with the help of the equation (18). Then, from
equation (20) is easy to obtain

0 = ∂kσik + fi. (21)

On the other hand, the moment equilibrium about the
origin O is expressed as

0 =
∮
S

x×TdS +
∫
V

x× fdV, (22)

where x is the position vector of dV or dS. Next, the
cross product is expressed in terms of the permutation
symbol Levi Civita

0 =
∮
S

εijkxjTkdS +
∫
V

εijkxjfkdV. (23)

Again, using the divergence theorem in the first term
of the right part and expressing Tk depending of σik as is
shown in the equation (18), the surface integral in (23)
becomes to a volume integral. By replacing fi from (21)
into (23), is obtained∫

V

εijkσjkdV = 0. (24)

Since εijk is antisymmetric in the subscripts jk and
(24) holds to the whole body, σjk must be symmetric,
i.e. σij = σji.

3. Equation of Motions and Boundary
Conditions via Variational Methods

The equations of motion of a continuum can be obtained
using Newton’s laws which requires a free body diagram
of a volume element of the structure. This vector
approach provides a direct way to derive the equations
of motion. However, it is not always clear what kind
of boundary conditions to use. Another way to get the
equations of motion is through Hamilton’s principle,
known as the energy approach. From this approach,
it is taken into account that a dynamical system is
characterized by two energy functions, kinetic energy,
and potential energy [15].

3.1. The strain energy density

A body of volume V with surface area S is considered
to be in static equilibrium under the action of traction
T acting on the surface and body forces f acting on the
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volume. The resulting stress state in the body is given
by σ, and the virtual displacements in the vicinity of a
generic point are denoted by δu.

It will be assumed that the strain energy U is equal to
the work done W by the applied tractions T and body
forces f in transforming the body from an undeformed to
a deformed configuration [14, 16]. The work for a virtual
displacement is given by∫

V

δW̄dV =
∫
V

fiδuidV +
∮
S

TiδuidS, (25)

where the over-bar denotes quantities per unit volume
and the subscripts indicate the components of the
vectors.

Taking into account that the displacement is virtual it
follows that u̇ = 0, then from equation (21) it is obtained
that fi = −∂kσik. In the second integral of the equation
(25) the traction components Ti can be replaced from
(18) and via divergence theorem, the work for virtual
displacement is∫

V

δW̄dV =
∫
V

[∂k (σikδui)− ∂kσikδui] dV

=
∫
V

σikδ (∂kui) dV.
(26)

In (26), the expression ∂kui will be written as the sum
of a symmetric and a antisymmetric tensor2. Therefore,
due σij is symmetric, just the symmetric part of ∂kui
survive. Furthermore, the symmetric part is in fact the
elements of strain matrix written on (10). In conclusion,
the result (26) is rewritten as∫

V

δW̄dV =
∫
V

σikδεikdV. (27)

The work done on the body corresponds to a change in
the potential energy U of the system, so that δW̄ = δŪ .
Thus, the strain potential energy density is defined as

δŪ = σikδεik. (28)

The relation above becomes an exact differential by
assuming that the potential energy Ū is actually a
function of the strain tensor εik; in that case

σik = ∂Ū

∂εik
. (29)

The equation (29) is the fundamental relation between
stress and strain. Also, since the function Ū depends on

2 The term ∂kui is written as

∂ui

∂xk
=

1
2

(
∂ui

∂xk
+
∂uk

∂xi

)
+

1
2

(
∂ui

∂xk
−
∂uk

∂xi

)

the terms εij , then the differential of Ū is

dŪ = ∂Ū

∂ε11
dε11 + ∂Ū

∂ε22
dε22 + ∂Ū

∂ε33
dε33 + ∂Ū

∂ε12
dε12

+ ∂Ū

∂ε13
dε13 + ∂Ū

∂ε23
dε23 (30)

In addition, the relation between σ and ε for a linear,
isotropic and homogeneous material, in the indicial form
is written as follows [14]:

σik = λεjjδik + 2µεik (31)

where εjj = ε11 + ε22 + ε33 and λ, µ are known as the
Lamé constants3. Replacing (31) in (30), it is possible to
obtain the form of the function Ū for a linear, isotropic
and homogeneous material

Ū = 1
2λεjjεii + µεikεik. (32)

It is necessary to specify that the Lamé constants are
related to the more common Young’s modulus E and
Poisson’s ratio ν by

E = µ(3λ+ 2µ)
λ+ µ

, (33)

ν = 1
2

λ

λ+ µ
. (34)

Now, multiplying (29) by εik and substituting (31),
the result is as follows

εik
∂Ū

∂εik
= λεjjεii + 2µεikεik, (35)

comparing the right part in (35) with (32) the following
relationship is obtained

εik
∂Ū

∂εik
= 2Ū . (36)

In conclusion, with the help of the equation (29) and
(36), it is straightforward to obtain the density of stress
potential energy as

Ū = 1
2σikεik. (37)

3.2. The Hamilton’s principle applied to a body
in Cartesian coordinates

Hamilton’s principle states that of all the possible paths
along which a particle could travel from its position at
instant t0 to its position at instant t1, the real path,

3 In linear elasticity, the Lamé parameters are two elastic constants
that completely characterize the linear elastic behaviour of an
isotropic solid in small deformations, these two parameters are
designated as: λ, known as the first Lamé parameter and µ, known
as the transverse modulus of elasticity
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denoted by u = u(x, t), will be the one for which the
integral ∫ t1

t0

(K − U +We)dt (38)

is an extremum [15, 16]. Thus, the Hamilton’s principle
is

δ

∫ t1

t0

(K − U +We)dt = 0, (39)

where K is the kinetic energy of the system, U is
the potential energy, and We is the work done by the
external forces on the system. The symbol δ is intended
in the sense of calculus of variations. Furthermore, in
this approach, it is assumed that the varied path u + δu
differs from the real path u except at instants t0 and
t1. In this way, an admissible variation δu satisfies the
condition

δu(x, t0) = δu(x, t1) = 0, ∀x. (40)

Now, the variation of K, U and We will be computed
separately in order to obtain an expression for (39). By
considering that the body has a constant density, the
kinetic energy density K̄ is found to be

K̄ = ρ

2 u̇iu̇i, i = 1, 2, 3; (41)

where the subscript i denotes a component of the vector
~u. Therefore, the variation of this quantity is

δK̄ = ρu̇iδu̇i. (42)

Then, in order to obtain the kinetic component of the
equation (39), δK̄ must be integrated between instants
[t0, t1] and in the volume. This means that the following
integral must be found

δ

∫ t1

t0

Kdt = δ

∫
V

∫ t1

t0

K̄dt dV =
∫
V

∫ t1

t0

ρu̇iδu̇idt dV.

(43)
Integration by parts over time is done giving

δ

∫ t1

t0

Kdt = −
∫
V

∫ t1

t0

ρüiδuidt dV, (44)

where the conditions (40) have been used.
For the potential energy, the variation δU was founded

in (28), and by using (10) for the factor δεij , the
following integral is obtained

δ

∫ t1

t0

∫
V

ŪdV dt = 1
2

∫ t1

t0

∫
V

∂Ū

∂εij
(δ∂jui + δ∂iuj) dV dt,

(45)
The latter expression will be integrated by parts

in the volume via a = ∂Ū/∂εij and db = (δ∂jui+
δ∂iuj)dV . For b, the Gauss theorem gives b =∮

Ω (δuinj + δujni) dΩ, where Ω is the body superficial

surface. Therefore, the equation (45) becomes

δ

∫ t1

t0

∫
V

ŪdV dt

= 1
2

∫ t1

t0


∮

Ω

(
∂Ū

∂εij
δuinj + ∂Ū

∂εij
δujni

)
dΩ

−
∫
V

[
∂j

(
∂Ū

∂εij

)
δui + ∂i

(
∂Ū

∂εij

)
δuj

]
dV

dt. (46)

In order to reduce (46), on the second terms of the
surface and volume integrals, the indices i and j will be
swapped by taking advantage the symmetric nature of
σij . Then, with the help of (29), we obtain

δ

∫ t1

t0

∫
V

ŪdV dt

=
∫ t1

t0

(∮
Ω
σijδuinjdΩ−

∫
V

∂jσijδuidV

)
dt. (47)

The last variation to calculate is the external work.
This is done easily by considering the equation (25)∫ t1

t0

∫
V

δW̄edV dt =
∫ t1

t0

∫
V

fiδuidV +
∮

Ω
tiδuidΩdt.

(48)
Finally, by replacing (44), (47) and (48), into the

Hamilton’s Principle given in the equation (39), the
following relation is obtained

∫ t1

t0

∫
V

[−ρüi + fi + ∂jσij ] dV dt

−
∫ t1

t0

∮
Ω

[σijnj − ti] dΩdt

 δui = 0, (49)

where it is evident that

ρüi = fi + ∂jσij , (50)

σijnj = ti. (51)

The equation (50), that comes from the volume
integral is the equation of motion for the elements of the
body; and the one which comes from the surface integral,
equation (51), are the boundary conditions. Therefore,
as mentioned before, the variational method allows to
determine simultaneously the necessary equations to
analyze the dynamic of a solid body.

4. Small Deflections of Thin Rectangular
Plates

Usually a thin plate is defined as a continuous region
that is delimited by two surfaces of little or no curvature
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Figure 3: Thin plate with volumen V and its neutral surface in
z = 0.

and whose thickness is considerably less than its lateral
dimensions. However, the definition of thin elastic plate
can be approached by considering the various modes of
energy stored in the plate during its deformation. In
general, when a plate-shaped elastic structural member
undergoes deformation, the stored energy is composed of
flexural strain energy due to change in curvature, shear
strain energy due to distortion and extensional strain
energy due to stretching in the plane of the plate. In
classical thin plate theory, the flexural energy is assumed
to be the dominant component [14].

As an example of the previous section, the dynamic
that consists of flexural4 vibrations, with no in-plane
motion, of a rectangular plate will be determined.
Consider a plate that occupies a portion of space V ,
composed of a rectangular surface S with thickness h,
hence V = [0, Lx]× [0, Ly]× [−h/2, h/2], with h � Lx,
h � Ly, and a mid-surface, also known as neutral
surface, on z = 0 as shown in Figure 3.

Because the deflection is w, the kinetic energy is
expressed easily as

K = ρh

2

∫ Ly

0

∫ Lx

0
(ẇ)2dxdy. (52)

Therefore, it follows that δK ∼ δẇ. This expression
must be integrated over time in order to replace into
(39). The integration by parts of the latter integral drop
out the time derivative of ẇ give the following result

δ

∫ t2

t1

Kdt = −ρh
∫ Ly

0

∫ Lx

0

∫ t2

t1

ẅδwdtdxdy. (53)

Similar to the kinetic energy, is necessary to express Ū
as a function of w(x, y). To achieve this goal it is neces-
sary to take into account the classical plate theory which
is based on the Kirchhoff hypothesis assumptions5, and

4 In engineering, a flexure is the effect caused by loads external to
the plate, which can be forces perpendicular to the plane of the
plate, or moments contained in said plane.
5 The Kirchhoff hypothesis consists of the following three parts

(1) Straight lines perpendicular to the mid-surface before defor-
mation remain straight after deformation.

(2) The transverse normals are inextensible.
(3) The transverse normals rotate such that they remain

perpendicular to the middle surface after deformation.

as consequence of such theory, results the equations in
(54) [15]:

εzz = 0, εxz = 0, εyz = 0 (54)

From (10) and (54) it is possible to obtain

εzx = 0 = 1
2(u,z + w,x),

εzy = 0 = 1
2(v,z + w,y),

(55)

where u,z = ∂u/∂z.
By solving the equations (55), the relations u = −zw,x

and v = −zw,y are obtained. Again, from (10) it is
straightforward to obtain εxx, εyy, and εxy

εxx = −zw,xx; εyy = −zw,yy; εxy = −zw,xy (56)

Other relationships necessary to progress in this
section are the stress-strain relationships, which are
obtained from the generalized Hooke’s law, such rela-
tions are given by

σik = E

1 + ν

(
εik + ν

1− 2ν εllδik
)
, (57)

εik = 1
E

[(1 + ν)σik − νσllδik], (58)

where σll = σ11 + σ22 + σ33, ν is the Poisson constant
and E is the Young modulus [15].

Now, from εzz in (54) and (58) it is true that

σzz = 0 (59)

The strain component εzz is derived easily by equating
to zero the equation for σzz in (57), and by using the
strain components (56). Hence

εzz = ν

1− ν z(w,xx + w,yy). (60)

Also, for the potential energy U , the summation (37)
has null terms because of the Kirchhoff Plate Theory. In
consequence

Ū = 1
2(σxxεxx + σyyεyy + σxyεxy + σyxεyx). (61)

It is now possible to derive an expression for the strain
potential energy density in terms of the displacement
w(x, y). First of all, the stress factors σij are replaced via
(57). Then, the strain matrix elements will be replaced
following the expressions (56) and (60). After that, the
density deformation energy is

Ū = E

1 + ν
z2
{

1
2(1− ν) (∆w)2 + w2

,xy − w,xxw,yy
}
,

(62)
where ∆ is the Laplacian operator in two dimensions.

With Ū from (62), the potential energy is obtained
by integrating over the volume element dV = dxdydz.
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By defining the rigidity constant D ≡ Eh3/12(1 − ν2),
this is

U = D

2

∫ Ly

0

∫ Lx

0

{
(∆w)2 + 2(1− ν)

×
[
(w,xy)2 − w,xxw,yy

] }
dxdy. (63)

In order to replace into (39), the variation of U must
be computed. As a first sight, the variation has the
following form

δU = D

[∫ Ly

0

∫ Lx

0
w,xxδw,xxdxdy

+
∫ Ly

0

∫ Lx

0
w,yyδw,yydxdy

+ ν

∫ Ly

0

∫ Lx

0
w,xxδw,yydxdy

+ ν

∫ Ly

0

∫ Lx

0
w,yyδw,xxdxdy

+ 2(1− ν)
∫ Ly

0

∫ Lx

0
w,xyδw,xydxdy

]
. (64)

In the variation (64), all integrals are ∼ δw,xx. With
the objective to obtain the equation of motion and the
boundary condition, we must obtain δU proportional to
δw, δw,x, and δw,y. The latter is possible via integration
by parts obtaining the following expression

δU = D

[∫ Ly

0
(w,xx + νw,yy)Lx0 δw,xdy

−
∫ Ly

0
(w,xxx + (2− ν)w,xyy)Lx0 δwdy

+
∫ Lx

0
(w,yy + νw,xx)Ly0 δw,ydx

−
∫ Lx

0
(w,yyy + (2− ν)w,xxy)Ly0 δwdx

+
∫ Lx

0

∫ Ly

0
∆2wδwdxdy

+2(1− ν) w,xyδw|at corners

]
, (65)

where ∆2w = w,xxxx +w,yyyy + 2w,xxyy, and the differ-
ential operator ∆2 is knowing as biharmonic operator.

Finally, by substituting (53) and (65) into (39) avoid-
ing external forces, is obtained∫ t2

t1

∫ Ly

0

∫ Lx

0
(D∆∆w − ρhẅ)δwdxdydt

+
∫ t2

t1

[∫ Lx

0
(w,yy + νw,xx)Ly0 δw,ydx

−
∫ Lx

0
(w,yyy + (2− ν)w,xxy)Ly0 δwdx

+
∫ Ly

0
(w,xx + νw,yy)Lx0 δw,xdy

−
∫ Ly

0
(w,xxx + (2− ν)w,xyy)Lx0 δwdy

+ 2(1− ν) w,xyδw|at corners

]
= 0. (66)

Here, from Hamilton’s principle is followed that the
integral is split between a surface integral and boundary
integrals; in other words, part of the potential energy
contributes to the inertial forces that appear in the equa-
tion of motion, and the other part has to be compensated
by the boundary conditions, so that disappears along the
contour [16]. The results are summarised as follows:
• Equation of motion

ρhẅ = −D∆∆w (67)

• Boundary conditions

w,nnn + (2− ν)w,ntt = 0 (68)
w,nn + νw,tt = 0 (69)

w,nt = 0, (70)

where {n, t} = {x, y}. The equations (68) and (69) are
valid for the sides of the rectangular plate and the last
one (68) is valid for the corners.

5. Small Deflections of Thin Circular
Plates

As a second example the technique will be used to
develop de equation of motion and the boundary con-
dition for a circular plate. The first step is determine
the kinetic energy and its variation in polar coordinates.
This is straightforward by coordinates transformation of
(53). After an integral by parts, the following expression
is obtained

δ

∫ t2

t1

Kdt = −ρh
∫ 2π

0

∫ R

0

∫ t2

t1

ẅδwdtrdrdθ, (71)

where w = w(r, θ) and the vector deformation is denoted
as u = (ur, uθ, w).

For the computation of the variation of the potential
energy, the expression (37) will be generalized for every
geometry as

Ū = 1
2Tr(σ.ε), (72)

where the stress and strain matrices could be denoted in
polar coordinates as follow

σ.ε =

σrr σrθ σrz
σθr σθθ σθz
σzr σzθ σzz

εrr εrθ εrz
εθr εθθ εθz
εzr εzθ εzz

 . (73)

Similar to the rectangular case, the Kirchhoff Plate
Theory and the relations stress-strain, (57) and (58),
implies the following

σrz = σθz = σzz = 0. (74)
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Therefore, by replacing (74) into (72), the density
deformation energy is obtained in terms of the compo-
nents of the strain and stress matrices

Ū = 1
2(σrrεrr + 2σrθεθr + σθθεθθ). (75)

The relations stress-strain given in equations (57) and
(58), will be used in this section again. Thus, the terms
εzr, εzθ, will be obtained from (58)

εzr = 1
E

[(1 + ν)σzr] = 0, (76)

εzθ = 1
E

[(1 + ν)σzθ] = 0. (77)

Now, the next step is to obtain the elements of the
stress matrix in terms of the vertical deformation w(r, θ).
The term ur will be obtained from the general form of
σzr in (16) by taking into account the thin condition
(76). Similarly, the deformation component uθ will be
obtained by replacing the thin condition (77) into the
general form of σzθ. Therefore:

ur = −z ∂w
∂r

, (78)

uθ = −w
r

∂w

∂θ
. (79)

With (78) and (79) it is possible to obtain all elements
of strain matrix with the exception of εzz which can be

naively calculated null. In order to obtain it, the thin
condition σzz = 0 must be replaced into (57) which is
coordinate invariant too. Consequently

εzz = − ν

1− ν

(
−z ∂

2w

∂r2 −
z

r2
∂2w

∂θ2 −
z

r

∂w

∂r

)
. (80)

With the equations (78)–(80), it is possible to compute
all elements that we need to replace into (75) with the
help of the stress strain relation. Then, integrating in
the volume of the plate, the potential energy has the
following form

U = D

2

∫ 2π

0

∫ R

0

{
(∆w)2 + 2(1− ν)

[(
1
r2w,θ −

1
r
w,rθ

)2

− w,rr
(

1
r2w,θθ + 1

r
w,r

)]}
rdrdθ, (81)

where ∆w is given in polar coordinate as

∆w = w,rr + 1
r
w,r + 1

r2w,θθ. (82)

The variation δU could be determined from (81), but
it must be reduced in order to obtain it proportional to
δw, δw,r, and δw,θ. The latter could be made by many
integration by parts, the final result has the following
form

δU = 2(1− ν)
(
− 1
r2w,θδw + 1

r
w,rθδw

)R
0

∣∣∣∣∣
2π

0

+
∫ 2π

0

∫ R

0

(
w,rrrr + 2

r
w,rrr + 1

r3w,r −
1
r2w,rr + 1

r4w,θθθθ + 2
r2w,rrθθ + 4

r4w,θθ −
2
r3w,θθr

)
︸ ︷︷ ︸

∆2w

δwrdrdθ

+
∫ 2π

0

[(
rw,rr + νw,r + ν

r
w,θθ

)R
0
δw,r +

(
−rw,rrr − w,rr + 3− ν

r2 w,θθ + ν − 2
r

w,rθθ + 1
r
w,r

)R
0
δw

]
dθ

+
∫ R

0

[(
1
r3w,θθ + ν

r
w,rr + 1

r2w,r

)2π

0
δw,θ +

(
− 1
r3w,θθθ + 2(1− ν)

r
w,rrθ + 1− 2ν

r2 w,rθ + 2ν − 2
r3 w,θ

)2π

0
δw

]
dr.

(83)

Finally, the two variations, (71) and (83), must be replaced into (39) giving the following expression∫ t2

t1

{∫ 2π

0

∫ R

0

(
D∆2w + ρhẅ

)
δwrdrdθ

+D

∫ 2π

0

[(
rw,rr + νw,r + ν

r
w,θθ

)R
0
δw,r +

(
−rw,rrr − w,rr + 3− ν

r2 w,θθ + ν − 2
r

w,rθθ + 1
r
w,r

)R
0
δw

]
dθ

+D

∫ R

0

[(
1
r3w,θθ + 1

r2w,r

)2π

0
δw,θ +

(
− 1
r3w,θθθ + 2(1− ν)

r
w,rrθ + 1− 2ν

r2 w,rθ + 2ν − 2
r3 w,θ

)2π

0
δw

]
dr

2D(1− ν)
(
− 1
r2w,θδw + 1

r
w,rθδw

)R,2π
0

}
= 0.

(84)
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The results are summarised as follows:

• Equation of motion

ρhẅ = −D∆2w (85)

• Boundary conditions

−D
(
w,rr + ν

r
w,r + ν

r2w,θθ

)
R

= 0 (86)

−D
(
w,rrr + 1

r
w,rr + 3− ν

r3 w,θθ + ν − 2
r2 w,rθθ + 1

r2w,r

)
R

= 0
(87)

In the equation (86) is the radial bending moment
equal to zero and the equation (87) is the effective radial
shear force equal to zero in the border of the plate.

6. Discussion, Conclusions and
Perspectives

In this paper, the equations of motion and boundary
conditions for small oscillations in an elastic solid were
reviewed by means of variational calculus. In particular,
it has been applied, with a detailed calculation, to
the case of transverse oscillations in a thin plate with
rectangular and circular geometry, which is rarely found
in the current literature.

In section (2), a review of continuous dynamics ele-
ments such as stress and strain was made. For the case
of an infinitesimal element which only undergoes strain,
but not rotations, it was shown that such a strain can be
characterized by symmetric strain matrix. To quantify
the distribution of internal forces, the traction vector was
defined, which is related, by means of Cauchy formula,
to a symmetric matrix called stress matrix. The Cauchy
formula indicates that each traction component can be
expressed as a linear combination of particular stress
components. Furthermore, both traction and stress have
the same units (force per unit area), however, they are
fundamentally different, since traction is a vector and
stress is a tensor.

The review was also focused on the interpretation of
these quantities and their mathematical properties. This
effort was useful to obtain the potential energy of the
solid as well as for the calculation of virtual work. For the
purpose of applications, their expressions in Cartesian
and cylindrical coordinates were obtained explicitly.

The mechanism to obtain, simultaneously, the equa-
tions of motion and the boundary conditions for any
three-dimensional solid were obtained in the section 3.
The algorithm consists of determining the potential
energy via the virtual work due to infinitesimal dis-
placements. Then, Hamilton’s principle gives us the
equations of motion via Gauss’ theorem to obtain the
integrals proportional to δui. It should be noted that

equations (50) and (51), are coupled with respect to the
deformation displacements via the stress strain relations.

Finally, in sections 4 and 5-as a matter of example- it
is shown the application of the algorithm to the two-
dimensional problem of rectangular and circular thin
plates. In both cases, the variations are reduced until
factors proportional to ∼ δwi and ∼ δw′i are obtained.
It is interesting to note that in both cases, the vertical
displacement w can be viewed as a field in the two-
dimensional space of x and y coordinates. The latter
can serve as a guide to obtain these equations from
the general three-dimensional case represented in (50)
and (51).

The solutions for the thin rectangular plate are not
obtained analytically, but by numerical methods. In [17],
the author assumes that the shape of the solution is
similar to that of the beams, and calls this type of
solution beam functions, uses Rayleigh’s method to
derive an approximation for the frequencies for all modes
of vibration.

However, it is possible to obtain analytically the eigen-
functions of the biharmonic equation for circular thin
plates, as developed in [5, 18], here an analytical solution
is found in terms of the first and second type Bessel
functions and coefficients depending on the boundary
conditions.

Acknowledgments

The authors thanks to Vicerrectorado de Investigación
– Universidad Nacional de Ingenieŕıa for supporting the
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