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ABSTRACT - A complicating factor for the selection of plant strains is the influence of a genotype-environment (GE)
interaction. The Bayesian approach is a tool to increase the efficiency of adaptability and stability methodologies. In this context,
the objective of this study was to evaluate the linear and bi-linear parameters of the additive main effects and multiplicative
interaction (AMMI) analysis using the Bayesian approach for selection of food-type soybean genotypes in multi-environment
trials. The grain yields of five lipoxygenase-free lines intended for human consumption of from the soybean breeding program
of the Londrina State University and two commercial standards (BRS 257 and BMX Potência RR) were evaluated in four
counties of the State of Paraná, Brazil, in the 2014/15, 2015/16 and 2016/17 growing seasons. Of the evaluated lines, only UEL
110 and UEL 122 had positive posterior genotypic effects, exceeding a probability of 95%  against the commercial standard
BRS 257. Only lines UEL 115 and UEL 123 did not contribute significantly to the GE interaction. Lines UEL 110 and UEL
122 proved adaptable to the largest number of environments with significant GE interaction and are therefore promising for
the development of new food-type soybean cultivars. The use of AMMI1 (PC1 vs. effects genotypes) showed results for the
stability of genotypes similar to AMMI2 (PC1 vs PC2), allowing a direct selection by the biplot for productivity and stability.
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RESUMO - A interação genótipo–ambiente (GA) é um complicador para a seleção de novos genótipos. A abordagem Bayesiana
é uma ferramenta que pode aumentar a eficiência das metodologias de adaptabilidade e estabilidade. Nesse contexto, o objetivo
deste estudo foi avaliar os parâmetros lineares e bi-lineares da análise AMMI (Additive Main Effects and Multiplicative
Interaction) pela abordagem Bayesiana na seleção de genótipos de soja tipo alimento em ensaios multi-ambientes. A
produtividade de grãos de cinco linhagens livres das enzimas lipoxigenases e destinadas ao consumo humano do Programa de
Melhoramento de Soja da Universidade Estadual de Londrina e duas cultivares comerciais (BRS 257 e BMX Potência RR)
foram avaliadas em quatro municípios do Estado do Paraná, nas safras 2014/15, 2015/16 e 2016/17. Das linhagens avaliadas,
apenas a UEL 110 e UEL 122 tiveram efeitos genotípicos a posteriori positivos, superiores a 95% de confiabilidade a cultivar
comercial BRS 257. Somente as linhagens UEL 115 e UEL 123 não contribuíram significativamente para a interação GA. As
linhagens UEL 110 e UEL 122 foram adaptáveis ao maior número de ambientes de interação GA significativas e, portanto,
são promissoras para o desenvolvimento de novas cultivares de soja tipo alimento. A utilização da AMMI1 (CP1 vs efeitos
genotípicos) mostrou resultados para a estabilidade semelhantes ao AMMI2 (CP1 vs CP2), o que possibilitou uma seleção
direta pelo biplot para produtividade e estabilidade.
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INTRODUCTION

Soybean [Glycine max (L.) Merrill] is a nutritious
and functional food that is, rich in protein, vitamins,
minerals, and dietary fiber. Moreover, it is also an
important source of certain phytochemical compounds,
specifically carotenoids and isoflavones, which are
associated with antioxidant properties and the prevention
or incidence reduction of several degenerative and
tumoral chronic diseases (DAY, 2013; MA et al., 2010;
RIGO et al., 2015).

The genetic elimination of lipoxygenase
(LOX) enzymes improves the palatability of grains
and derivatives by reducing the production of hexane
compounds. Genotypes considered to be triple null, that
is., those with a total absence of LOX in grains, can be
classified as food-type and have special characteristics
for human consumption (DESTRO et al., 2013; FREIRIA
et al., 2016, 2018a). However, the number of food-type
cultivars grown in Brazil is still small; less than 15 are
registered by the Ministry of Agriculture, Livestock and
Supply (MAPA); in other words, they account for less
than 1% of the soybean cultivars registered in Brazil
(BRASIL, 2019).

For the release of new cultivars, their performance
must be tested in experiments under the environmental
conditions of the recommended cultivation region (multi-
environment trials). These experiments are essential
to determine which cultivars have a good performance
despite the genotype-environment (GE) interaction (VAN
EEUWIJK; BUSTOS-KORTS; MALOSETTI, 2016).
To minimize the GE interaction effects and improve the
predictability of performance, the most stable genotypes
adapted to the specific conditions of each environment
must be identified and several statistical methodologies
have been proposed to do so (FREIRIA et al., 2018b).

The additive main effects and multiplicative
interaction analysis (AMMI) multivariate method
is notable for its explanatory power of the GE
interaction, owing to its greater ability to capture the
sum of squares of the GE interaction compared to
methods based on variance and regression analysis
(GAUCH, 2013; ZOBEL; WRIGHT; GAUCH, 1988).
However, this technique, along with other adaptability
and stability methodologies, is used in a frequentist
approach. This approach may reduce the efficiency of
selection and indication of superior genotypes (VIELE;
SRINIVASAN, 2000) and requires certain assumptions,
such as homogeneity of variance, normal distribution and
adjustment for data imbalance (COTES et al., 2006). To
solve these problems, the use of AMMI with a Bayesian
approach has been proposed (VIELE; SRINIVASAN,
2000).

Using the Bayesian approach, prior knowledge of
the study parameters from previous experiments and the
researcher’s experience can be aggregated, resulting in the
establishment of a prior distribution and more accurate
estimates of the standard deviations and probability (so-
called Highest Posterior Density -HPD) intervals, for the
correct separation of genotypes and environments for
the AMMI model (CROSSA, 2011; SILVA et al., 2015).
The Bayesian approach to infer the linear and bi-linear
parameters of the AMMI model has been used in studies
with  corn  (Zea mays) (BERNARDO JÚNIOR et al.,
2018; CROSSA et al., 2011; JARQUÍN et al., 2016;
OLIVEIRA et al., 2015; PEREZ-ELIZALDE; JARQUÍN;
CROSSA, 2012; SILVA et al., 2015) and cowpea (Vigna
unguiculata) (OLIVEIRA et al., 2018). These authors
described the effectiveness of the methodology to predict
genotypic participation in GE interaction and can therefore
contribute decisively to the choice and recommendation
of new cultivars. In this context, this study evaluated
linear and bi-linear parameters of the Bayesian AMMI
analysis for the selection of soybean genotypes in
multi-environment trials.

MATERIAL AND METHODS

Genotypes and experimental conditions

Five soybean lines (UEL 110, UEL 114, UEL 115,
UEL 122, and UEL 123) from the Soybean Breeding
Program of the State University of Londrina (PMSAH/
UEL), all with grains free of lipoxygenase enzymes,
and the commercial standards BRS 257 and BMX
Potência RR, were evaluated in the counties of Londrina,
Guarapuava, Ponta Grossa and Pato Branco in the
2014/2015, 2015/2016 and 2016/2017 growing seasons,
for a total of 16 environments (Table 1). Sowing was
carried out mechanically with a seeder in four rows, in a
randomized complete block design with four replications.
Base fertilization consisted of 250 kg ha-1 of the fertilizer
mixture 00-20-20 (N-P-K). The seeds were treated with
carboxanilide and dimethylditiocarbamate (Vitavax-
Thiram®), at a concentration of 250 mL per 100 kg of
seeds, and inoculated at sowing with Bradyhizobium
japonicum, strains SEMIA 5079 and 5080, with 5.0 × 109

colony-forming units per mL of the commercial product.

A no-tillage management system with planting on
crop residues, in plots with four 5 -m rows spaced 45 cm
apart, with 15 plants m-1 was used. The harvest was carried
out after the R8 development stage, where the two border
lines and 50 cm of the far end of the two central lines were
eliminated from evaluations, corresponding to 3.6 m2 of the
assessed area. The grain yield was determined, corrected to
a moisture content of 13%, and extrapolated to kg ha-1.
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1According to the classification of Köppen-Geifer

Environments County Sowing date Altitude (m) Latitude (S) Longitude (W) Climate1

A1 Londrina 07/10/14

576 23°21’ 51°09’ Cfa
A2 Londrina 04/12/14
A3 Londrina 08/10/15
A4 Londrina 11/10/16
A5 Londrina 04/11/16
A6 Guarapuava 15/10/14

1120 25°23’ 52°27’ Cfb
A7 Guarapuava 05/11/14
A8 Guarapuava 13/10/15
A9 Guarapuava 08/11/16
A10 Ponta Grossa 16/10/14

880 25°13’ 50°01’ CfbA11 Ponta Grossa 03/11/14
A12 Ponta Grossa 12/10/15
A13 Pato Branco 14/10/14

760 26°11’ 52°42’ Cfa
A14 Pato Branco 12/11/14
A15 Pato Branco 13/10/15
A16 Pato Branco 04/10/16

Table 1 - Location and climate characterization of 16 environments in the state of Paraná, Brazil

Statistical analysis

The inferences regarding the linear and bi-linear
parameters of the Bayesian AMMI model were drawn
as proposed by Crossa et al. (2011). In matrix notation,
the frequentist AMMI model can be described by the
formula:

y = 1nμ + X1τ + X2δ + ∑t
k=1 λk diag(X1αk)X2γk  + ε          (1)

The vector y contains n = rge phenotypic responses of ɡ
genotypes in e environments and r replicates.

Where:

1n is the vector of the order n × 1;

µ is the overall mean;

X1 is the matrix of genotypes of order n × g;

τ is the fixed-effect vector g × 1  for genotypes;

X2 and δ are the matrices for environments of the order
n × e and the fixed-effect vector e × 1 for environment,
respectively;

λk is the singular value for the kth principal component;

t is the number of multiplicative terms [t ≤ min (g, e) -1];

αk and γk are the singular vectors of k for genotypes and
environments, respectively;

And ε is the n-vector of random residual effects.

Vector ε has a multivariate normal distribution with
zero mean and variance-covariance matrix σ2

εΙn. Thus,
vector y also has a multivariate normal distribution.

For Bayesian AMMI, the estimation of the
parameters of the above equation model assumes that the
conditional distribution of y, given that µ, τ, δ, λ, α, γ, and
σ2

ε, is a multivariate normal distribution.

y│μ,τ,δ,λ,α,γ, σ2
ε~N (1n 1nμ + X1τ + X2δ +

∑t
k=1 λk diag(X1αk)X2γk,Inσ

2
ε                                              (2)

Where:

In is the identity matrix of order n.

The prior distributions used for the parameters
were presented by Crossa et al. (2011), and are the same
as those used by Viele and Srinivasan (2000) (subscript
symbols of µ and σ2 represent the mean and variance,
respectively, of the prior distribution):

μ| μμ, σ
2
μ~N(μμ, σ

2
μ)

τ| μτ, σ2
τ~N(μτ, Igσ2

τ)

δ| μδ, σ2
δ~N(μδ, Ieσ2

δ)

λk|  μλk,  σ
2
λk~N+(μλk,  Ieσ

2
λk) with the following restrictions

λk > 0 and λk-1 ≥ λk

σk ~ spherical uniform distribution in the corrected subspace;

γk ~ spherical uniform distribution in the corrected subspace;
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σ2
ε|vε, s

2
ε ~Inv - Escala - x2 (vε, s

2
ε)

Where:

N() represents the normal distribution;

N+ the positive normal distribution and Inv – Escala – χ²
the inverse scale chi-square distribution;

μτ and Ig σ2
τ are the prior vectors of means and the prior

covariance matrix of the genotypic main effects;

μδ and Iεσ2
δ are the prior vectors of means and the prior

covariance matrix for the environmental main effects;

µλk and σ2
λk are the prior means and the variances for the

singular value λk;

q and c are the number of effects and the variance of μ,
respectively;

υε and s2
ε are the degree of belief and the scale factor σ2

ε.

Details of the prior spherical uniform distribution
of GE parameters are reported in Viele and Srinivasan
(2000). The values of µµ,  σ

2
µ,  μτ,  σ

2
τ,  μδ,  σ

2
δ,  µλk,  σ

2
λk, q,

υε  and s2
ε were chosen with the aim of representing the

prior belief about the model parameters. Therefore, they
represent hyperparameters.

In this study, the prior distributions were
uninformative. In a breeding program, the lines pass for
extensive evaluation only in the final stages of evaluation
for the selection and/or recommendation of a new
cultivar, which comprises several locations and years.
This organization chart of a breeding program results in
an uncertainty regarding the genotypic variation of the
lines in the face of the GE interaction, and with that,
previous experimental data for composition of the prior
may result in a bad prior. Other recent work with the use
of Bayesian AMMI for the selection and/or recommendation
of superior genotypes also opted for a non-informative prior
(BERNARDO JÚNIOR et al., 2018; OLIVEIRAet al., 2018).
Future work must be carried out to clarify these issues.

The value zero was used as the prior distribution
for the mean in all genotypic and environmental effects
and high values for the variances, resulting in: µµ = 0, µτ =
1g × 0, µδ = 1e × 0 and µλk = 0, and for the variances, σ2

µ, σ
2

τ,
σ2

δ and σ2
λk = 1 × 1015. Multiplying the prior distributions

by the likelihood function, we obtain the following joint
posterior distribution:

p (μ,τ,δ,λ,α,γ, σ2
ε|y)

α exp [-(1/2 σ2
μ)(μμ - μ)’ (μμ - μ)]

x exp [-(1/2 σ2
τ)(μτ - τ)’ (μτ - τ)]

x exp [-(1/2 σ2
δ)(μδ - δ)’ (μδ - δ)]

x exp {-(1/2 σ2
ε) [y - 1nμ + X1τ + X2δ + ∑t

k=1 λk diag (X1αk)
X2γk]’ [y - 1nμ + X1τ + X2δ + ∑t

k=1 λk diag (X1αk) X2γk

(3)

Restrictions were and  (for (k ≠ k*). The description of the
parameters has previously been provided.

The posterior marginal distribution for each
parameter was obtained by Gibbs sampling, with 100,000
iterations. Bayesian AMMI analysis was carried out
using the R code developed by Crossa et al. (2011), and
requested by the last author of this manuscript, with the
help of the packages: coda (version 0.19-1), ggplot2
(version 3.1.0), gmm (version 1.6-2) , mass (version 7.3-
51.1), matrix (version 3.5.1), movMF (version 0.2-3),
msm (version 1.1.6), mvtnorm (1.0-10), lme4 (version
1.1-21), rstiefel (version 0.20), sandwich (version 2.5-0)
and stats4 (version 3.5.1).

Chain convergence was verified using the criteria
of Raftery and Lewis (1992). This method finds the
number of iterations needed to estimate P[U ≤ µ|data] to
within an accuracy of ±r with probability s, where U is a
quantity of interest and µ is the qth posterior quantile of
U from the Markov chain data (a dataset set with 100,000
iterations per parameter). It returns the number M of
initial iterations to be discarded (burn-in), the number
N of additional iterations required, and k, where every
kth iterate is used. This method also yields diagnostics.
One can determine in advance the minimum number
of iterations needed, Mmim, and so I = (M + N)/Nmim
measures the increase in the number of iterations due to
dependence in the sequence. The thinning used was the
95% percentile of values.

The cumulative variance ratio (φt) was calculated
as proposed by Jarquín et al. (2016):

                              , t = mim(g, e) - 2                             (4)

Where:

g is number of genotypes;

e is number of environments;

λk is the singular value for the kth principal component;

t is the number of multiplicative terms.

RESULT AND DISCUSSION

For each parameter, 100,000 Markov chains were
generated. To avoid the selection of observations that had
not yet reached convergence, the first 294 observations
were discarded (burn-in), with sampling every 20
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observations (thinning), resulting in a final 4,985 iterations,
according to the criterion proposed by Raftery and Lewis
(1992). The interpretation of the traces generated by the
iterations, in relation to the model parameters, indicate
that the values were randomly distributed around a
midpoint, without trend and no deviations caused by a
double solution were found, as reported by Oliveira et al.
(2015) and Silva et al. (2015), (Figure 1).

According to Oliveira et al. (2015), “an initial
attention to the Bayesian AMMI analysis is a possible
convergence for two solutions, one positive and one
negative”. Silva et al. (2015), reported that this change
in the periodicity in the convergence does not prejudice
the analysis, as long as one of the solutions (negative or
positive) is chosen, this choice does not affect the result
of the biplot, but represents an additional step in the
analysis.

Figure 1 - Traces generated by Markov Chain Monte Carlo (MCMC) Gibbs sampling for the singular vectors α11, α12, γ11 and γ12 and
singular values λ1 and λ2

The means for the effects of genotypes (τ) and
environments (δ), with their respective probability
intervals (HPD), are shown in Table 2. The mean of the
posterior tests (µ) was 2,928.48 kg ha-1, and only cultivar
BMX Potência RR (τ = 364.91) and lines UEL 110 (τ =
107.04) and UEL 122 (τ = 52.95) had positive genotypic
effects, without zero in their HPDs. According to Crossa
et al. (2011), at a probability of 95%, positive HPD values
exceed the overall mean.

The lowest posterior mean for grain yield was
found for cultivar BRS 257, with τ = -243.42 (HPD2.5% =
-253.28 and HPD97.5% = -233.95) and with no overlapping
of HPD in relation to the other genotypes. The fact that
this cultivar is the main food-type soybean genotype
registered by the Ministry of Agriculture, Livestock and
Food Supply (MAPA) (BRASIL, 2019) reinforces the
productive potential of the lines evaluated in this study
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Parameters Mean HPD (2.5%) HPD (97.5%)
µ 2928.48 2906.34 2949.49

τ1(BRS257) -243.42 -253.28 -233.95
τ2(Potência) 364.91 355.33 374.44
τ3(UEL110) 107.04 97.37 116.96
τ4(UEL114) -132.72 -142.35 -123.12
τ5(UEL115) -96.17 -105.94 -86.68
τ6(UEL122) 52.95 43.34 62.74
τ7(UEL123) -52.60 -62.54 -42.77
δ1(Londrina) -978.90 -988.70 -968.85
δ2(Londrina) -368.37 -378.73 -358.27
δ3(Londrina) -829.72 -840.18 -819.59
δ4(Londrina) 1212.88 1202.84 1223.16
δ5(Londrina) 345.79 335.60 355.95

δ6(Guarapuava) 166.35 156.12 176.51
δ7(Guarapuava) 83.33 72.97 93.87
δ8(Guarapuava) 1403.81 1393.46 1414.06
δ9(Guarapuava) 77.06 66.94 87.11
δ10(P. Grossa) -313.59 -323.93 -303.57
δ11(P. Grossa) -218.91 -229.06 -208.89
δ12(P. Grossa) 944.43 934.33 954.65
δ13 (P. Branco) -640.51 -650.72 -630.18
δ14 (P. Branco) -1340.04 -1350.15 -1330.00
δ15 (P. Branco) -1274.20 -1284.49 -1264.07
δ16 (P. Branco) 1730.59 1720.23 1740.71

λ1 1936.14 1687.66 2166.26
λ2 1145.58 815.64 1507.03

Table 2 - Posterior mean of the principal effects and multiplicative interaction (AMMI) for grain yield of seven food-type soybean
genotypes (i = 1, 2, ..., 7) in 16 environments in the state of Paraná (j = 1, 2 , ..., 16) for the overall mean (µ), genotypic effects (τi),
environmental effects (δj) and first and second singular values (λ1 and λ2) and their respective HPD at 95%

and its potential to compose a new food-type soybean
cultivar.

Among the 16 environments evaluated, eight of
the posterior environmental effects were positive, in
particular in Guarapuava (δ6,  δ7,  δ8 and  δ9), where the
means exceeded the overall mean in all trials. Differences
in soybean grain yield between locations can be attributed
to the climate, in particular to changes in temperature,
rainfall, and photoperiod (MEOTTI et al., 2012).

According to Cruz, Regazzi and Carneiro (2012),
superior genotypes would have a high mean productivity
and combine broad adaptability and stability. To select
such genotypes, apart from the genotypic effects, the
GE interaction must be taken into account. The AMMI1

biplot was tailored for this purpose, with the first major
component of the GE interaction (PC 1) for the genotypic
scores (λ1/2

1αi1), as opposed to their respective effects
(Figure 2). According to Gauch (2013), in an AMMI1
biplot, stable genotypes would be those whose points are
close to the origin of the PC 1 axis (coordinate 0 on the
y-axis), that is, with practically zero scores for the first
component of the GE interaction. PC 1 explained 50.26%
of the interaction, and among the evaluated genotypes
the lines UEL 110, UEL 114, UEL 115 and UEL 123 and
cultivar BMX Potência RR contributed the least to this
component (Figure 2A).

One of the main advantages of the Bayesian
AMMI model is the possibility of also including HPDs
for genotypic scores in the biplot, improving the precision



Rev. Ciênc. Agron., v. 51, n. 4, e20207333, 2020 7

Bayesian AMMI applied to food-type soybean multi-environments trials

of inferences on genotype stability, by reducing the
subjectivity and proximity to the origin of the first
interaction component. Thus, the only genotypes with
coordinate 0 of PC 1 in their HPD at 95%, were lines
UEL 115 and UEL 123. These results indicate that these
genotypes are stable and do not significantly contribute to
the GE interaction.

According to Cruz, Regazzi, and Carneiro (2012), for
the recommendation of cultivars, stable genotypes should
also have a desirable performance, which in this case, would
be high grain yield. However, this condition was not met by
these genotypes, as they had negative genotypic effects, i.e.,
grain yields below the overall mean (Figure 2A).

Subtitle: the environments are described in table 1

Figure 2 - Bayesian approach to the biplot AMMI1 for
genotypic effects (A), environmental effects (B) and their
contributions to the first principal component of the genotype
x environment interaction (PC1), with their respective HPDs (at
95% probability)

These assessment criteria can be extended to the
environment; AMMI1 with environmental scores (λ1/2

1γi1)
for PC 1, as opposed to its effects, are shown in Figure
2B. Among the 16 environments evaluated, only seven
contributed significantly to the GE interaction (A1, A3,
A4, A6, A7, A12, and A16), with HPD at 95% probability
that coordinate PC 0 was not included. Environmental
stability indicates the reliability of the genotype
ordering, in relation to the classification of the mean
of the tested environments in a given test environment.
In this context, the nine stable environments tended to
rank genotypes with little disagreement, compared to the
mean classification at all sites.

All counties (Londrina, Guarapuava, Ponta
Grossa, and Pato Branco) had at least one unstable
environment (in terms of seasonal and/or crop
variations), which shows that occasional variations
in temperature and rainfall at the same test location
are sufficient to contribute to the GE interaction.
Variations at the same location between different
years were also found by Bernardo Júnior et al.
(2018), in a study of maize adaptability and stability
by Bayesian AMMI. According to Figueiredo et al.
(2015), in countries such as Brazil with wide climatic
variation, the conditions at the same test site can vary
greatly over the years, and may even exceed those
observed between different geographical locations,
suggesting that special attention should be paid to the
environmental stratification in plant breeding programs
in tropical and subtropical regions. Alternatively,
multiway studies such as PARAFAC and Tucker3 can
be employed in the construction of a triplot formed by
the genotype × location × year interaction, as an ally
in the interpretation of variations not only between test
sites, but also variations in time at the same test site
(ARAÚJO, 2009).

The inclusion of the second component (PC
2) (λ1/2

2αi2 and  λ1/2
2γi2) in association with PC 1 allows

the formation of the AMMI2 biplot, and is often used
to explain more of the GE interaction. In the Bayesian
AMMI2, the association of HPDs for the first and
second components allows the creation of ellipses that
also correspond to the 95% probability regions, where
the stability is given by the overlapping ellipse and the
intersection region of the coordinates 0.0 of PC 1 and PC
2, i.e., over the center of the biplot.

AMMI2 contributed to an explanation percentage
of 67.92% of the GE interaction with the analysis
(Figure 3). However, for all evaluated genotypes and
environments, the ellipses covered coordinate 0 of the
second component, classifying it as little discriminatory,
resulting in identical responses to AMM1, with regard to
the stability of genotypes and environments.
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According to Crossa et al. (2011), PC1
discriminates genotypes better than PC2, in line with
the theory of principal component analysis. The first
component corresponds to greater variability, which
results in less uncertainty, and consequently, in lower
probability intervals associated with PC 1 compared to
PC 2 and the other components. As mentioned by Gauch
(2013) for the frequentist AMMI approach, as the number
of selected axes rises, the “noise” percentage increases as
well and reduces the predictive power of the analysis; this
also applies to the Bayesian approach. This is because
the sum of the squares of the GE interaction (SSGE) that
represents the usual data matrix in the AMMI analysis can
be decomposed as SSGE(standart) + SSGE(noise), the “noise” being
related to the predictive error of the interaction. Thus, in
this analysis the principal component (PC) should not
necessarily explain 100% of the GE interaction, but only
the percentage referring to the standard underlying the
interaction. SSGE = ∑t

k=1λ
2

k = (∑n
k=1λ

2
k) + (∑t

k=n+1λ
2

k) PC1
presents a greater explanation of the standard interaction
in relation to PC2 and PC2 > PC3 >…> PCmin(g,e)-1.

This point is not taken into account in the most
recent analysis of Bayesian AMMI, in which AMMI1
(PC1 vs. genotypic effects) is not being considered.
With few distortions in relation to AMMI2 (PC1 vs
PC2), the AMMI1 biplot becomes more indicated, due
to the simultaneous selection of productive and stable
genotypes.

Overlapping ellipses in AMMI2 indicate similar
responses of genotypes or environments to the GE
interaction (BERNARDO JUNIOR et al., 2018; CROSSA
et al., 2011; JARQUÍN et al., 2016; OLIVEIRA et al.,
2015, 2018; PEREZ-ELIZALDE; JARQUÍN; CROSSA,
2012; SILVA et al., 2015). In this sense, the performance
of lines UEL 110 and UEL 114 was relatively unaffected
by environmental variation (Figure 3A), and among the
seven environments that significantly contributed to the
interaction, four (A3, A6, A7, and A12) could be grouped
in the same subgroup due to the overlap of their ellipses
(Figure 3B).

Based on the PC1 and PC2 coordinates,
conclusions could be drawn about the specific
adaptation of genotypes to certain environments,
taking into account the range of their ellipses and
the quadrant sign to which they belong, resulting in
the formation of the groups: (-,-), (-,0); (-,+); (0,-);
(+,-); (+,0) and (+,+) (BERNARDO JÚNIOR et al.,
2018). In this study, considering only the genotypes
and environments with significant contributions to the
GE interaction, two groups were formed: Group I (-,
0) formed by cultivars BRS 257 and BMX Potência
RR, with specific adaptability to environments 1 and
4 (both in Londrina) and Group II (+, 0) consisting of

lines UEL 110, UEL 114, and UEL 122, with specific
adaptability to environments 3, 6, 7, 12, and 16, which
covered the four evaluated counties (Figure 3 and
Table 3).

Because of the positive genotypic effects,
specific adaptability to the largest set of environments
with significant contribution to the GE interaction (A3,
A6, A7, A12, and A16) and maintenance of yield means
in stable environments (A2 , A5, A8, A9, A10, A11,
A13, A14, and A15), the lines UEL 110 and UEL 122

Subtitle: G1 - BRS 257, G2 - BMX Potência RR, G3 - UEL 110, G4 -
UEL 114, G6 - UEL 122. The environments are described in table 1

Figure 3 - Bayesian approach to the biplot AMMI2 for the first
(PC 1) and second (PC 2) principal component of the genotype
x environment interaction for genotypic (A) and environmental
scores (B), with their respective HPDs (at 95% probability),
except for those with ellipses in the central region (0.0)
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Group Genotypes Environments
(-,-) - -
(-,0) BRS 257; BMX Potência A1, A4
(-,+) - -
(0,-) - -
(0,+) - -
(+,-) - -
(+,0) UEL 110, UEL 114, UEL 122 A3, A6, A7, A12, A16
(+,+) - -
(0,0) UEL 115, UEL 123 A2 , A5, A8, A9, A10, A11, A13, A14, A15

Table 3 - Genotypes clustering based on the first two principal components relates with 16 environments

The clustering was build taking into account the 95% credible ellipse interval. The Cartesian coordinates indicate the ellipse signal and position in the
biplot. The environments are described in Table 1

proved promising for the development of new soybean
cultivars intended for human consumption.

CONCLUSIONS

1. The lines UEL 110 and UEL 122, with positive
posterior genotypic effects and adaptability to a broad
environmental set, are promising for the selection and
release of new food-type soybean cultivars;

2. Bayesian AMMI analysis provides highly relevant
information for the study of genotype adaptability
and stability, contributing to the selection and/
or recommendation of promising genotypes. The
probability ranges (HPD) associated with genotypic and
environmental effects as well as their biplot scores, allow
for greater efficiency in selecting superior genotypes;

3. The use of AMMI1 (PC1 vs. effects genotypes) shows
results for the stability of genotypes similar to AMMI2
(PC1 vs PC2) allowing a direct selection for productivity
and stability by the biplot.
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