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Maxwell’s equations are fundamental to the understanding of electromagnetic events, as they describe the
totality of experimentally verified electromagnetic phenomena from its boundary conditions and constitutive
relations. Although, they are normally presented in the time and space domain, many physical effects and their
associated mathematical manipulation are easier to understand when we use Maxwell’s equations in Fourier
space. In this work we give a general introduction about Maxwell’s equations in Fourier domain in material
media. The simplicity of the obtained equations in comparison with the ones in space-time domain is emphasized,
and the link between them and the elementary excitations in solids is presented and explored. In particular, the
coupling between various types of quasiparticles in solids is explained.
Keywords: Maxwell equations, Fourier space, elementary excitations, plasmon, phonon-polariton.

As equações de Maxwell são fundamentais para a compreensão dos fenômenos eletromagnéticos, pois descrevem
a totalidade dos eventos eletromagnéticos verificados experimentalmente a partir de suas condições de contorno
e das relações constitutivas. Embora sejam normalmente apresentados no domínio do espaço e do tempo, muitos
efeitos físicos e suas manipulações matemáticas são mais fáceis de entender quando usamos as equações de
Maxwell no espaço de Fourier. Neste trabalho é apresentada uma introdução geral sobre as equações de Maxwell
no domínio de Fourier em meios materiais. É enfatizada a simplicidade das equações obtidas em comparação com
as do domínio espaço-tempo, bem como explorada a ligação entre elas e as excitações elementares em sólidos.
Em particular, é explicado o acoplamento entre vários tipos de quasipartículas em sólidos.
Palavras-chave: Equações de Maxwell, espaço de Fourier, excitações elementares, plásmon, fônon-polariton.

1. Introduction

The starting point to study the interaction of elec-
tromagnetic fields with matter is Maxwell’s equations
which describe how electric charges and electric currents
create electric and magnetic fields, how those fields
change in time and how an electric field can generate
a magnetic field, (and vice versa). Furthermore, from
Maxwell’s equations it was possible to develop the theory
of electromagnetic waves, including visible light.

Maxwell’s equations, together with Lorentz force law
(which describes how electric and magnetic fields act on
charges and currents) form the theoretical foundation of
classical electrodynamics and is one of the major mile-
stones of theoretical physics, even though its historical
genesis took place in a context heavily dominated by
mechanical ideas according to which the electromagnetic
field did not have an intrinsic reality, but a consequence
of the mechanical properties of an ethereal medium [1].

Perhaps the most spectacular prediction of Maxwell’s
equations is the existence of electromagnetic waves and
that light is a form of an electromagnetic wave. From a
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practical point of view, electromagnetic waves are widely
used in devices such as radio, cell phones, television,
radars, medical imaging and many others. As a funda-
mental theory, Maxwell’s equations can be appreciated
from an aesthetic point of view [2]. Additionally, these
equations are capable of providing a solid basis for
understanding the basic principles of new research areas
such as plasmonics [3], as we will see in this work.

Optical property describes a material’s response when
electromagnetic radiation (in particular visible light) is
incident on the material and are consequences how it
reflect, transmit, and absorb or scatters the incident
radiation [4, 5]. Detailed knowledge of the optical prop-
erties of matter has important implications for both to
understand the essential principles of radiation-matter
interaction and for a wide range of research fields and
applications, e.g, photonics and plasmonics [3, 6].

In the study of optical properties of materials, it
is more convenient to present Maxwell’s equations in
Fourier space, as the coupling of the electromagnetic
field with elementary excitations of the medium becomes
easier to analyze. This aspect of Maxwell’s equations
is rarely presented in most textbooks, yet it is very
useful because of the direct determination of physical
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properties, as well as general expressions for the disper-
sion relation, it permits. These aspects will be explored
in this work.

The outline of the remainder of this paper is as follows.
In section 2 we make a summary of Maxwell theory in
material media. In section 3 we present the relations that
describing the behavior of matter under the influence of
electromagnetic fields, which are known as constitutive
relations. In section 4 we present Maxwell’s equations
in Fourier domain and the advantages of this formal-
ism. In sections 5 and 6 the properties of elementary
excitations of an electron gas and the vibrations of a
lattice are discussed, together with their interaction with
electromagnetic fields. Finally, in section 7 we present
our conclusions.

2. Maxwell’s Equations in Material
Media

In differential form and in SI units Maxwell’s equations
for the fundamental electromagnetic fields E (electric
field) and B (magnetic induction) in the presence of
matter are, in standard notation:

∇ · E(r, t) = ρtotal(r, t)
ϵ0

(1)

∇ · B(r, t) = 0 (2)

∇ × E(r, t) = −∂B(r, t)
∂t

(3)

∇ × B(r, t) = µ0Jtotal(r, t) + µ0ϵ0
∂E(r, t)

∂t
(4)

where ϵ0 and µ0 are the electric permittivity and mag-
netic permeability of vacuum, respectively, and ρtotal is
the total charge density, namely the sum of the free
charge density and the bound charge density:

ρtotal = ρext(r, t) + ρpol(r, t) (5)

where ρext is an external charge density added from
outside and ρpol is given by

ρpol = −∇ · P(r, t) (6)

where P is polarization vector (electric dipole moment
per unit volume). Jtotal is the total electric current
density given by:

Jtotal(r, t) = Jcond(r, t) + Jbound(r, t) (7)

The bound density current is given by:

Jbound(r, t) = ∂P(r, t)
∂t

+ ∇ × M(r, t) (8)

where M is the magnetization field (magnetic dipole
moment per unit volume) The auxiliary fields D and
H are defined as

D(r, t) = ϵ0E(r, t) + P(r, t) (9)

H(r, t) = 1
µ0

B(r, t) − M(r, t) (10)

Using these two new fields Maxwell’s equations become

∇ · D(r, t) = ρext(r, t) (11)

∇ · B(r, t) = 0 (12)

∇ × E(r, t) = −∂B(r, t)
∂t

(13)

∇ × H(r, t) = Jcond(r, t) + ∂D(r, t)
∂t

(14)

which is the most conventional form to write the equa-
tions in the presence of matter [7], which do not show
an explicit dependence on the density and current of the
bound charges whose contributions are hidden within D
and H.

The most impressive prediction of Maxwell’s equa-
tions are the electromagnetic wave equations, which
can be obtained by applying the curl operator on (13)
and (14) and using the definitions of auxiliary fields (9)
and (10):

∇ × (∇ × E(r, t)) + 1
c2

∂2E(r, t)
∂t2

= −µ0
∂

∂t

[
Jcond(r, t) + ∂P(r, t)

∂t
+ ∇ × M(r, t)

]
(15)

∇ × (∇ × H(r, t)) + 1
c2

∂2H(r, t)
∂t2

= ∇ × Jcond(r, t) + ∇ × ∂P(r, t)
∂t

+ 1
c2

∂2M(r, t)
∂t

(16)

where c = 1/
√

µ0ϵ0 is the speed of light in the free space.
Note that the expression in the brackets of equation (15)
is the total current density given by equation (7).
Equations (15) and (16) represent inhomogeneous wave
equations for the fields E and H, respectively, and the
right hand sides are the wave sources. In practice, these
equations are so complicated that analytical solutions
cannot be obtained. For this reason, there are different
methods to approach the wave equation, depending on
the physical problem under analysis. In reference [8], for
example, the paraxial approximation used in the study of
electromagnetic waves is presented, while in reference [9]
the Fresnel-Kirchhoff scalar theory is used to study the
diffraction pattern in slits in the Fresnel regime.

3. Constitutive Relations

The equations (11–14) are not complete. To find a self-
consistent solution for the electromagnetic field, these
equations must be supplemented by additional relations
between fields E and D and also H and B. These
equations are known as constitutive relations. In the
simplest case of linear, isotropic1, homogeneous and
1 A linear medium is one in which the polarization produced by
an applied electric or magnetic field is proportional to that field.
An isotropic medium is one in which all directions in space are
equivalent
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non-dispersive medium we have

P(r, t) = ϵ0χeE(r, t) (17)

M(r, t) = χmH(r, t) (18)

where χe and χm denote the electric and magnetic sus-
ceptibility, respectively. Using equations (17) and (18)
in (9) and (10) we obtain

D(r, t) = ϵ0ϵE(r, t) (19)

B(r, t) = µ0µH(r, t) (20)

where ϵ = 1 + χe and µ = 1 + χm are the dielectric
constant (or relative permittivity) and the magnetic
permeability, respectively. In the study of the optical
phenomena of solids, the relative permittivity is a most
important parameter.

Another important constitutive relation is found
between the conduction current density Jcond and the
electric field E, defined via the conductivity σ by

Jcond(r, t) = σE(r,t) (21)

In this work we shall be concerned only with non-
magnetic media, hence M is zero. For this situation and
using constitutive relations (19–21), the general wave
equations (15) and (16) are reduced to

∇ × (∇ × E(r, t)) + ϵ

c2
∂2E(r, t)

∂t2 + µ0σ
∂E(r, t)

∂t
= 0
(22)

∇ × (∇ × H(r, t)) + ϵ

c2
∂2H(r, t)

∂t2 + µ0σ
∂H(r, t)

∂t
= 0
(23)

The equations (19), (20) and (21) are only correct
for linear media that do not have temporal or spatial
dispersion.

For nonlinear media we must consider higher power
terms in the constitutive relationship equations. For
anisotropic media ϵ, µ and σ are tensors.

If the quantities ϵ, µ and σ are functions of the
position, the medium is called spatially dispersive, and
temporally dispersive in the case they are functions of
time.

The most general linear response of a medium at
position r and time t to an electric field E(r’,t’) at
position r’ and time t’ is given by [10]

D(r, t) = ϵ0

∫ ∫ ∞

−∞
ϵ(r − r′, t − t′)E(r′, t′)d3r′dt′ (24)

where we assume that the system is translation invariant
in both time and space. In a similar way we have

J(r, t) =
∫ ∫ ∞

−∞
σ(r − r′, t − t′)E(r′, t′)d3r′dt′ (25)

Now we will show that equations (24) and (25)
are enormously simplified if we consider their Fourier

transforms. We will assume that all fields and sources
appearing in Maxwell’s equations can be decomposed
into a complete set of plane waves. Thus, we can write
for the electric field

E(r, t) = 1
(2π)4

∫ ∫ ∞

−∞
E(k, w)exp {i(k · r − ωt)} dωd3k

(26)
where the Fourier transform of E(r,t) is given by

E(k, w) =
∫ ∫ ∞

−∞
E(r, t)exp {−i(k · r − ωt)} dtd3r

(27)
With similar equations for the D field. Substituting

(27) into (24)∫ ∫ ∞

−∞
D(k, ω)exp {i(k · r − ωt)} dωdk

= ϵ0

∫ ∫ ∞

−∞
ϵ(r − r’, t − t′)

·
[∫ ∫ ∞

−∞
E(k, ω)exp {i(kr’ − ωt′)} dωd3k

]
d3r’dt′

(28)

Making the variable change

r − r′ = r′′

t − t′ = t′′

∫ ∫ ∞

−∞
D(k, ω)exp {i(k · r − ωt)} dωdk

= ϵ0

∫ ∫ ∞

−∞
E(k, ω)exp {i(kr − ωt)} dωd3k

X
[∫ ∫ ∞

−∞
ϵ(r′′, t′′)exp {i(kr′′ − ωt′′)} dr′′dt′′

]
(29)

or even∫ ∫ ∞

−∞
D(k, ω)exp {i(k · r − ωt)} dωdk

= ϵ0

∫ ∫ ∞

−∞
ϵ(k, ω)E(k, ω)exp {i(kr − ωt)} dωdk

(30)

Finally we obtain

D(k, ω) = ϵ0ϵ(k, ω)E(k, ω) (31)

which is the constitutive relation in the Fourier domain.
Comparing equations (24) and (31) we see that a
nonlocal relationship in space and time becomes a local
relationship in Fourier space, which is much easier to
work on. In a similar way we obtain for equation (25)

J(k, ω) = σ(k, ω)E(k, ω) (32)

which is a remarkably simple relationship between J and
E compared to equation (25).
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4. Maxwell’s Equations in Fourier
Domain

Likewise, Maxwell’s equations in Fourier space can be
written as (details are given in the Appendix)

ik · D(k, ω) = ρext(k, ω) (33)
k · B(k, ω) = 0 (34)

k × E(k, ω) = ωB(k, ω) (35)
ik × H(k, ω) = −iωD(k, ω) + J(k, ω) (36)

Comparing equations (11–14) with equations (33–36) we
can see a great simplification in Maxwell’s equations
when written in terms of Fourier components. Time
derivatives are replaced by a simple multiplication by
scalar and the operators divergent and curl (spacial
derivatives) become dot product and cross product,
respectively.

It is also useful to obtain the wave equation in
the Fourier domain. Multiplying vectorially the equa-
tion (35) by k we obtain after some calculations

k × (k × E(k, ω)) + ω2

c2 E(k, ω)

= −iµ0ω[J(k, ω) − iωP(k, ω) − ik × M(k, ω)]
(37)

In a similar way we obtain for H

k × (k × H(k, ω)) + ω2

c2 H(k, ω)

= −ik × Jc(k, ω) − ωk × P(k, ω) − ω2

c2 M(k, ω)
(38)

Equations (37) and (38) are equivalent to equations (15)
and (16) written in Fourier space. In the special case of
absence of external charge and free current we have

k · D(k, ω) = 0 (39)
k · B(k, ω) = 0 (40)

k × E(k, ω) = ωB(k, ω) (41)
k × H(k, ω) = −ωD(k, ω) (42)

Multiplying vectorially the equation (41) by k and
considering non-magnetic media

k×(k×E(k, ω)) = ωk×B(k, ω) = µ0ωk×H(k, ω) (43)

Using equation (42) and the constitutive relation (31),
we obtain

k × (k × E(k, ω)) = −ω2

c2 ϵ(k, ω)E(k, ω) (44)

which could be obtained directly from equation (37).
Using the identity

a × (b × c) = b(a · c) − c(a · b)

we obtain

k(k · E(k, ω)) − k2E(k, ω) = −ω2

c2 ϵ(k, ω)E(k, ω) (45)

which is the wave equation in the Fourier domain.
Although equation (45) is very general and difficult to
solve analytically, we can obtain relevant information
about elementary excitations of the medium which are
valid for all materials. Initially we can consider two cases
representing the longitudinal and transverse modes that
can occur in a solid.

Case 1 – Longitudinal oscillations
If k is parallel to E the left side of equation (45) is zero
and ϵ(k, ω) has to vanish for equation (45) to be satisfied.
Thereby, the condition

ϵ(k, ω) = 0 (46)

determines the longitudinal oscilations of the system
which occur at frequencies corresponding to zeros of
ϵ(k, ω).

Case 2 – Transverse oscillations
Using the transverse mode condition (k perpendicular
to E) in equation (45), we get

k2 = ω2

c2 ϵ(k, ω) (47)

Expression (47) is a generic dispersion relation in a
material medium whose behavior depends on the form
of ϵ(k, ω). The knowledge of ϵ(k, ω) allow us to study
the propagation of transverse wave inside the medium.

In the next sections we will apply the formalism
developed here to analyze the properties of an electron
gas and the vibration modes of a crystal lattice.

5. Transverse and Longitudinal
Oscillations in a Free Electron Gas

Over a wide frequency range, the optical properties of
some solids, namely noble metals and doped semicon-
ductors, can be understood based on the free electron
gas model [11]. For metals we consider the valence
electrons of the constituent atoms of the crystal as
conduction electrons free to wander through a lattice of
positive ions which maintain the charge neutrality of the
system. Within this model the interactions of conduction
electrons with themselves and with the ions are ignored.
The motion of electrons is damped via collisions with
unspecified collision centers (e.g, lattice ions, other
electrons, etc.) which occur with a characteristic collision
frequency γ = 1/τ where τ is the relaxation time of the
free electron gas (for metals τ is typically in the order of
10−14s). Band-structure corrections can be incorporated
into an effective mass me which is in general different
from the free-electron mass mo.
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The fundamental physical quantity that describes
the optical and dispersive properties of a system is
the dielectric function. In the long-wavelength limit
(k → 0) the dielectric response ϵ(ω, k) can be sim-
plified to ϵ(ω, k = 0) = ϵ(ω). In this limit, using the
Drude–Sommerfeld model for the free-electron gas, the
dielectric function is given by [6]

ϵDrude(ω) = ϵ(∞)
[

1 −
ω2

p

ω2 + iωγ

]
(48)

where ϵ(∞) is the relative dielectric constant arisen from
the bound charges of the lattice background, γ is the
damping coefficient and ωp given by

ωp =

√
ne2

meϵ0ϵ(∞) (49)

is the bulk plasma frequency of the free electron gas
screened by the dielectric constant ϵ(∞), where n is the
density of charge carriers, me is the electron effective
mass that incorporates the band structure of the mate-
rial and −e is the electronic charge. Typical values for
plasma frequency for metals are on the order of 10 eV.
The significance of plasma frequency will be explored in
Subsection 5.1.

The real and imaginary parts of this complex dielectric
function ϵDrude(ω) = ϵ′(ω) + iϵ′′(ω) are expressed as

ϵ′
Drude(ω) = ϵ(∞)

[
1 −

ω2
p

ω2 + γ2

]
(50)

ϵ′′
Drude(ω) = ϵ(∞)

γω2
p

ω(ω2 + γ2) (51)

Despite its simplicity, the Drude–Sommerfeld model
gives accurate results for the optical properties of metals
in the infrared and visible regimes, although, in the latter
case, it is necessary to take into account the bound
electrons and transitions between electronic bands.

Parameters ϵ(∞), γ and ωp are chosen in order to
reproduce the experimental results. For gold, for exam-
ple, these parameters are: ϵ(∞) = 9.84 , ℏωp = 9 eV and
ℏγ = 0.072 eV [12]. As in the visible range ω is smaller
than ωp the real part of ϵDru becomes negative. As a
result, electromagnetic waves are totally reflected in the
region with ϵ′(ω) < 0.

5.1. Longitudinal oscillations of the free electron
gas. Plasmon excitation

Equation (46) states that the zeros of the dielectric
function determine the frequencies of the longitudinal
electromagnetic modes. We can see from equations (31)
and (46) that for longitudinal ressonance frequency E
is not necessarily null even when D=0. In this case the
electric field E is a pure depolarization field given by
E = −P/ϵ0. This means that no external charges are

needed to generate an electric field when the system
oscillates at the frequency determined by the condition
ϵ(ω) = 0.

In the small damping limit (γ → 0) we can see from
equation (50) that ϵL(ω) = 0 when (assuming ϵ(∞)=1)

ω = ωpl

We thus see the significance of the plasma frequency:
ωpl corresponds to a collective longitudinal mode, in
other words, ωpl is a collective longitudinal oscillation
frequency of the conduction electron gas with respect to
the background of positive ions cores.

The quanta of this charge oscillation are called bulk
plasmons whose energy can be calculated as E = ℏωp

where ℏ is the reduced Planck constant. It is important
to emphasize that due to its longitudinal nature, bulk
plasmons can not be excited by a transverse wave like
an electromagnetic wave.

The method most frequently used for plasmon obser-
vation is Electron Energy Loss Spectroscopy (EELS)
which is a technique based on inelastic scattering of
fast electrons by a sample. Electrons with an energy
of several keV are reflected from or transmitted to an
electron gas, showing an energy loss equal to integer
multiples of the plasmon energy hωp. (See, for example,
Figure 14.8 of [13]).

Plasma oscillations can also exist on interface between
a metallic and a dielectric surface. In the presence of
a planar boundary they are called surface plasmons
(SPs), which corresponds to an oscillattions in the
direction normal to the surface plane and thus acquiring
a transversal character. Thereby, unlike bulk plasmons,
surface plasmons can couple with photons to generate
hybrid excitations called surface plasmon polaritons
(SPPs), which propagate along the interface between
a conductor and a dielectric material, evanescently
confined in the perpendicular direction. The physical
properties of SPPs can be obtained solving Maxwell’s
equations and using the appropriate boundary condi-
tions as shown in detail in reference [14].

The frequency of a surface plasma oscilattion is given
by ωS = ωp/

√
2. Thus, the energy of SPPs is lower than

those of bulk plasmons.

5.2. Transverse electromagnetic waves in a free
electron gas

Let us now obtain the dispersion relation for transverse
electromagnetic waves in a free electron gas. Using (50)
in (47) we obtain for dispersion relation

ω2
± = 1

2

ω2
p + k2c2

ϵ(∞) − γ2

± ω2
p

√(
1 + k2c2

ϵ(∞)ω2
p

− γ2

ω2
p

)2
+ 4γ2k2c2

ϵ(∞)ω4
p

 (52)
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Figure 1: Dispersion relation for transverse electromagnetic
waves in a free electron gas with damping.

The resulting dispersion is shown for a generic material
in Figure 1 for three different values of γ : γ = 0
(red curve), γ = 0.1ωp (green curve) and γ = 0.5ωp

(yellow curve). For γ = 0 we can see that for ω < ωp

the propagation of transverse electromagnetic waves is
forbidden inside the material. On the other hand, for
ω > ωp the electron gas supports transverse waves
propagating with group velocity vg = dω/dK < c.
Thus, we see that ωp also represents the low frequency
cutoff for the transverse electromagnetic waves in a free
electron gas. With damping (γ > 0) we can see that the
cutoff frequency is lower than the plasma frequency, i.e.,
the wave can propagate at a frequency lower than the
plasma frequency.

6. Phonon Contribution to Dielectric
Function

In the previous section we considered only the con-
tribution of free conduction electrons to the dielectric
function. However, there is a large number of physical
properties of solids for which the consideration of lattice
is fundamental.

Let us now consider the contribution of the crystal
lattice to the dielectric function, in particular the con-
tribution of the vibrational modes of crystalline lattices.

For a diatomic linear lattice the resulting dispersion
relation ω(k) presents two branches: the lower part of
the dispersion relation is called the acoustic branch and
the upper part is called optical branch [13]. The acoustic
branch show a linear relationship between frequency and
phonon wave-vector in long wavelength limit. This is the
reason why this branch is called acoustic. The branches
that have a non-zero frequency in the limit k → 0
are called optical branches. When we have two different
atoms in the unit cell, vibrating out of phase, the optical
modes create a time-varying electric dipole moment
which can be excited by electromagnetic radiation (these
vibrations can emit or absorb light); thus these modes
are responsible for most optical behavior of a crystal.

Figure 2: Phonon contribuition to the dieletric function.

The quanta of these normal modes of vibration are
called phonons. Thus, a phonon is a quantum of crystal
vibrational energy. In the acoustic and optical branches
we have longitudinal LA and transverse TA acoustic and
longitudinal LO and transverse TO optical modes.

Initially we must write the expression for the dielectric
function. For a collection of classical charged simple
harmonic oscillators of charge Q, mass M and natural
vibrational frequency ωT the classical expression 2 for
the dielectric function is given by [16]

ϵlattice (ω) = ϵ(∞) + NQ2

ϵ0M(ω2
T − ω2 − iΓω) (53)

where N is the number of oscillators per unit volume,
ϵ(∞) is the high frequency dielectric constant and Γ is a
damping constant. The real and imaginary parts of ϵlatt

can be written as

ϵ′latt(ω) = ϵ(∞)
[

1 +
(
ω2

L − ω2
T

) (
ω2

T − ω2)
(ω2

T − ω2)2 + (Γω)2

]
(54)

ϵ′′latt(ω) = ϵ(∞)
(
ω2

L − ω2
T

)
Γω

(ω2
T − ω2)2 + (Γω)2 (55)

where ωL is given by equation (56). A plot of the real
and imaginary parts of ϵlattice(ω) for Γ/ωT = 0.05,
ωL/ωT = 1.12 and ϵ(∞) = 10 (which are typical values
for semiconductors) is shown in Figure 2. A resonant
behavior is observed for the imaginary part and disper-
sionlike behavior is observed for the real part. Also we
can see that the real part is negative between the TO
and LO phonon frequencies.

6.1. Plasmon-optical phonon coupling

The excitation frequency that corresponds to a lon-
gitudinal mode must obey condition (46). Neglecting

2 A quantum mechanical expression for dielectric function of the
lattice can be found in [15].
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damping, we see from equation (53) that ωL is given
by

ω2
L = ω2

T + NQ2

ϵ0ϵ (∞) M
(56)

Thus, ωL is the frequency that characterizes the longi-
tudinal resonance frequency of the phonon subsystem.
Likewise, the plasma frequency ωP represents the lon-
gitudinal resonance frequency of the free electron gas
subsystem. From equation (56) we can see that ωL (the
longitudinal resonance frequency) is always greater than
ωT (the transverse resonance frequency). Longitudinal
optical phonons and photons cannot couple. However,
LO phonons can couple with plasmon since both are
longitudinal. The expression for the coupled plasmon-
phonon LO modes is obtained considering the contribu-
tion of plasmons and phonons to the dielectric function
of the system. The total dielectric function is given by

ϵtotal(ω) = ϵ(∞) + χDrude + χlatt (57)

Calculating χDrude and χlatt from equations (50)
and (54) we obtain in the limit of zero damping

ϵtotal(ω) = ϵ(∞)
[

1 + ω2
L − ω2

T

ω2
T − ω2 −

ω2
pl

ω2

]
(58)

Thus, if the equation (58) is set equal to zero we obtain
the biquadratic equation

ω2
± = 1

2

[(
ω2

L + ω2
p

)
±

√(
ω2

L + ω2
p

)2 − 4ω2
pω2

T

]
(59)

Figure 3 shows a plot of equation (59) against ωp.
We can see two branches: one upper (ω+) and one
lower (ω−) which are mixtures of longitudinal phonon
and plasmon. For small values of ωp (lower free carrier
concentration n) the lower branch has a plasmon-like
behavior and when ωp increases this branch becomes
phononlike. Conversely, at low ωp the upper branch is
mainly an LO phonon and approaches to plasmon as ωp

increases.

Figure 3: Plasmon-Longitudinal Optical Phonon coupled
modes.

6.2. Phonon polariton. Dispersion relation

As already noted, due to its longitudinal nature, bulk
plasmon cannot interact with electromagnetic waves.
However, electromagnetic waves can couple to transverse
excitations like TO phonons. The resultant transverse
wave is known as a phonon-polariton. In a quantum
mechanical picture phonon-polariton are quasiparticles
resulting from the coupling between photon and trans-
verse optical phonons.

Generally speaking, polaritons can be defined as quasi-
particles that result from the interaction between pho-
tons and another quasiparticle. So we can have different
types of polariton: phonon polariton, exciton polari-
ton and plasmon polariton. Here we will only discuss
phonon-polariton, which are admixtures of electromag-
netic waves and lattice vibrations. The determination
of the dispersion relation of the coupled phonon-photon
transverse wave proceeds in a similar way as in the
plasmon case. We obtain the dispersion relation for the
phonon-polariton using (53) in (47). Neglecting damping
and using equation (56) we get

ω2
± = 1

2

[
ω2

L + c2k2

ϵ(∞) ±

√(
ω2

L + c2k2

ϵ(∞)

)2
− 4ω2

T

c2k2

ϵ(∞)

]
(60)

The dispersion relation given by equation (60) represents
the coupling between photon and transverse optical
phonon.

Figure 4 shows a plot of equation (60) for ωL =
1.097ωT . The dotted lines represent the dispersion
curves in the absence of coupling for phonons and
photons. The curves represented by solid lines show
the dispersion relation for the bulk phonon polariton.
We can see two branches: one upper (ω+) and one
lower (ω−). When k → 0 the upper branch approaches
to the longitudinal resonant frequency ωL and shows
phonon-like behavior while the lower branch approaches
to ω = ck/

√
ϵ(∞) and exhibits a phonon-like behavior.

In the opposite limiting case, k → ∞, the upper branch
approaches to ω = ck/

√
ϵ(∞) while the lower branch

Figure 4: Dispersion relation for the phonon-polariton.
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approaches asymptotically the transverse resonance fre-
quency ωT , represented by the horizontal straight line.
We can also observe that there are no polariton modes in
the range frequency ωT < ω < ωL (called gap polariton);
within this frequency range the wavevector is purely
imaginary and the wave is attenuated.

7. Conclusion

Maxwell’s equations are normally presented in the time
and space domain. However, Maxwell’s equations in
Fourier domain are much more suitable for investigat-
ing the optical properties of materials. In this work
Maxwell’s equations’ Fourier transforms are presented
and their benefits are emphasized. To clarify and show
the scope of this formalism, we presented how elemen-
tary excitations in solids arise.

From equation (45), which is the wave equation in
the Fourier domain, we can obtain the very general
conditions for collective longitudinal oscillations to occur
in the medium, given by equation (46), and the condition
of propagation of transverse waves, given by equation
(47). From these equations and knowing the dielectric
function of the system, it is possible to describe elemen-
tary excitations in solids and the coupling between them
that gives rise to new quasiparticles. In this case, the
dispersion curve has two branches – the upper and the
lower – and exhibit an anticrossing behavior, as seen in
Figures 3 and 4.
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