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Commonly, in Ordinary Differential Equations courses, equations with impulses or discontinuous forcing
functions are studied. In this context, the Laplace Transform of the Dirac delta function and unit step function
is taught, which are used as forcing functions in theoretical equations. However, application in real situations
is also an important part of the learning process. In this sense, most books are flawed regarding the practical
applications of this type of equation. Therefore, the purpose of this work is to study the solution of differential
equations under the action of discontinuous forcing functions or impulses, contextualized in Physics or Engineering
problems, using Laplace transforms. For this, this article analyzes some physical systems that are not so explored
in the literature, such as the galvanometer, a circuit used inside an ammeter or voltmeter to measure current
or voltage. In addition, we also studied an R-L-C circuit (Resistor, Inductor and Capacitor), using the Laplace
Transform to find the capacitor voltage, demonstrating an extremely useful way for solving electrical circuits in
series or in parallel.
Keywords: Differential equations, Laplace transforms, Mathematical modeling.

1. Introduction

Differential equations can describe the way certain quan-
tities vary with time, for example, mass-spring systems,
electrical circuits in series, oscillations of vibrating mem-
branes, or heat flows through isolated conductors [1].
In general, these equations are linked to initial conditions
that present the initial state of such systems. According
to [2], differential equations of the type

m
d2x

dt2 + β
dx

dt
+ kx = f(t) (1)

or

L
d2q

dt2 + R
dq

dt
+ 1

C
q = E(t) (2)

are examples of models of systems that have “forcing
functions” that can represent either an external force
f(t) or an impressed voltage E(t). It is very common for
these forcing functions to be discontinuous and, thus,
the more traditional methods for solving this type of
equation can become very laborious. For example, the
voltage applied to a circuit can be piecewise continuous
and periodic, and behave like the “step” or “sawtooth”
functions, as exemplified in Figure 1.

It is also common for differential equations to be under
the influence of forcing functions with some kind of
“impulse”, as exemplified in Figure 2.
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In cases where the equations are under the action
of discontinuous or impulse forcing functions (as in
Equations (1) and (2)), solving the differential equation
can be laborious.

The Laplace transform provides important help in
solving problems of this type. The name is due to the
mathematician Pierre-Simon Laplace (1749–1827) who
studied celestial mechanics and probability theory.

The first to study integral transforms as tools for solv-
ing differential equations was Euler (1707–1783) [5]. The
results obtained by Euler were incorporated by Laplace
in an article called Théorie Analytique des Probabilités at
the beginning of the 19th-century [4]. According to [1], it
was Spitzer (1737–1880) who associated Laplace’s name
with the transform

Y (s) =
∫ b

a

esty(t)dt (3)

which was elaborated by Euler, but used extensively by
Laplace.

Also, according to [1], in 1910, Bateman (1882–1946)
applied the following transform

Y (s) =
∫ +∞

0
e−sty(t)dt (4)

later named Laplace transform by Berntein (1880–1968),
in Rutherford’s radioactive decay equation (1871–1937)

dy

dt
= −λy (5)
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Figure 1: Examples of discontinuous forcing functions. Source:
Zill [3].

Figure 2: Example of forcing function with impulse. The dashed
line shows how the function would continue if the impulse had
not been applied. Source: Zill [3].

Such a transform began to be discussed in order to
precisely justify some operational rules, which were used
by Heaviside (1850–1925) at the end of the 19th century,
with the aim of solving the equations of Maxwell’s
Electromagnetic Theory (1831–1879) [4]. With that, he
contributed strongly to Maxwell’s Electromagnetic The-
ory by reducing the 38 equations into only 4 fundamental
equations of such theory [4].

At the beginning of the 20th century, after many
attempts, this method of solving equations was success-
ful after much work and dedication by mathematicians
such as Bromwich (1875–1929), Carson (1886–1940) and
Van der Pol (1889–1959) [6].

The Laplace transform is an integral transform with
kernel K(s, t) = e−st and constitutes a fundamental tool
to solve initial value problems in differential equations.
For this reason, it is widely used as a tool in studies
of electrical circuits, systems and signals, control and
automation, probability and statistics, bioengineering,
mechanical engineering, and other areas [5].

Often, in Calculus or Differential Equations courses
at universities, the tools are studied but without an

appropriate context. Functions such as the unit step or
the Dirac delta appear in initial value problems, students
learn how to compute their transforms, but there is
not a glimmer of application. Thus, the purpose of this
work is to study the solution of differential equations
under the action of discontinuous forcing functions or
impulses, contextualized in typical problems of Physics
or Engineering, using Laplace transforms.

2. Mathematical Background

2.1. Laplace transform

Let f : [0, +∞[⊂ R −→ C be a function and s be a real
or complex parameter. We define the Laplace transform
of f as

F (s) = L(f(t)) =
∫ +∞

0
e−stf(t) dt (6)

when the improper integral converges.
In [7], you can find a demonstration that if f has

exponential order1 γ piecewise continuous on [0, x] for all
x > 0. Then the integral of Equation (6) is convergent,
if Re(s) > γ.

We define L as the set of all functions of type f :
[0, +∞[⊂ R −→ C such that the Laplace transform
exists for some value of s. A function f : [0, +∞[⊂ R −→
C is said to be admissible if it is piecewise continuous
at [0, x] for all x > 0 and have exponential order γ.
Admissible functions obviously belong to L. However,
there are functions in L that do not satisfy one or both
of the conditions for being admissible. For example,
f(t) = 2t et2 cos (et2), has a Laplace transform, that is,
it belongs to L, however, is not of exponential order γ
for any γ > 0.

A relevant observation is that the Laplace transform is
linear, that is, given f1 ∈ L for Re(s) > α and f2 ∈ L for
Re(s) > β, then c1f1 + c2f2 ∈ L to Re(s) > max {α, β},
and

L(c1f1 + c2f2) = c1L(f1) + c2L(f2) (7)

for arbitrary constants c1 and c2.
In addition, the following theorems hold, whose proofs

can, for example, be found in [1]:

Theorem 1 Let f be a differentiable function of expo-
nential order γ, with f ′ piecewise continuous on [0, x]
for all x > 0. Then,

L(f ′(t)) = sL(f(t)) − f(0) (8)

for Re(s) > γ.

1 It is understood that a function f has exponential order γ if
there are constants M > 0 and γ > 0 such that for some t0 ≥ 0,
|f(t)| ≤ Meγt, ∀ t ≥ t0.

Revista Brasileira de Ensino de Física, vol. 45, e20230235, 2023 DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0235



Gonçalves e Caritá e20230235-3

Theorem 2 Let f and f ′ be differentiable functions of
exponential order γ, with f ′′ piecewise continuous on
[0, x], for all x > 0. Then,

L(f ′′(t)) = s2L(f(t)) − sf(0) − f ′(0) (9)

for Re(s) > γ.

More general:
Theorem 3 Suppose that f, f ′, . . . , f (n−1) are differen-
tiable in [0, +∞[ and of exponential order γ with f (n)

continuous piecewise on [0, x] for all x > 0. Then,

L(f (n)(t))
= snL(f(t)) − sn−1f(0) − sn−2f ′(0) − · · · − f (n−1)(0).

(10)

We will think about the inverse process of the trans-
form, knowing a function F (s) we will find f(t), if
possible. If F (s) = L(f(t)), then we define f(t) =
L−1(F (s)). Such a definition makes sense if we can
guarantee uniqueness, since different functions can have
the same Laplace transform. Lerch’s theorem guarantees
the conditions we need.

Theorem 4 (Lerch’s Theorem) Let f, g : [0, +∞[⊂
R −→ C be continuous functions with L(f(t)) = F (s)
and L(g(t)) = G(s) such that F (s) = G(s), Re(s) > α.
Then f(t) = g(t).

A very detailed proof of this theorem can be seen in [8].
The inverse transform is also linear.

One of the practical features of the Laplace transform
is that it can be applied to discontinuous functions f . In
these instances, it must be borne in mind that when the
inverse transform is invoked, there are other functions
with the same L−1(F (s)) [1]. However, this does not
occur if the points where the original functions differ
are finite, even if they are discontinuous. In other words,
functions which differ by a finite number of points on
[0, +∞[ have the same Laplace transform.

The Laplace transform is a very important tool to
solve Initial Value Problems (IVP) in a very simplified
way. The method basically works by transforming a
complicated differential equation in the variable t into
an algebraic equation, simpler to deal with, in the com-
plex variable s. For example, considering the notations
F (s) = L(f(t)) and Y (s) = L(y(t)) for the Laplace
transforms of the functions f and y on the t variable,
the Initial Value Problem

y′′ + 4y′ + 5y = f(t) (11)

with y(0) = 0 and y′(0) = 0, applying the transform in
Equation (11) and using linearity, it is taken into

Y (s) = F (s)
s2 + 4s + 5 . (12)

Obtaining the IVP solution y(t) explicitly is possible
by applying the inverse transform concept and using
linearity once more, since y(t) = L−1(Y (s)).

2.2. Solving IVPs with Laplace transforms

We have seen that L
(
y(n)(t)

)
, when it exists, depends

on y(t) and all of its derivatives of order less than n at
t = 0. In this way, the Laplace Transform is suitable for
initial value problems with constant coefficients, being
able to transform y(t) into a simple algebraic function
Y (s). So let us consider an initial value problem

an
dny(t)

dtn
+ an−1

dn−1y(t)
dtn−1 + · · ·

+ a1
dy(t)

dt
+ a0y(t) = g(t) (13)

y(0) = y0 y′(0) = y′
0, . . . , y(n−1)(0) = y

(n−1)
0

where a1, . . . , an and y0, y′
0, . . . , y

(n−1)
0 are constants, as

well as g, y, y′, . . . , y(n) ∈ L. The function g is called a
forcing function and the solution y = y(t) is called the
answer. By the linearity of the Laplace transform, we get

anL
(

dny(t)
dtn

)
+ an−1L

(
dn−1y(t)

dtn−1

)
+ · · ·

+ a0L (y(t)) = L (g(t)) . (14)

By Theorem 3 we find

an

[
snY (s) − sn−1y(0) − · · · − y(n−1)(0)

]
+ an−1

[
sn−1Y (s)sn−2y(0) − · · · − y(n−2)(0)

]
+ · · · + a0Y (s) = G(s),

(15)

where G(s) = L(g(t)) and Y (s) = L(y(t)).
That is,[

ansn + an−1sn−1 + · · · + a0
]

Y (s)

= an

[
sn−1y0 + · · · + y

(n−1)
0

]
+ an−1

[
sn−2y0 + · · · + y

(n−2)
0

]
+ · · · + G(s).

(16)

Thus, isolating Y (s), we obtain y(t) as follows

y(t) = L−1 (Y (s)) . (17)

The scheme presented in Figure 3 shows us the step
by step to solve a IVP as explained.

Figure 3: Procedure for solving IVPs with Laplace transform.
Source: The authors.
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2.3. Discontinuous forcing functions
and impulses

In modeling some Physics situations, such as electrical
circuits or mechanical vibrations, it is common to use
non-homogeneous ODEs with constant coefficients. The
non-homogeneous term is called forcing (or external
force) and is commonly a piecewise continuous function
with discontinuous jumps (therefore discontinuous). We
can use the unit step function to represent discontinuous
jumps without the need to specify the function piece
by piece. Also very common are forcing functions with
impulses, and for that we can use the unit impulse
function.

We will present the step and unit impulse functions
as forcing and the calculation of their transforms.

2.3.1. Unit step function

In this section we will develop a concept that is widely
used, mainly in electrical physics, called the unit step
function.

Consider a ∈ R. We define ua the unit step function
of index a, as

ua(t) =
{

0, 0 ≤ t < a
1, t ≥ a

. (18)

Another notation, also quite useful, is ua(t) = u(t−a).
If a = 0, we can denote u0(t) = u(t).

After defining the unit step function we can calculate
its transform

L (ua(t)) =
∫ +∞

0
e−stua(t) dt

=
∫ a

0
e−st0 dt +

∫ +∞

a

e−st dt

=
∫ +∞

a

e−st dt

= −e−st

s

∣∣∣+∞

a

= e−as

s

(19)

since Re(s) > 0.
In this way, we can also write

L−1
(

e−sa

s

)
= ua(t). (20)

Consider a, b ∈ R with 0 ≤ a < b. We define uab, the
Step Function of index ab, as

uab(t) = 1
b − a

(ua(t) − ub(t)) =


0, t < a

1
b − a

, a ≤ t < b

0, t ≥ b

.

(21)

Figure 4: Unit step function examples. Source: The authors.

Then

L(uab(t)) =
∫ +∞

0
e−stuab(t) dt

=
∫ a

0
e−st0 dt +

∫ b

a

e−st

b − a
dt +

∫ +∞

b

e−st0 dt

=
∫ b

a

e−st

b − a
dt

= − e−st

s(b − a)

∣∣∣b
a

= e−as − e−bs

s(b − a) .

(22)

In this way, we can also write

L−1
(

e−as − e−bs

s(b − a)

)
= uab(t). (23)

The step functions, graphed in Figure 4, are used to
denote in a more simplified way some functions that have
discontinuous jumps, as we will see later. Such functions
can also represent an “on/off” duality; ua, for example,
serves as a tool to describe a function turned on from a
value a ∈ R and turned off before that (or vise versa).

2.3.2. Unit impulse function

The function

δa(t − t0) =


0, 0 ≤ t < t0 − a

1
2a

, t0 − a ≤ t < t0 + a

0, t ≥ t0 + a

(24)

is called a unit impulse, with a > 0 and t0 > 0. Generally
used to mathematically model external forces of large
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Figure 5: Impulse Functions examples. Source: The authors.

amplitudes and in short periods, mainly in mechanical
and electrical systems subject to external force actions.
For small values of a, δa(t − t0) is a practically constant
function of great intensity acting for a small time interval
close to the instant t0. Figure 5 illustrates the behavior
of δa(t − 2) as a → 0.

Such a function can be used to apply an impulse to a
system. For example, a vibrating airplane wing could be
struck by lightning, a mass on a spring could be given a
sharp blow by a ball peen hammer, and a ball (baseball,
golf ball, tennis ball) could be sent soaring when struck
violently by some kind of club (baseball bat, golf club,
tennis racket) [2].

The name unit impulse comes from the following
property∫ +∞

0
δa(t − t0) dt

=
∫ t0−a

0
0 dt +

∫ t0+a

t0−a

1
2a

dt +
∫ +∞

t0+a

0 dt

= 1
2a

t
∣∣∣t0+a

t0−a

= 1
2a

(t0 + a − t0 + a)

= 2a

2a
= 1. (25)

Let us now introduce the Dirac delta function. Sup-
pose that f is a continuous function on t = t0. The unit
impulse δ(t − t0) such as∫ +∞

−∞
δ(t − t0)f(t) dt = f(t0) (26)

is called the Dirac delta function2.
In order to achieve Equation (26), we define F (t) =∫ t

a

f(x) dx and compute

∫ +∞

−∞
δ(t − t0)f(t) dt = lim

a→0

∫ +∞

−∞
δa(t − t0)f(t) dt

= 1
2a

∫ a

−a

f(t) dt

= F (a) − F (−a)
2a

= F ′(0)

= f(t0). (27)

Equation (26) is known as filter property. Using this
property, although δ(t − t0) is not a proper function, we
are still able to obtain its Laplace transform, resulting in

L(δ(t − t0)) = e−st0 , (28)

for t0 > 0.
Also, if t0 = 0, we consider

L(δ(t)) = lim
t0→0+

L(δ(t − t0)) = 1. (29)

3. Applications

After the previous theoretical foundation, this section
presents some applications using the Laplace transform
as a mathematical tool for solving ordinary differential
equations that govern physical phenomena such as mass-
spring systems and electric circuits.

3.1. Discussing Newton’s 2nd law

Newton’s Second Law is a foundational principle of clas-
sical dynamics, providing a framework for understanding
various phenomena in classical mechanics. It is often
associated with Newton’s First Law, especially in cases
where the net force acting on a particle is zero. In such
instances, a particle remains either in uniform motion
along a straight line or at rest, as there is no acceleration
(a = 0).

2 Actually δ(t−t0) is not a function in the usual sense of the word.
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In some contexts, the Second Law is oversimplified by
being reduced to a mere definition of force. However, this
reduction undermines its physical depth because forces
acting on a particle are determined by its interactions
with other particles in a given inertial reference frame.
Consequently, the force F, which represents the resultant
of these interactions, dictates the state of the particle.

In classical mechanics, the Second Law enables the
definition of inertial mass m. In this realm of physics,
mass is typically considered a constant, maintaining its
fixed nature as an inherent property of the particle.
Special relativity, on the other hand, introduces mass
variation with velocity, thereby extending the applica-
bility of the Second Law beyond classical mechanics
and into the domain of relativistic mechanics, which
encompasses particles moving at significant fractions of
the speed of light in a vacuum.

The equation

F = ma (30)

does not characterize the original formulation of Newton
himself in relation to the 2nd Law. Newton began his
study by defining it from the momentum or linear
momentum that says:

“The momentum is measured directly by velocity and
its mass”. That is, the linear momentum of a given
particle is the product of its mass and velocity

p = mv. (31)

By differentiating the Equation (31) with respect to t
and assuming that the mass m does not vary with time,
we obtain

dp
dt

= m
dv
dt

= ma. (32)

Using Equation (30) we arrive at the following expres-
sion

dp
dt

= F (33)

which evidences the formulation given by Newton about
the 2nd Law:

“The change in momentum is proportional to the force
impressed, and has the direction of the force.”

That is, force is the time rate of variation of momen-
tum.

Based on this definition, an application using New-
ton’s 2nd Law and the Laplace Transform can be
discussed for its mathematical resolution.

3.1.1. Impulsive force

According to [9] (Chapter 15 – page 739), an impulsive
force acting on a particle of mass m, by Newton’s 2nd
Law, is

m
d2x

dt2 = F (t) (34)

where x(t) is the position of the particle, F = Pδ(t) and
P is a constant. Applying the Laplace transform on both
sides of the Equation (34), we get

mL(x′′) = PL(δ(t)) (35)

ms2X(s) − msx(0) − mx′(0) = P. (36)

Given the initial conditions for position x(0) = 0 and
velocity x′(0) = 0, we have

ms2X(s) = P. (37)

Then,

X(s) = P

ms2 . (38)

Applying the inverse Laplace transform,

L−1(X(s)) = P

m
L−1

(
1
s2

)
x(t) = P

m
t.

(39)

Differentiating the Equation (39) with respect to t, we
get

dx(t)
dt

= P

m
. (40)

3.1.2. Ballistic galvanometer

According to [10] (Chapter 5 – page 287), a ballistic
galvanometer is employed for the measurement of elec-
tric current, primarily in ammeters and voltmeters. It
consists of a coil connected to its terminals. Conse-
quently, any change in flux within the coil induces an
electromotive force (e.m.f.) denoted as ε. As a result,
the electric current i is directly proportional to the e.m.f.
registered by the galvanometer.

This particular type of galvanometer is often referred
to as a D’Arsonval galvanometer3. The current passing
through the ballistic galvanometer is transient, char-
acterized by impulsive behavior, and exists only in
response to variations in the magnetic flux associated
with the coil. Consequently, the galvanometer records
transient current pulses as they pass through it. The
measurement process yields non-constant deflection, and
the galvanometer’s scale is calibrated such that it allows
for the measurement of both the current and the corre-
sponding flux changes generated by these pulses.

The angular deflection of the galvanometer (mobile
system) is directly proportional to the electric current
but only when the magnetic flux produced by the current
reaches its maximum value. This condition necessitates a
mobile system with a high moment of inertia I, enabling

3 For more details the reader can consult the book [10], page 76,
section 2.7.
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the system to oscillate for extended periods, typically
between 10 and 15 seconds. The moment of inertia
is increased by adding weights to the moving system,
resulting in prolonged, damped oscillations with a low
damping ratio. This low damping ensures that the initial
deflection is of substantial magnitude, easily discernible
on a numerical scale.

Finally, this effect can be characterized mathemati-
cally, where the resulting torque τ found in this electrical
device is ki, where i is a current pulse and k is a constant.
Knowing that i is a current of fast duration, we have

ki = kqδ(t) (41)

where q is the total charge and δ(t) is the Dirac delta
function. By the fundamental principle of dynamics for
rotations [10], we obtain

τ = I
d2θ

dt2

I
d2θ

dt2 = kqδ(t) (42)

where θ(t) is the angular displacement of the galvanome-
ter needle and I is the moment of inertia.

From the Equation (42), the Laplace transform can
be applied

IL(θ′′) = kqL(δ(t)) (43)

I(s2Θ(s) − sθ(0) − θ′(0)) = kq (44)

where Θ(s) = L(θ(t)). As θ(0) = 0 and θ′(0) = 0
indicate the angular displacement and angular velocity,
respectively, at the initial instants, we have

Is2Θ(s) = kq (45)

Θ(s) = kq

I

1
s2 . (46)

Applying the inverse Laplace transform,

L−1(Θ(s)) = kq

I
L−1

(
1
s2

)
θ(t) = kq

I
t. (47)

Differentiating the Equation (47) with respect to t, we
have

dθ(t)
dt

= kq

I

I
dθ(t)

dt
= kq

Iω = kq

(48)

where Iω is called angular momentum (denoted by L).
Therefore, from Equation (48) we certify that the

function of the current pulse i is to transfer kq units
of angular momentum to the galvanometer.

Figure 6: Example of a galvanometer. Source: The authors.

Figure 6 shows the configuration of the ballistic
galvanometer. The moving coil (protected by an iron
cylinder) is surrounded by a magnetic field produced by
a permanent magnet. With a current, it is possible to
impose another magnetic field, which from the magnetic
field produced by the magnet has a resultant field. This
field is responsible for generating a magnetic force and,
consequently, a torque capable of moving the pointer,
which is connected to an axis also connected to the
mobile coil. The balance weight helps to balance pointer
torque and the Mirror assists in measuring electrical
current.

3.2. Coupled systems

The Laplace transform can be applied to determine the
solution of a system excited by a forcing function, which
includes harmonic and periodic systems, transforming
differential equations into simpler algebraic equations.
Another very important advantage is the fact that it
handles discontinuous equations very easily, in addition
to taking into account the initial conditions.

We will discuss a system of coupled differential equa-
tions, where x1(t) and x2(t) are mixed, as modeled
in [11] (Chapter 5 – page 192). However, by employing
the Laplace transform method it is possible to decouple
them into two simple algebraic equations in the variable
s. Applying the inverse Laplace transform, the two
solutions x1(t) and x2(t) are found.

3.2.1. Mass-spring system with two boxcars

Consider two boxcars with masses m1 = M and m2 =
m that are connected by a spring with spring constant
K, as shown in Figure 7. The boxcar with mass m1 =
M is subject to an impulsive force F = F0δ(t). Let’s
determine the solutions x1(t) and x2(t) using the Laplace
Transform method, considering that the displacements
and velocities are zero at the initial instant.

By the fundamental principle of dynamics, the equa-
tions of motion of the two boxcars can be explained as

Mx′′
1 + Kx1 − Kx2 = F0δ(t) (49)

−Kx1 + mx′′
2 + Kx2 = 0. (50)
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Figure 7: Two boxcars attached to a spring of spring constant
K. Source: The authors.

In Equation (49) applying the Laplace transform,
we get

ML(x′′
1) + KL(x1) − KL(x2) = F0L(δ(t)). (51)

Thus,

M(s2X1(s) − sx1(0) − x′
1(0)) + KX1(s) − KX2(s) = F0.

(52)
Once x1(0) = 0 and x′

1(0) = 0,

Ms2X1(s) + KX1(s) − KX2(s) = F0. (53)

Similarly in Equation (50)

−KL(x1) + mL(x′′
2) + KL(x2) = 0 (54)

−KX1(s) + m(s2X2(s) − sx2(0)
−x′

2(0)) + KX2(s) = 0. (55)

Once x2(0) = 0 and x′
2(0) = 0,

−KX1(s) + ms2X2(s) + KX2(s) = 0. (56)

After some manipulations

X1(s) = F0(ms2 + K)
s2(Mms2 + K(M + m)) (57)

X2(s) = F0K

s2(Mms2 + K(M + m)) . (58)

After partial fractions in Equations (57) and (58),
we get

X1(s) = F0

M + m

(
1
s2 + m

M

(
1

s2 + K
( 1

M + 1
m

)))
(59)

X2(s) = F0

M + m

(
1
s2 − 1

s2 + K
( 1

M + 1
m

)) . (60)

Taking ω2 = K

(
1

M
+ 1

m

)
as the angular frequency

of the mass-spring system, we have

X1(s) = F0

M + m

(
1
s2 + m

ωM

(
ω

s2 + ω2

))
(61)

X2(s) = F0

M + m

(
1
s2 − 1

ω

(
ω

s2 + ω2

))
. (62)

Applying the inverse Laplace transform to Equa-
tions (61) and (62), we have

x1(t) = F0

M + m

(
t + m

Mω
sin (ωt)

)
(63)

x2(t) = F0

M + m

(
t − 1

ω
sin (ωt)

)
. (64)

We obtained the displacement solutions of the mass-
spring system with two blocks attached to a spring with
spring constant K.

3.3. Circuits

Circuits are primordial applications in the field of Elec-
tromagnetism, such as circuits that operate with power
on large scales or microcomputer circuits that have low
voltage [12]. In this section, in the theoretical develop-
ment, it is essential to present the main components of
a circuit.

3.3.1. Components of a circuit

Resistor
Figure 8 illustrates a resistor represented by the letter
R. It can be called ohmic since it obeys Ohm’s Law,
having a potential drop in the direction of the electric
current i through its extremes, where V = V1 − V2. So,
the potential is given by

V = Ri. (65)

By Joule effect, the resistor transforms electrical
energy into thermal energy and its dissipated power is

P = i2R. (66)

Capacitor
Figure 9 shows a capacitor, another important element
defined by the letter C its capacitance. One of its plates
or reinforcements has a charge q and the other has a
charge −q, and these charges can vary over time, as long

Figure 8: Resistor. Source: The authors.
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Figure 9: Capacitor. Source: The authors.

as they are in a quasi-steady state. Its potential or also
potential drop V = V1 − V2 between the plates is given

V = q

C
. (67)

The function of a capacitor is to store electrical energy.
Then its energy is

U = 1
2CV 2 = q2

2C
. (68)

Inductor
Figure 10 indicates an inductor represented by the letter
L. Taking the closed circuit 1234, and knowing that 3
and 4 are considerably close to 1 and 2, we have

ε =
∮

1234
E · dl = −L

di

dt
=
∫ 4

3
E · dl

= −(V4 − V3) = −(V1 − V2) = −V

(69)

that is,

V = L
di

dt
(70)

Figure 10: Inductor. Source: The authors.

Figure 11: Generator. Source: The authors.

the potential drop at the ends of the inductor in the
direction of current i.

In an inductor there is storage of magnetic energy
given by

U = 1
2Li2. (71)

Generator
Figure 11 exemplifies a generator, a source of electromo-
tive force represented by the letter ε. It is responsible
for giving energy to the system while the other elements
receive energy. The generator is crossed by an electric
current i in the opposite direction in relation to the
potential drop, so that

V1 − V2 = V = −ε (72)

which is the potential drop for this case. The generator
supplies power at a rate of εi.

3.3.2. The Kirchhoff’s laws

Kirchhoff’s 1st Law
Consider the circuit represented by Figure 12 with only
one mesh, in which each rectangle illustrates a passive
electrical component R, L or C. It is known that∫ 2

1
E · dl = −

∫ 2

1
dV = V1 − V2 = −ε (73)

Figure 12: Circuit with one mesh. Source: The authors.
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is the voltage drop between the extremes 1 and 2.

ε1 + ε2 + ε3 + · · · + εn =
n∑

k=1
εk = 0. (74)

From Equation (74) we can state that the sum of all
voltage drops along a loop of a circuit is zero.

This is an algebraic sum, where the voltage drop is
positive if we take a current path and negative if we
take a counter current path.

Kirchhoff’s 2nd law
Now consider a circuit as shown in Figure 13 which
has two meshes. Points A and B are called nodes and
represent the junction of two or more elements of a
circuit. Thus, we can state the following law:

The algebraic sum of all currents that arrive and
depart from a node is zero. That is,

i1 + i2 + i3 + · · · + in =
n∑

k=1
ik = 0. (75)

Applying the Equation (75) in the circuit of Figure 13
from node B (it could be from node A, since we would
get the same result), we have

i3 = i1 − i2. (76)

Thus, the currents i1 and i2 are the independent
variables, that is, currents circulating in the loops as
shown in Figure 14.

3.3.3. R-C circuit in series

Consider a circuit formed by a capacitor and a resistor,
as shown in Figure 15. Consider that at instant t = 0 the
capacitor is discharged and connected to a battery with

Figure 13: Circuit with two mashes. Source: The authors.

Figure 14: Current in circuit with two loops. Source: The
authors.

Figure 15: R-C Circuit. Source: The authors.

emf ε. Turning the switch on, we can use Kirchhoff’s 1st
law to obtain the differential equation that governs such
a circuit

Ri(t) − ε + q(t)
C

= 0 (77)

where i(t) corresponds to the electric current at the
instant t and q(t) the charge of the capacitor stored at
the same instant.

In Figure 16 (a) we observe that the charging current
of the capacitor drops exponentially with the passage
of time. If the capacitor is initially charged and we
happen to remove the battery, consequently causing
the capacitor to be connected exclusively to R, being
discharged through it, the capacitor discharges with the
same exponential law.

Considering q(0) = 0 and i(0) = ε

R
the initial

conditions of Equation (77) and knowing that i = dq

dt
,

we get

Rq′ + 1
C

q − ε = 0 (78)

Rq′ + 1
C

q = ε. (79)

Figure 16: Graphs of q(t) and i(t) for R-C circuit. Source: The
authors.
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Applying the Laplace transform in the Equation (79),
the initial condition q(0) = 0 and using the Theorem 1,
we have

RL(q′) + 1
C

L(q) = εL(1) (80)

RsQ(s) − Rq(0) + 1
C

Q(s) = ε
1
s

. (81)

After some manipulations,

Q(s) = εC

s(sRC + 1) . (82)

Using Partial Fractions in Equation (82)

Q(s) = εC

(
1
s

−
(

1
s + 1

RC

))
. (83)

Therefore, using the inverse Laplace transform on the
Equation (83), we have

q(t) = εC(1 − e− t
RC ). (84)

We got the load function of the R-C Circuit. It can be
seen that when t → +∞ the following approximation
occurs q(t) = εC, according to Figure 16(a) and
Equation (84).

By making a time derivative in Equation (84) we find
the function of electric current. So,

i(t) = ε

R
e− t

RC . (85)

Finally, the electric current decays exponentially with
time and goes to zero when t → +∞. Such a conclusion
we also note in Figure 16(b).

3.3.4. R-L circuit in series

Now consider a circuit formed by a resistance R and an
inductor L, as shown in Figure 17. By turning on the
switch and applying Kirchhoff’s 1st law, we obtain the
differential equation that governs this system

L
di(t)

dt
+ Ri(t) − ε = 0 (86)

where i(t) corresponds to the electric current at instant t.

Figure 17: R-L Circuit. Source: The authors.

Figure 18: Graph of i(t) to R-L. Source: The authors.

Considering i(0) = 0 as the initial condition of
Equation (86), we obtain

Li′ + Ri − ε = 0 (87)

Li′ + Ri = ε. (88)

Applying the Laplace transform to the Equation (88)
and the Theorem 1

LL(i′) + R(i) = εL(1) (89)

L(sI(s) − i(0)) + RI(s) = ε
1
s

. (90)

After some manipulations,

I(s) = ε

s(sL + R) . (91)

Using Partial Fractions in Equation (91)

I(s) = ε

(
1

Rs
− L

R(sL + R)

)
. (92)

By using the inverse Laplace transform in the Equa-
tion (92) we find the function that governs the current,
so

i(t) = ε

R

(
1 − e− R

L t
)

. (93)

Figure 18 and Equation (93) indicate that the current
exponentially approaches the asymptotic value given by
Ohm’s law, since when t → +∞ the current i = ε

R
.

3.3.5. R-L-C circuit

According to [13–15] and [16], R-L-C circuits, that is,
circuits that have a resistor, inductor and capacitor
are usually called linear, and can use the transform of
Laplace to transform the functions i(t) (electric current)
and v(t) (voltage) in the domain t ∈ R into functions
in the domain s ∈ C (this is also called the frequency
domain). A circuit can be analyzed in this variable both
qualitatively and quantitatively. Finally, the voltages
that power the circuit are functions in the form of the
unit step u(t).
Models for the elements in the domain s ∈ C
Resistor
In Figure 19 sets the voltage of a resistor in the domain
of s.
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Figure 19: Resistor voltage in the domain of s. Source: The
authors.

The voltage of the resistor in the domain t is

v(t) = Ri(t) (94)

and in the domain s is

V (s) = RI(s). (95)

The voltage across the resistor obeys Ohm’s Law.

Inductor
Figure 20 represents the configuration of the inductor
voltage in the domain of s.

The inductor voltage v(t) in domain t is

v(t) = L
di

dt
(t). (96)

After applying the Laplace transform and using The-
orem 1 we have the inductor voltage in the domain s

V (s) = LsI(s) − Li(0). (97)

Figure 20: Inductor voltage in the domain of s. Source: The
authors.

Capacitor
Figure 21 shows the capacitor voltage in the domain of s.

The capacitor current i(t) in domain t is

i(t) = C
dv

dt
(t). (98)

After applying the Laplace transform and Theorem 1,
we get

I(s) = CsV (s) − Cv(0). (99)

Step by step analysis of a linear circuit with
Laplace transform

• Transform circuit from the t domain to the s
domain using the presented elements;

• Circuit analysis in the s domain with the same laws
and methods as in the t domain;

• Transform the obtained solution (voltage or cur-
rent) back to the domain t.

Solution and Analysis of an R-L-C circuit using
Laplace transform
Consider the R-L-C circuit represented in Figure 22.
Let’s determine the voltage on the capacitor v(t) for
t > 0, considering the initial conditions i(0) = −1A and
v(0) = 5V and that vs(t) = 10u(t)V , where vs(t) is the
source voltage and u(t) is a unit step function.

Figure 23 exemplifies the transformed circuit for the
variable s using the Laplace transform.

Figure 21: Capacitor voltage in the domain of s. Source: The
authors.

Figure 22: Circuit R-L-C in domain t. Source: The authors.
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Figure 23: Circuit R-L-C in domain s. Source: The authors.

Figure 24: Graph of v(t). Source: The authors.

By Kirchhoff’s 2nd law, we get
V (s) − Vs(s)( 10

3
) + V (s) − 5

5s
+ V (s)( 10

s

) − 1
2 = 0 (100)

3
10

(
V (s) − 10

s

)
+ 1

5s
(V (s) − 5) + s

10V (s) − 1
2 = 0

(101)

3s

(
V (s) − 10

s

)
+ 2(V (s) − 5) + s2V (s) − 5s = 0

(102)

(s2 + 3s + 2)V (s) − 30 − 10 − 5s = 0 (103)

(s2 + 3s + 2)V (s) − 40 − 5s = 0 (104)

V (s) = 5s + 40
s2 + 3s + 2 . (105)

After decomposition by partial fractions, we have

V (s) = 35
s + 1 − 30

s + 2 . (106)

Applying the inverse Laplace transform

v(t) = 35e−tu(t) − 30e−2tu(t). (107)

For t > 0,

v(t) = 35e−t − 30e−2t. (108)

Figure 24 shows the voltage on the capacitor.

4. Final Remarks

In this work, we show, in a didactic way, examples
of applications of discontinuous forcing functions or
impulses in IVPs and the solution via Laplace transform.

Functions such as unit step and unit impulse are
commonly studied in Ordinary Differential Equations
courses, but their application in real situations involving
such forcing functions is scarce in general books. This
text was written to fill this gap.

In summary, we seek to understand some physical phe-
nomena using PVIs with ordinary differential equations
with impulse or step functions, solve them with Laplace
transform, and transform functions and their derivatives
in the variable t into simple algebraic functions in
the variable s. After this transformation, we apply the
inverse Laplace transform to obtain the functions that
govern such phenomena.
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