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Close relation between the integrating factor and the
Green function for first-order differential equations

Íntima relação entre o fator integrante e a função de Green para equações diferenciais de primeira ordem
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For first-order ordinary differential equations, it is shown by a very simple and straightforward approach how
the integral representation of the particular solution with the integrating factor as part of the integrand can be
manipulated in favor of an integral representation in terms of the Green function.
Keywords: Integrating factor, Green function, Linear velocity-dependent friction.

Para equações diferenciais ordinárias de primeira ordem, é mostrado por uma abordagem muito simples e direta
como a representaçã o integral da solução particular com o fator integrante como parte do integrando pode ser
manipulada em favor de uma representação integral em termos da função de Green.
Palavras-chave: Fator integrante, Função de Green, Atrito linearmente dependente da velocidade.

1. Introduction

The Green function method is an elegant math-
ematical technique particularly useful for solving
nonhomogeneous ordinary differential equations, as
well as homogeneous partial differential equations
with nonhomogeneous boundary conditions, and has
many applications in diverse fields of science and
engineering. The Green function method is widely
used in classical mechanics to solve problems related
to waves, oscillations, and scattering (see, e.g. [1–4]),
to solve the wave equation for electromagnetic fields
in different media, such as conductors, dielectrics, and
plasmas (see, e.g. [5, 6]), to solve the heat equation
for temperature distributions in different geometries,
such as spheres, cylinders, and slabs (see, e.g. [7, 8]), to
solve the elasticity equation for stresses and strains in
different materials, such as beams, plates, and shells (see,
e.g. [9, 10]), to solve the Navier-Stokes equation for fluid
flows in different geometries, such as channels, pipes, and
cylinders (see, e.g. [11, 12]), to solve the Poisson equation
for gravitational potentials in different astrophysical
systems, such as galaxies, clusters, and black holes (see,
e.g. [13, 14]), to solve various problems in quantum
mechanics related to scattering, bound states, and time
evolution (see, e.g. [15–17]). The method of Green
functions is a fundamental tool in quantum field theory
and is widely utilized for the calculation of correlation
functions and scattering amplitudes (see, e.g. [18–20]).
Concerning ordinary differential equations, the Green
function itself satisfies a problem that is similar to the
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original equation but the Dirac delta symbol replaces
the nonhomogeneous term. The Green function method,
typically taught in advanced-level courses using second-
order ordinary differential equations, is present in several
textbooks (see, e.g. [21–26]) and didactic papers (see,
e.g. [27–32]). However, Ref. [24] is a notable exception,
as Butkov focuses on the special case of a first-order
differential equation for a particle subjected to a time-
dependent driving force plus a possible linear velocity-
dependent friction to introduce the concept of the Green
function. In this paper, we demonstrate how to obtain
an integral representation of the particular solution in
terms of the Green function, even for first-order ordinary
differential equations with a non-constant coefficient.
Specifically, we show how this integral representation
can be obtained from the more commonly known integral
representation of the particular solution in terms of the
integrating factor. The concept of integrating factor
is commonly taught in the first years of science and
engineering courses and is often covered in introductory
calculus courses. By introducing the Green function at
an earlier stage, students can develop problem-solving
skills that will be useful for tackling more complex
problems in the future.

2. From the integrating factor to the
Green function

Consider the first-order nonhomogeneous ordinary dif-
ferential equation[

d

dx
+ Q (x)

]
y (x) = R (x) (1)
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defined on (a, b), where the interval may be infinity
at either end or both ends. In terms of the so-called
integrating factor

µ (x, x̃) = exp
[∫ x

x̃

Q (ζ) dζ

]
, (2)

that satisfies the equation[
∂

∂x
+ Q (x)

]
1

µ (x, x̃) = 0, (3)

the general solution of (1) can be written as (see,
e.g. [33])

y (x) = 1
µ (x, x̃0)y (x̃0) + 1

µ (x, x̃0)

∫ x

x0

1
µ (x̃0, x̃)R (x̃) dx̃

(4)
where x0 and x̃0 are arbitrary constants. The integral
representation of the particular solution in (4) can also
be written as

yp (x) =
∫ x

x0

1
µ (x, x̃)R (x̃) dx̃ (5)

which can satisfy homogeneous Dirichlet condition at
either end of the interval (a, b) depending on the choice
of x0. Another integral representation of the particular
solution can be found by changing the limits of integra-
tion:

yP (x) =
∫ b

a

G (x, x̃) R (x̃) dx̃, (6)

where G (x, x̃) is the Green function. Using the following
properties of the Dirac delta symbol δ (x) (see, e.g.
[23–26])

δ (x) = 0 for x ̸= 0,∫ +∞
−∞ f (x) δ (x − x0) dx = f(x0),

(7)

for any function f (x) continuous at x0, it can be shown
that G (x, x̃) obeys the following equation[

∂

∂x
+ Q (x)

]
G (x, x̃) = δ (x − x̃) . (8)

Integrating (8) from x̃ − |ε| to x̃ + |ε|, we see that the
Green function has a jump discontinuity at x = x̃ given
by

[G (x̃ + |ε|, x̃) − G (x̃ − |ε|, x̃)] →
|ε|→0

1. (9)

Note that G (x, x̃) and 1/µ (x, x̃) satisfy the same homo-
geneous equation for all x except x = x̃, so that on
each side of the singular point x̃ one of these functions
is proportional to the other. If we set

G≷ (x, x̃) = 1
µ (x, x̃) ×

{
θ (x − x̃) C>

θ (x̃ − x) C<

(10)

where θ (x) is the unit step function (θ (x) = 1 for x > 0,
and θ (x) = 0 for x < 0), and C> and C< are constants
(C> − C< = 1 because of (9)), we can write

G (x, x̃) = 1
µ (x, x̃) [θ (x − x̃) C> + θ (x̃ − x) C<] (11)

and

yP (x) = C>

∫ x

a

1
µ (x, x̃)R (x̃) dx̃

+ C<

∫ b

x

1
µ (x, x̃)R (x̃) dx̃. (12)

From (8), if G (a, x̃) = 0 then the derivatives of all orders
of G< (x, x̃) vanishes. As a consequence, G< (x, x̃) = 0
(C< = 0) so that

yP (x) =
∫ x

a

1
µ (x, x̃)R (x̃) dx̃, yP (a) = 0. (13)

Similarly, the boundary condition G (b, x̃) = 0 makes
G> (x, x̃) = 0 (C> = 0), which gives

yP (x) = −
∫ b

x

1
µ (x, x̃)R (x̃) dx̃, yP (b) = 0. (14)

3. Final remarks

To summarize, we have established a close relationship
between the integrating factor and the Green function.
We have demonstrated a straightforward approach for
obtaining the Green function from the integrating factor
by adjusting the limits of integration for the integral rep-
resentation of the particular solution. This relationship
provides a valuable opportunity for students to learn
about the Green function method in their introductory
calculus courses.
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