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In part 1 of our physics education series, we introduced a novel solution based on Yoon-Lui’s solutions 1 and 2.
Building upon that, this follow-up presents a new solution obtained by combining the generating functions of
Yoon-Lui-1 and Yoon-Lui-3, resulting in a new and simplified general solution. We also calculate the singular
points and determine their coordinates for various parameter values. A graphical representation of the solution
is presented, showing the magnetic field lines and current density distribution. The behavior of the magnetic
field and the effect of varying the parameter are discussed. The observed magnetic islands and singular points
are relevant in the fields of Plasma Physics and Space Physics, providing insights into magnetic structures in
plasmas and their impact on confinement and stability. Furthermore, this study encourages innovation and equips
researchers and students with the necessary tools to make meaningful contributions to the field, emphasizing the
integration of scientific literature into physics education to promote a comprehensive understanding of physical
concepts and their practical applications.
Keywords: Grad-Shafranov equation, Magnetic flux-ropes, Plasma confinement, Singularity analysis.

1. Introduction

The scientific method is crucial to understanding the
physical world around us. As scientists, we observe
recurring phenomena and propose explanations based on
our existing knowledge, testing and refining these expla-
nations through experiments and research. In physics
education, it is essential to teach students how to use
scientific literature to create new ideas and innovations,
fostering a deeper understanding of physical concepts
and their applications. Within this context, part 1 of our
physics education series [1] introduced a novel solution
based on Yoon-Lui’s solutions 1 and 2. In this continu-
ation of our series, we present another new solution to
the specific Grad-Shafranov (GS) equation by combining
two generating functions proposed by Yoon and Lui
(2005), the Yoon-Lui-1 and Yoon-Lui-3 solutions. This
new solution may offer greater plasma confinement
efficiency and specific mathematical methods such as
combining generating functions were used to obtain it.

*Correspondence email address: arian@univap.br

The hypothesis of the new solution will be presented,
and its validity will be evaluated in later sections of this
article. By applying the findings and techniques from
Yoon and Lui’s work, we aim to inspire and empower
the next generation of physicists with the knowledge and
tools needed to make meaningful contributions to the
field.

One illustrative example of how scientific knowledge
can be used to gain insights into complex systems is
the GS equation, a fundamental tool in plasma physics
with a wide range of applications in Space Physics,
such as magnetic reconnection, plasma turbulence, and
flux tubes in planetary magnetospheres, and magnetic
confinement in tokamaks [2–5].

The GS equation has also led to the development
of the Grad-Shafranov reconstruction (GSR) technique,
which is particularly useful for reconstructing magnetic
field topology in regions of plasma and has been applied
to structures of plasma in the geospace, such as current
sheets in the magnetopause and associated structures,
and multiple flux tubes from interplanetary coronal mass
ejections [6–12]. Additionally, the GS equation has been
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used to develop new analytical solutions, which have
been used to model complex plasma dynamics in the
geospace and have helped to further our understanding
of plasma physics [13–21].

This article is organized into six sections. In Section 2,
we discuss in detail the GS equation, whose importance
in plasma physics was previously addressed during the
introduction. In Section 3, we review the analytical solu-
tion proposed by Yoon and Lui in 2005, with an emphasis
on the characteristics of the Yoon-Lui-3 solution. We also
address the solution presented in Part 1 of this article
and its characteristics in Section 3.2.

In Section 4, we describe the methodology used to
obtain the new solution, which combines the features of
the Yoon-Lui-1 and Yoon-Lui-3 solutions. In Section 5,
we present the results obtained and analyze the effec-
tiveness of the new solution. In addition, we discuss the
implications of the results obtained and how the new
solution can contribute to the understanding of plasma
physics. Finally, in Section 6, we conclude the article
by highlighting the main contributions of this work and
the possible directions for future research in this area.
The third part of this research will present another new
solution, which will be described in a separate article.
This solution was also obtained from the solutions of
Yoon and Lui (2005).

2. Specific Grad-Shafranov equation

The GS equation is a significant partial differential
equation in physics [22, 23]. It can be expressed as
follows:

∂2Ay(x, z)
∂x2 + ∂2Ay(x, z)

∂z2 = −µ0
d

dAy
(Pt(Ay(x, z))) .

(1)
Here, Ay represents the y-component of the magnetic

vector potential. On the left-hand side, it is defined
as the Laplacian of the magnetic potential vector (A),
while the right-hand side represents the current density,
which is a function of the first derivative of pressure with
respect to A [8, 24].

It is worth noting that this type of partial differential
equation lacks an analytical solution and is commonly
solved numerically as a Cauchy problem. However,
when considering the current density as an exponential
function of the magnetic potential vector, the equation
acquires an analytical solution and is commonly referred
to as the specific GS equation [7, 25–27].

It is important to validate a proposed numerical
solution by comparing it with an analytical solution [27].
To achieve this, simplifications can be made to the
equation that allow the elimination of non-linearity [28].
In this way, a general analytical solution can be obtained
that meets the initial conditions for implementing the
numerical solution. We explained the step-by-step pro-
cedure to obtain an analytical solution to the equation
in the previous article, which we refer to as Part 1 [1].

The term on the right-hand side of the equation (1)
defines the plasma transverse pressure, which is used to
obtain an analytical solution for specific cases.

The specific form of the GS equation used in the
current work is given by

∂2Ψ(X, Z)
∂X2 + ∂2Ψ(X, Z)

∂Z2 = e−2Ψ(X,Z), (2)

considering new dimensionless variables: x
L = X, z

L = Z,
and Ψ(X, Z) = − Ay

LB0
is the normalized magnetic

vector potential, where B0 is the asymptotic magnetic
field, L represents the scale length [29]. It is worth
noting that (2) is a Poisson-like equation with a non-
homogeneous term that takes an exponential form.
Additionally, the ‘Walker formula’ [30] proposed in 1915
is introduced as follows:

e−2Ψ(X,Z) = 4|g(ζ)′|2

(1 + |g(ζ)|2)2 . (3)

Equation (3) is a general solution to Equation (2)
that depends on a complex analytic function called the
generating function, g(ζ) where ζ is a complex variable.
The Walker formula has been utilized for proposing new
analytical solutions to the GS equation, and further
discussion on this will be provided in the next section.
It is worth noting that the GS equation was derived by
Kan in 1973 from Plasma Kinetic Theory by solving the
set of Vlasov-Maxwell equations. For more details on
the physical-theoretical formulation of the GS equation
using Kinetic Theory, we refer the reader to [25, 28].

3. Review of the analytical solution

This section aims to demonstrate the contribution of
studying scientific literature in acquiring new knowledge
related to the GS equation. To illustrate this point,
reference will be made to Yoon and Lui’s work (2005),
which provides analytical solutions for the GS equation
based on the Walker formula presented in equation (3).
In a previous publication [1], nine solutions presented
by the authors were described. However, for the purpose
of this part 2 article, the focus will exclusively be on
the three solutions proposed by Yoon and Lui. These
solutions will serve as the foundation for the study and
are outlined below:

1. Yoon-Lui-1 solution [31, sections 3.7], which has
the form:

g(ζ) = ζν , (4)

and

Ψ(X, Z) = ln
R(Rν + R−ν)

2ν
. (5)

In this solution, R2 = X2 + Z2, where X and Z
are variables in the Cartesian plane, and ν is a
parameter that can affect the morphology of the
solution.
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2. Yoon-Lui-2 solution [31, section 3.8] is given by

g(ζ) = ζ − a

ζ
, (6)

and

Ψ(X, Z) = ln
(R2 + a)2 + R2 − 4aX2

2[(R2 + a)2 − 4aZ2]1/2 . (7)

3. Yoon-Lui-3 solution [31, section 3.9] is given by

g(ζ) = ζ

(1 − a2ζ2) , (8)

and

Ψ(X, Z) = 1
2 ln(S(S + R2)2

2T
), (9)

where S = (1−a2R2)2+(2aZ)2, T = (1−a4R4)2+
(4a2XZ)2, and a is a parameter that can affect the
morphology of the solution.

We will propose new solutions derived from solutions
refer to as Yoon-Lui-1 and Yoon-Lui-3. It is important
to note that all of these solutions were obtained from
the Walker formula presented in Equation (3). In the
following section, more details about the Yoon-Lui-1 and
Yoon-Lui-3 solutions will be presented, followed by a
discussion of the solution reported by us in the previous
article (Part 1).

3.1. An In-Depth Look at Yoon-Lui-1 and
Yoon-Lui-3 Solutions

The Yoon-Lui-1 solution (5) is an exact analytical
solution of the specific GS equation for a magnetic
island-type configuration. It has a single singularity
when ν ̸= 1 at the point (0, 0) and maximum current
density at the center of the magnetic island. The solution
is expressed in terms of elementary functions and is
useful for validating numerical solutions and analyzing
the stability of magnetic structures. It is recommended
to use ν = 1 when applying the solution to the analysis of
a magnetic flux rope with magnetic island configuration,
as there are no singularities in the solution. In the first
article of this series (Part 1), a graph of the solution in
question was presented and its peculiar characteristics
were discussed. For readers interested in gaining a better
understanding of this solution, it is recommended to read
the first part of the series.

Henceforth, the details of the Yoon-Lui-3 solution,
introduced in Equation (9), will be presented. Moving
forward, an analysis of its singularities will be conducted,
along with the corresponding graph.

Before delving into the analysis of the equation´s
singularities, establishing a mathematical context is
crucial. To accomplish this, the focus will be on solutions
obtained from the Walker formula, and the singularities

of Ψ(X, Z) will be explored. Traditionally, examining the
function Ψ was used to locate the singularities, which
could be complicated. However, [32] introduced a more
straightforward approach using the generating function
g(ζ), which must satisfy the condition

∇ ln |g′(ζ)| = 0. (10)

By rewriting equation (3) and applying the nabla oper-
ator to

Ψ(ζ) = −1
2 ln

(
4 |g′(ζ)|2

(1 + |g(ζ)|2)2

)
, (11)

we obtain

∇Ψ(ζ) = −∇ ln |g′(ζ)| + ∇ ln
(
1 + |g(ζ)|2

)
= −∇ ln |g′(ζ)| + 4 |g(ζ)′|2

(1 + |g(ζ)|2)2 , (12)

which is equal to (3) if ∇ ln |g′(ζ)| = 0. Therefore, to
locate singularities, we must calculate |g′(ζ)| = 0. This
allows us to determine the singular points (X, Z) of
Ψ(X, Z) directly from g′(ζ), as well as from Ψ(X, Z)
itself.

We will begin by taking the derivative of the generat-
ing function given in (8). Consider

g′(ζ) = 1 + a2ζ2

(1 − a2ζ2)2 . (13)

By evaluating the modulus of the function in (13), we
obtain

|g′(ζ)| =
(

1 + a2ζ2

(1 − a2ζ2)2

) 1
2

·
(

1 + a2ζ∗2

(1 − a2ζ∗2)2

) 1
2

= X1.

(14)
Now, let’s calculate ∇ ln |g′(ζ)| = 0 as follows

∇ ln X1

= 1
2∇

[
ln
(

1 + a2ζ2

(1 − a2ζ2)2

)
+ ln

(
1 + a2ζ∗2

(1 − a2ζ∗2)2

)]
= 2 ∂

∂ζ

(
∂

∂ζ∗

[
ln
(

1 + a2ζ2

(1 − a2ζ2)2

)
+ ln

(
1 + a2ζ∗2

(1 − a2ζ∗2)2

)])
= 2 ∂

∂ζ

(
2a2ζ∗[3 − a2ζ∗2]

1 − a4ζ∗4

)
= 4 · 0 = 0. (15)

From (15), we have the first condition satisfied. Now we
will calculate the singularities, substituting ζ = X + iZ
into equation (14), as follows

X1 =
(

1 + a2(X + iZ)2

(1 − a2(X + iZ)2)2

) 1
2

×
(

1 + a2(X − iZ)2

(1 − a2(X − iZ)2)2

) 1
2

= 0. (16)

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0217 Revista Brasileira de Ensino de Física, vol. 45, e20230217, 2023



e20230217-4 Enhancing learning of the Grad-Shafranov equation through scientific literature

In (16), the identity only occurs when (1 − a2(X +
iZ)2)2 = 0 or (1−a2(X −iZ)2)2 = 0. Therefore, for both
cases, we have the following singularities set:

(
0, ± 1

a

)
.

Note that when a = 0.7 we have two singularities
on the Z axis, precisely at the points

(
0, ± 1

|a|

)
, which

in numerical values are (0, ±1.429), as we can see in
Figure 1.

Figure 1 consists of four panels showing the graph
of the equation named in (9), which is the solution of
the Yoon-Lui-3 model as a function of the normalized
magnetic vector potential (Ψ). To construct the graph,
a density plot was used by projecting the magnetic field
onto the XZ cartesian plane, allowing for visualization
of the vector field. The magnetic field is calculated
from Ψ and overlaid on the same graph with the
normalized current density Jy, ranging from 0 to 1,
using a color palette beginning with dark blue, ranging
through shades of blue, cyan, green, yellow and red, and
ending with dark red.

The solution 9 depends on the parameter a, which is
of vital importance because it allows changing the con-
figuration of the magnetic field projection. The solution
exhibits two singular points at

(
0, ± 1

|a|

)
, whose location

is above the Z cartesian axis and depends on the value
of the parameter a, which is always positive.

It is worth noting that, for very high values of a (for
example, a = 18), when analyzing the graph on the scale
shown in Figure 1, the structure of magnetic islands is

lost because both the islands and the singular points
attempt to converge towards the origin. When the value
of a is very small, the singularities move significantly
away from the origin, as observed in panel a) of Figure 1.
At this scale, a magnetic island at the point (0, 0) is
visually noticeable, very similar to the case of the Yoon-
Lui-1 solution when ν = 1. Therefore, it’s worth pointing
out that at a smaller scale, there are differences in the
current density values at the origin of the coordinate
system for both solutions. In the case of the Yoon-Lui-
1 solution when ν = 1, the current density reaches its
maximum value at the point (0,0). In the case of the
Yoon-Lui-3 solution with a = 0.1, the current density
does not reach its maximum at the point (0, 0) but
instead has two maxima symmetrically located close to
the origin, above the X-axis.

A phenomenon that makes the Yoon-Lui-3 solution
very interesting is that by increasing the value of
a, both singular points are brought to the origin,
form an X-point between two magnetic islands. This
phenomenon, known in plasma physics as coalescence
[33, 34], forms a neutral X-type point at the origin.
This configuration obtained in this analytical solution
can be useful for studying certain aspects of plasma
behavior. To further clarify, coalescence is a phenomenon
in which two or more magnetic vortices in a plasma
come closer together and merge into a single structure.
Coalescence is a crucial phenomenon as it can impact
both plasma stability and the efficacy of nuclear fusion.

Figure 1: The density plot of the Yoon-Lui-3 solution, defined by equation (9), displays four panels that illustrate different conditions
with parameters a = 0.1, 0.4, 0.5, and 0.7. Each panel shows the magnetic island and the singularities, allowing for the observation
of changes as a increases from 0.1 (panel a) to 0.7 (panel d). It is worth noting that in panel d), the coalescence of the islands can
be observed, with the formation of the X-point.
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Specifically, in tokamaks, which are devices employed
for plasma confinement in a ring shape, coalescence
may result in a plasma confinement loss and thus a
reduction in fusion efficacy [35]. Moreover, coalescence
is a fundamental phenomenon for comprehending the
evolution of intricate magnetic systems in general, such
as the Earth’s magnetosphere and solar winds [36]. The
investigation of coalescence in plasmas enables us to
gain a better understanding of the magnetic systems’
dynamics.

After all the previous explanations, it is important
to inform the reader that Figure 1 shows the entire
phenomenon described so far. The four panels were
represented on a grid from −3 to 3 on the X-axis and
from −2 to 2 on the Z-axis. In panel a), we have the case
a = 0.1, and the magnetic island appears isolated at the
origin, without the presence of singularities. In panel b),
we have a = 0.4, and both singularities begin to appear
along the edges above the Z-axis, but the magnetic island
continues to appear isolated at the origin, with some
changes in geometry when compared to panel a). In
panel c), a = 0.5 was considered, and the singular points
are much closer to the origin, which disrupts the island,
which still appears isolated but much more elongated in
an elliptical shape above the X-axis. Finally, in panel
d), we have a = 0.7, and it is possible to clearly observe
the division of the islands, i.e., the coalescence, with the
formation of the X-point between them.

3.2. Details of the solution obtained in part 1
article

In [1], a novel solution for GS equation was presented,
obtained through a specific mathematical approach that
involves combining the generating functions of the Yoon-
Lui-1 and Yoon-Lui-2 models

g(ζ) = ζν

ζ2−a
ζ

= ζν+1

ζ2 − a
, (17)

where ν and a are constants. The resulting generating
function is then substituted into the Walker formula to
obtain the final solution, which is given by

Ψ(X, Z) =

ln

 R2(ν+1) + a2 − 2aT 2 + R4

2
√

R2ν
[
[(ν − 1)T 2 − a(ν + 1)]2 + (ν − 1)2U2

]
 .

(18)

Three parameters are introduced, namely

R2 = X2 + Z2, (19)
U2 = 4X2Z2, (20)
T 2 = X2 − Z2. (21)

The proposed solution, shown in Figure 2, exhibits
singularities at specific points in the domain, which

Figure 2: The density plot above shows the proposed solution given by equation (18) from [1]. The figures in each panel were
generated by keeping the value of a fixed at 1 and varied ν in each of the four images: ν = 1.0, ν = 1.2, ν = 1.6, and ν = 2.0,
respectively labeled a) to d). The singular points, which are located at the points (0, 0), (±

√
11, 0),

(
±
√

13
3 , 0
)

, and
(
±

√
3, 0
)

for
each value of ν, are indicated in each image. These points are crucial for analyzing the behavior of the proposed solution in specific
regions of the domain and for understanding the solution’s behavior in different regimes.
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are associated with the physical characteristics of the
solution. These singular points are crucial for analyzing
the solution’s behavior in specific regions of the domain
and understanding its behavior in different regimes.
The solution may contribute to improving plasma con-
finement efficiency in confined plasma regions. As ν
increases, the singular points move closer to the mag-
netic islands, resulting in more effective confinement.
This solution has potential for applications in confined
plasma systems, with potential benefits for plasma con-
finement efficiency.

4. Methodology

This work presents a new solution for the magnetic field
in a confined plasma system, obtained by combining
the Yoon-Lui-1 and Yoon-Lui-3 generating functions
through a mathematical transformation.

The process begins with the development of the math-
ematical derivation until the new generating function
is obtained. Subsequently, the generating function is
substituted into the Walker formula presented in (3),
and algebraic calculations are performed to obtain the
expression for Ψ(X, Z). The proposed solution is ana-
lyzed using the Génot criterion to examine the singular
points.

In summary, density graphs are generated for various
values of the parameter ν to assess the behavior of the
proposed solution. These graphs enable the verification
of the singular points, which play a crucial role in under-
standing the magnetic field and current density behavior
across different regions of the domain. Furthermore, the
potential applications of the proposed solution and its
contribution to enhancing plasma confinement efficiency
are discussed.

Ultimately, we observe that the methodology pre-
sented in this work combines mathematical analysis
with physical interpretation to derive and analyze a
novel solution for the magnetic field in a confined
plasma system. The integrated approach of this study
contributes to advancing our understanding of plasma
physics and holds promise for practical applications in
plasma confinement.

5. Results and Discussion

The solution obtained combines the generating functions
of Yoon-Lui-1 and Yoon-Lui-3 by means of their quo-
tient. The calculations lead to the following generating
function

g(ζ) = ζν

ζ
1−a2ζ2

= ζν−1 − a2ζν+1, (22)

where ν and a are constants.

By substituting ζ = X +iZ and calculating the square
of the modulus of g(ζ), we obtain

|g(ζ)|2 = (X2 + Z2)ν−1

×
[
a4 (X2 + Z2)2 − 2a2 (X2 − Z2)+ 1

]
.

(23)

Adding 1 to both sides of the previous equation, we have

1 + |g(ζ)|2 = 1 + (X2 + Z2)ν−1

×
(

a4 (X2 + Z2)2 − 2a2 (X2 − Z2)+ 1
)

.

(24)

Continuing with the reasoning, the first derivative of
the generating function is

g′(ζ) = ζν−2 [(ν − 1) − a2(ν + 1)ζ2] , (25)

and its modulus is

|g′(ζ)| =
√

(X2 + Z2)ν−2

×

√[
((ν − 1) − a2(ν + 1)(X − iZ)2)

×

√
((ν − 1) − a2(ν + 1)(X + iZ)2)

]
. (26)

After some algebraic manipulations, we can eliminate
the imaginary unit from the module of the derivative of
the generating function

|g′(ζ)| =
√

(X2 + Z2)ν−2×√[
((ν − 1) − a2(ν + 1)(X2 − Z2))2 +4a4(ν + 1)2X2Z2

]
.

(27)

Finally, by substituting (24) and (27) in Walker ’s for-
mula (3), and using the three parameters presented in
(19), (20) and (21), the equation is simplified and the
resulting expression is

Ψ(X, Z) = ln

1 + R2(ν−1)
(

a4R4 − 2a2T 2 + 1
)

2
√

R2(ν−2) ×
×

1√[(
(ν − 1) − a2(ν + 1)T 2

)2
+ 4a4(ν + 1)2U2

]
 .

(28)

From this point on, we will proceed to calculate
the singular points of the solution (28). We begin by
obtaining the derivative of the generating function,
g(ζ) = ζν−1 − a2ζν+1, as

g′(ζ) = (ν − 1)ζν−2 − a2(ν + 1)ζν , (29)
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from which we calculate the modulus

|g′(ζ)| =
√

[(ν − 1)ζν−2 − a2(ν + 1)ζν ]

×
√

[(ν − 1)ζ∗ν−2 − a2(ν + 1)ζ∗ν ]. (30)

Expanding the equation ∇ ln |g′(ζ)| = 0, we have

∇ ln |g′(ζ)|

= 4 ∂

∂ζ

(
∂

∂ζ∗ ln ((ν − 1)ζν−2 − a2(ν + 1)ζν) 1
2

× ln ((ν − 1)ζ∗ν−2 − a2(ν + 1)ζ∗ν) 1
2

)
.

Continuing with the development, we have

∇ ln |g′(ζ)|

= 4 ∂

∂ζ

(
(ν − 1)(ν − 2) − a2νζ∗2(ν + 1)

2ζ∗(ν − a2ζ∗2(ν + 1) − 1)

)
,

= 4 · 0,

= 0. (31)

By (31), we have the first condition satisfied. Now we
will look for the singularities. Substituting (30), we get√

[(ν − 1)ζν−2 − a2(ν + 1)ζν ]

×
√

[(ν − 1)ζ∗ν−2 − a2(ν + 1)ζ∗ν ] = 0. (32)

After some algebraic manipulations, equation (32) will
be valid if, and only if

[(ν − 1)(X + iZ)ν−2 − a2(ν + 1)(X + iZ)ν ]
× [(ν − 1)(X − iZ)ν−2 − a2(ν + 1)(X − iZ)ν ] = 0.

(33)

Therefore, (ν−1)(X +iZ)ν−2−a2(ν+1)(X +iZ)ν = 0
or (ν−1)(X−iZ)ν−2−a2(ν+1)(X−iZ)ν = 0, notice that
there is a variable in the exponent. Thus, to understand,
we can look at some cases. For example, if a = 1 and
ν = 1, we would have

−2(X + iZ)1 = 0, (34)

whose only solution would be (0, 0).
Now, for any ν ̸= −1 and a ̸= 0, we would have the

following solution for the singularities

ζ = ζ∗ = ±

√
ν − 1

a2(ν + 1) , (35)

that is, the singular points are:
(

±
√

ν−1
a2(ν+1) , 0

)
.

Now, fixing a = 1 and varying the value of ν, we have
the following singular points

• ν = 1; ζ = (0, 0);
• ν = 1.6; ζ = (±0.48, 0);

• ν = 1.8; ζ = (±0.53, 0);
• ν = 2; ζ = (±0.58, 0);
• ν = 3; ζ = (±0.71, 0);
• ν = 4; ζ = (±0.77, 0).

Figure 3 comprises six panels displaying the graph
of the equation named in (28), which is the solution
we propose in this manuscript as a function of the
normalized magnetic vector potential (Ψ). To construct
the graph, a density plot was used, projecting the
magnetic field onto the XZ Cartesian plane, allowing the
visualization of the vector field. The magnetic field is
calculated from Ψ and overlaid on the same graph with
the normalized current density Jy, ranging from 0 to 1,
using a color palette. We fixed the value of a = 1 and
varied the parameter ν with the follows values: 1.0, 1.6,
1.8, 2.0, 3.0, and 4.0, representing the graphs in panels
a) to f), respectively. The six panels are represented on
a grid from −2 to 2 on the X-axis and from −1 to 1 on
the Z-axis. The singularity points are located at: (0, 0),
(±0.48, 0), (±0.53, 0), (±0.58, 0), (±0.71, 0), (±0.77, 0),
in panels a) to f), respectively.

The six panels in this figure illustrate the behavior
of the magnetic field generated by the electrical current
distribution described by the solution presented in (28).
The panels reveal how the magnetic field lines curve
and change direction in response to the current dis-
tribution, and also depict regions of varying magnetic
field intensities. The panels also display the locations
of singularities in the solution, where the magnetic field
becomes infinite, and the effect of varying the parameter
ν on the shape of the magnetic field.

Taking a closer look at the panels in Figure 3,
interesting details can be observed. In panel a), there
is a single singular point at the origin, easily detectable
in the figure due to the counterclockwise orientation of
the magnetic field. The two magnetic islands are well-
defined and symmetrically positioned above the X-axis.
Additionally, neutral X-points appear above the Z-axis
at the interface between the external field surrounding
the structures, the field encircling each island, and the
field enveloping the singular point, respectively. This
structure is similar to the one presented in the solution
by [37], with the difference that the structures are
non-periodic. This behavior also resembles Figure 2a,
corresponding to the solution proposed in our initial
article, where we stated that this stable configuration
could be advantageous for confining plasma within the
magnetic islands.

In panel b), the field morphology undergoes an abrupt
change. Maintaining a = 1 but with ν = 1.6, two equally
spaced singular points appear above the X-axis while
the singular point at the origin remains. Observing this
process as a dynamic continuity from panel a), it is as
if there were a coalescence of the singular point, and
the islands are displaced further away from the Z-axis,
equidistant from each other. In this initial stage of the
process, no current density accumulation is observed in
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Figure 3: This figure displays the six panels of the normalized magnetic vector potential (Ψ) solution proposed in this manuscript,
named in (28). Each panel corresponds to a different value of the parameter ν was varied with fixed a = 1 values of 1.0, 1.6,
1.8, 2.0, 3.0, and 4.0 in panels a) to f), respectively. The singularity points are located at the points (0, 0), (±0.48, 0), (±0.53, 0),
(±0.58, 0), (±0.71, 0), (±0.77, 0), in panels a) to f), respectively. The X-axis ranges from −2 to 2, and the Z-axis ranges from −1
to 1. See details in the text.

any region of the graph; there is a uniform distribution
of currents throughout the visualization region.

In panel c), with a higher value of ν, specifically
ν = 1.8, the singular points appear further away from
the Z-axis, and as a result, the presence of four coexisting
magnetic islands becomes evident. This is the first
solution in the scientific literature to demonstrate this
magnetic morphology. The remaining panels show that
as ν increases, the singular points move apart, leading
to an increasing confinement of the four islands due to
the presence of the external field. In the final panel, the
surrounding islands take on a ring-like shape. However,
at the center, there is a singularity with an increasingly
structured magnetic field around it, resembling the
Yoon-Lui 1 solution in the case where ν ̸= 1. As ν
continues to increase, the ring becomes more structured,
i.e., more confined.

The solution presented in the panels of Figure 3 is rele-
vant to Plasma Physics and Space Physics. The observed

magnetic islands and singular points in these configura-
tions provide valuable insights into the understanding of
magnetic structures in plasmas. These structures play a
crucial role in the confinement and stability of plasmas
in various contexts, such as controlled nuclear fusion
and interactions of solar wind plasma with the Earth’s
magnetosphere.

In Plasma Physics, the presence of magnetic islands
and singular points can impact the dynamics and sta-
bility of confined plasma, influencing the design and
operation of magnetic fusion devices.

In Space Physics, magnetic islands and singular points
are relevant to the study of the magnetosphere and solar
wind. These structures play a fundamental role in the
acceleration of charged particles and energy transport
in magnetized regions of space.

Therefore, the solution presented in the panels of
Figure 3 contributes to the understanding of these
plasma phenomena in different scientific contexts and
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can be explored in the development of theoretical models
and interpretation of experimental observations, driving
advancements in Plasma Physics and Space Physics.

In the continuation of this series, in part 3, we
will delve further into the study and understanding
of the Grad-Shafranov equation. This next stage will
focus on exploring the synergy between the Yoon-Lui-
2 and Yoon-Lui-3 generator functions [31, Sections 8
and 9]. It presents an exceptional opportunity to gain
valuable insights into the behavior of plasma in magnetic
confinement systems and geospatial environments. Do
not miss out on this chance to expand your knowledge.
Keep reading and immerse yourself in all that part 3 has
to offer!

6. Conclusion

In conclusion, this study presents a significant break-
through by introducing a novel solution for the magnetic
field in confined plasma systems. By combining the
generating functions of the Yoon-Lui-1 and Yoon-Lui-
3 models, fresh insights into magnetic structures in
plasmas are provided. The derived solution is analyzed
using density graphs across various parameter values,
revealing singular points that play a crucial role in
understanding the solution’s behavior. This solution
holds great potential for improving plasma confinement
efficiency and has applications in Plasma Physics and
Space Physics.

Furthermore, this article highlights the importance of
understanding magnetic structures in plasmas and their
impact on confinement and stability in various contexts.
The new solution contributes to theoretical models and
the interpretation of experimental observations. It offers
valuable knowledge for controlled nuclear fusion and
the interaction of solar wind plasma with the Earth’s
magnetosphere.

Moreover, this article demonstrates the integration of
scientific literature into physics education, promoting a
deeper understanding of the Grad-Shafranov equation
and complex plasma phenomena. By combining existing
knowledge and employing mathematical analysis, stu-
dents are empowered to become innovative thinkers and
problem solvers in the field of plasma physics and space
physics.

By showcasing the power of combining knowledge and
emphasizing the integration of scientific literature, this
study equips future physicists with the necessary tools
and skills for advancements in understanding magnetic
structures and plasma confinement. It fosters a com-
prehensive understanding of physical concepts, driving
advancements and innovations in plasma physics and
contributing to a deeper understanding of the universe.
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