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ABSTRACT - The usage of digital data is one of the main characteristics of the Agriculture 4.0 era. Different devices and
sensors may be used to capture a variety of types of data that enable the development of applications of computer vision,
acoustic events, and data processing. These applications are useful for monitoring, understanding, and predicting many
attributes of agricultural chain production with the objective of assisting farmers in the decision-making process. In a
scenario of increasing obligation for sustainable usage of natural resources and an increase in production rates to assure a
food security situation in the world, there is a high demand for improvements at any stage of agricultural processes. This
paper aims to contribute to further research on artifi cial intelligence in the agricultural context, listing sample practical AI
scenarios, including those that the Eldorado Research Institute has contributed. Throughout this paper, different applications
of AI are discussed, highlighting some characteristics, advantages, disadvantages, and results to provide an overview of the
different technologies that can be applied in agriculture. Furthermore, we presented the main challenges of popularizing
the use of AI-based systems, some possible approaches to reduce the diffi culties, and a view of the next most promising
technologies in conjunction with AI.
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RESUMO - O uso de dados digitais é uma das principais características da era da Agricultura 4.0. Diferentes dispositivos e
sensores podem ser usados para capturar uma variedade de tipos de dados que permitem o desenvolvimento de aplicativos de visão
computacional, eventos acústicos e processamento de dados. Esses aplicativos são úteis para monitorar, compreender e predizer
diversos atributos da cadeia produtiva agrícola com o objetivo de auxiliar o agricultor na tomada de decisão. Em um cenário
de crescente obrigatoriedade do uso sustentável dos recursos naturais e de aumento das taxas de produção para garantir uma
situação de segurança alimentar no mundo, há uma grande demanda por melhorias em qualquer etapa dos processos agrícolas.
Este artigo tem como objetivo contribuir com pesquisas futuras sobre Inteligência Artifi cial no contexto agrícola, listando
exemplos de cenários práticos de IA, incluindo aqueles para os quais o Instituto de Pesquisa Eldorado tem contribuído. Ao
longo deste trabalho, diferentes aplicações da IA são discutidas, destacando algumas características, vantagens, desvantagens
e resultados, a fi m de fornecer uma visão geral das diferentes tecnologias que podem ser aplicadas na agricultura. Além disso,
apresentamos os principais desafi os de popularizar o uso de sistemas baseados em IA, algumas abordagens possíveis para reduzir
as difi culdades e uma visão das próximas tecnologias mais promissoras em conjunto com IA.
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INTRODUCTION

The impact of artifi cial intelligence (AI) in
business and in the agricultural value chain has been
through a variety of phases since the term was coined
during the Dartmouth Workshop in 1955, including long
winters of reduced funding for the research fi eld joined
by low expectancy of any economic returns, reaching
today’s high-expectation juncture. The very optimistic
current phase is supported by multiple factors that enable
large-scale practical implementations of the concept,
such as virtual voice assistants and image recognition
applications embedded in handheld devices.

Modern AI is the term coined for today’s
implementation of such systems (RUSSELL et al., 2009),
and the circumstances that enabled and made possible the
arrival of the current optimistic phase were the exponential
growth and accessibility to computational power, the
high availability of good quality digital data, and fi nally
the whole ecosystem around public domain libraries and
community collaboration around the research fi eld.

This paper aims to contribute to further research
on AI in the agricultural context, listing sample practical
AI scenarios where the Eldorado Research Institute has
contributed, with sections that focus on the three main areas
of applied AI in the agricultural context being computer
vision, acoustic event detection, and data processing,
closing with the conclusion section, which summarizes
some of the main ideas, and pointing toward possible
future applications of AI in the fi eld of agriculture.

This publication does not intend to cover the entire
range of AI practical applications in agriculture or cover
in depth the AI frontier in the computer science fi eld.
This publication aspires to bring fundamentals of AI in
a structured form to support evaluation of the applied
concepts in practical agricultural context, laying ground
for future work by bringing expert analysis of successful
implementations of the concept in the fi eld of AI applied
agriculture.

The current strategies in pursuit of deploying
AI solutions to practical fi elds, such as agriculture, can
be classifi ed into two main fronts. The fi rst is a need to
deploy a technological agent to act in a human manner
when handling decision-making in complex processes.
The second is having an agent that surpasses humans in the
capability to execute a certain task, not only in timeliness
but also with more accuracy. Currently, on the fi rst front, we
have AI acting mostly as a perception agent, matching our
human capability of detecting and classifying objects and
other agents in a short period, which is well exemplifi ed
in urban self-driving vehicles. The ability to enter the
second front and outperform humans is where the research

fi eld expends most of its efforts currently, and it is mostly
related to predictions based on perception, where the self-
driving vehicles would be able to avoid collision events,
outperforming humans in the most diffi cult scenarios.
Reaching mature general-purpose AI systems is the
challenge to today’s focused single-purposed solutions,
also referred to as narrow AI.

The computer science (CS) implementation of
AI has a history of constant evolution in approaches and
techniques. The latest shift in the fi eld came with a move
from algorithms and programmed routines, which allowed
systems to automate and solve problems based on specifi c
domain knowledge embedded by domain experts as a
set of rules and algorithms, to the current AI techniques,
which are covered in a practical way in this publication.
The conventional CS classes of solutions can certainly act
as intelligent systems that emulate human intelligence,
but the specialization to one applicable domain reduces
the scalability and positions it very close to automation
solutions. At the domain scale, the limitations of the
conventional approach become clearer, and this complexity
is the main reason why AI research is considered crucial
to many areas, such as self-driving vehicles, where real-
world scenarios cannot be entirely modeled and have
been one of the main successful deployments of neural
networks (NNs).

COMPUTER VISION

In a scenario of increasing obligation for
sustainable usage of natural resources and an increase in
production rates to assure a food security situation in the
world, there is a high demand for improvements at any
stage of agricultural processes (CHARANIA; LI, 2020).
The use of sophisticated technologies aided by AI and
computer vision are considered important factors for the
growing adoption of precision agriculture and entering
the era of Agriculture 4.0 (LU; YOUNG, 2020).

One of the major areas of AI applications is
computer vision. The aim of this area is to create
algorithms that help, simulate, and even overcome
human decisions based on unstructured data that can
be interpreted as images. A variety of devices and
sensors can be used to obtain this type of data, such as
cameras, smartphones, sensors for specifi c bands of the
electromagnetic spectrum (e.g., infrared), etc. These
sensors can be attached to different platforms, whether
they are fi xed to structures, such as supports, stands,
pedestals, posts, and metallic frames, or they are mobile,
such as people, cars, tractors, unmanned aerial vehicles
(UAVs) (e.g., drones), and satellites.
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One of the techniques that boosted the state of the art
of computer vision is deep learning (LECUN et al., 2015).
Most methods developed to solve problems using images
and videos are based on convolutional neural networks
(CNNs). The great advantage of using deep learning
is the reduced need for feature engineering since deep
neural networks are in charge of extracting the problem’s
intrinsic attributes, such as shape, color, and texture
information. In traditional machine learning (ML)
methods, the development and usage of handcrafted
attributes can affect the entire performance of the system.
Moreover, specialists need to create rules, methods, and
ways of highlighting and extracting the characteristics
intrinsic to the problem. The methods based on
handcrafted features are less robust to changes in the
datasets, noise, and variability of data (KAMILARIS;
PRENAFETA-BOLDÚ, 2018).

The impact of this technology in the context of
agriculture 4.0 is the possibility to automate and optimize
a multitude of agricultural processes and products, which
could depend on laboratory procedures, highly specialized
professional participation, a large number of employees
or equipment, and laborious, stressful, or risky procedures
for people. In general, to ensure a good adoption by the
farmers, the systems must have some characteristics, such
as interoperability, scalability, accessibility, and usability;
however, it is still a challenge for most of the existing
applications (ZHAI et al., 2020). The following are some
examples of computer vision uses in different areas of the
agricultural production chain.

For a comprehensive and large-scale view of the
cultivated land area, one of the most common image
formats is obtained by remote sensing, which is aerial
imaging. This type of image can be obtained by satellites,
airplanes, and drones; the main advantages are collecting
data in a nondestructive way and systematically
obtaining information about large areas (KAMILARIS;
PRENAFETA-BOLDÚ, 2018). Currently, drones are
gaining popularity due to the versatility and control they
provide, as well as the increase in the offer of all related
equipment, such as cameras, sensors, and software, and
furthermore, the increase in autonomy and load capacity.
In general, large numbers of images are produced, and
the evaluation carried out by specialists can be laborious,
which can lead to inattention and error. Thus, the use
of algorithms and AI to conduct pattern recognition in
the data are essential for this type of task. The main
applications are directed towards crop and livestock
monitoring. In the work of Barbedo (2019), a review
on the use of drones in different applications includes
classifi cation of vegetation, detection and quantifi cation
of water stress, diseases, pests, and nutritional defi ciency.
In addition to monitoring, this type of information can

integrate crop forecasts, biomass estimation, and canopy
cover models. The images used for these applications
can be from the visible RGB spectrum region, from
other bands of the spectrum (e.g., near infrared), or
the combination of them in a vegetation index format.
Most of the papers cited use traditional mathematical
modeling techniques, such as linear and nonlinear
regression, and the use of traditional ML techniques,
such as support vector machines (SVMs) and random
forest. The most recent techniques, such as deep neural
networks (DNNs) and convolutional neural networks,
appear in few studies but are the most promising since
they are state-of-the-art techniques for computer vision
systems (LECUN et al., 2015).

Satellite images continue to be important in several
applications in precision agriculture, such as water stress,
biomass, diseases, and crop estimation, using both
hyperspectral images and vegetation indices (SISHODIA
et al., 2020). One of the most common classifi cation tasks
is land usage and land cover, which can consider different
types and scales of images and present good results
both with traditional ML techniques and deep learning
(CHENG et al., 2017; MA et al., 2019).

One of the main aspects of agriculture 4.0 is the
use of technology directly in the fi eld, which is available
directly to the farmer. The use of mobile devices, such
as smartphones and cameras, has increased the capacity
for monitoring and data collection. An application
example is the recognition of plant diseases through
images. Some works address this theme for a specifi c
crop, such as wheat (JOHANNES et al., 2017), while
others more generally target different crops and diseases,
such as Mohanty et al. (2016), with 14 cultures and 26
diseases, and Ferentinos (2018), with 25 diseases and 58
pairs of [culture, disease]. There are differences between
the works, mainly in the capture procedure and in the
quantity of the images; however, in all the works, an
accuracy above 90% was reported. For the detection
and recognition of pests, a review by Barbedo (2020)
considers three main situations: images of traps, fi elds,
or controlled environments. Traps are the most widely
adopted form of pest monitoring and, if performed
correctly, can sample the insect population in a large
area of interest. The use of a variety of image processing
methods, traditional ML, and deep learning has been
observed. The reported performance also varies, mainly
given the variety of insect species and environment;
however, the majority prevails with an accuracy over
80%. The use of faster, automatic, and more accurate
methods, both for the detection of diseases and pests, can
make the process of maintaining the crop more effi cient,
especially when integrated with an early warning
system.
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The use of robots in the fi eld (agrobots) can be
seen as futuristic by more traditional farmers; however,
agricultural machines already have a very high level
of automation, including machines that do not need
a driver (KAYACAN et al., 2015). In addition to self-
driving, some machines have an automatic harvesting
and fruit counting system based on computer vision,
for example, for apple harvesting in a more controlled
environment using RGBD Kinect V2 sensors and two
Faster R-CNN models (FU et al., 2020) and strawberry
harvesting using traditional image processing algorithms
(QINGCHUN et al., 2012). In the review by Pereira
et al. (2017), little or no use of deep learning methods
was observed, but a diversity of traditional methods of
image processing and ML, such as extracting texture
attributes from different color spaces (e.g., HSV, L *
a * b), was observed mainly for removing background
and leaves for the segmentation of the fruits of interest.
For better performance in counting fruits and automatic
harvesting, the review by Tang et al. (2020) takes into
account depth estimation methods or depth measurement
sensors. Another important application for autonomous
machines is the automatic detection of weeds, which, in
general, uses traditional methods of image processing
and ML. Despite promising results with the use of deep
learning, the high cost of creating a database is a barrier
to the commercial development of solutions (WANG
et al., 2019). It is worth mentioning that these devices
have limited computational capacity and need real-time
responses; that is, the algorithms must be optimized for
this environment.

There are already some initiatives for the
development and commercialization of systems that
seek to automate agricultural processes (CHARANIA;
LI, 2020). The Eldorado Research Institute develops
solutions for agriculture. For example, a solution for
the recognition of citrus plant diseases and a solution
for the recognition of pests and insects in adhesive traps
using small single board computers have already been
developed. Despite the advance of connectivity in the
fi eld, many applications can be developed without this
dependence, making custom solutions more appropriate
to the reality and needs of the farmer.

There are still major challenges in the area
of computer vision applied to agriculture, mainly
the existence of publicly available databases for the
development and faster evaluation of applications;
however, there are some initiatives, such as those listed
by Lu and Young (2020) for different tasks, by Chiu
et al. (2020) for aerial images, and by Mohanty et al.
(2016) for plant diseases. The main problem of most
datasets is that they are for a very specifi c problem and
do not cover most of the real situations of farmers around

the world. Thus, a bottleneck for the development of
solutions based on computer vision is the creation of a
database to train algorithms, since it can be an expensive
and overwhelming activity through the participation
of one or more experts. The collection, verifi cation,
annotation, and preparation of data can use most of the
project time and effort. There are different techniques
that seek to minimize the use of annotated data, such as
data augmentation, which makes minor changes to the
original images (SHORTEN; KHOSHGOFTAAR, 2019).
The use of synthetic data is becoming more popular,
but the difference between real and synthetic data can
be challenging. A potential technique to overcome this
challenge is called domain adaptation (WANG; DENG,
2018; WILSON; COOK, 2020). The use of generative
adversarial network (GAN) models is gaining much
attention and producing surprising results in other areas
(ISOLAet al., 2018), with one of the applications being to
generate more realistic training samples, minimizing the
difference between synthetic and real data (HOFFMAN
et al., 2018).

ACOUSTIC EVENT DETECTION

Acoustic events are part of our daily life and
can help to retrieve valuable information about the
environment. These events have been used for different
purposes in speech signal processing, such as sound
event detection and classifi cation (MESAROS et al.,
2017), voice activity detection (LUO; MESGARANI,
2019), speaker identifi cation, and source separation
(TAN; DEHAK, 2020). The acoustic signals allow
sensing without interfering with the environment, which
can be valuable for nonintrusive monitoring. In the
context of Agriculture 4.0, fi eld monitoring and sensing
are extremely important, and acoustic events can play
an important role in pest detection, activity monitoring,
and population estimation, leading to a large gain in
production.

Acoustic feature engineering focuses on extracting
features from raw acoustic signals to characterize the
signal according to its properties in the time and frequency
domains. Hand-engineered features have been studied
over the past years combined with conventional signal
processing and ML-based methods. A well-engineered
set of features often leads to better performance and
usually requires most part of the development effort when
designing a d ML solution. To make learning algorithms
less dependent on hand-crafted features, DL models have
been proposed to minimize the dependency and thereby
give better performance in different acoustic applications
(LATIF et al., 2020).
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Several ML/DL systems have been designed to
improve the automatic detection of pests in the context
of precision agriculture. These techniques are valuable
for the early detection and monitoring of aggressive
pests. The acoustic activity of insects can be isolated
from other environmental sounds through the analysis of
features in time and frequency domains. The automatic
detection of the red palm weevil (RPW) in palm trees
has been proposed based on acoustic events (PINHAS
et al., 2008). The RPW bore deep into palm crowns and
trunks and was not visible until the palm was nearly
dead. The acoustic signals of RPW can be recorded from
the infested palms using off-the-shelf recording devices
(PINHAS et al., 2008). The authors applied vector
quantization and Gaussian mixture models (GMMs),
achieving detection ratios close to 98.9%. A low-cost,
real-time platform for the acoustic detection of cicadas
in plantations has been proposed by analyzing their
acoustic patterns (ESCOLA et al., 2020). The proposed
method is based on the bark scale (BS), wavelet-packet
transform (WPT), paraconsistent feature engineering
(PFE) for feature extraction, and support vector
machines (SVMs) for classifi cation. The authors reached
an accuracy of 96.41% for differentiating cicadas and
background noise. A sound parameterization technique
has been designed specifi cally for the identifi cation and
classifi cation of acoustic signals of insects using Mel
Frequency Cepstral Coeffi cients (MFCC) and Linear
Frequency Cepstral Coeffi cients (LFCC) (NODA et al.,
2019). SVM and random forest (RF) algorithms were
evaluated for classifi cation of the insect sounds, which
reached a success rate of 98.07% on the 343 insect
species dataset.

Activity monitoring and population estimation
play an important role in the context of precision
agriculture. A monitoring and classification of bee
swarm activity was proposed based on acoustic event
analysis (ZGANK, 2019). The bee colony typically
produces four characteristic sounds: flying, fanning
(worker bees trying to cool the hive with ventilation),
hissing (defense reaction to potential outside threats),
and piping (produced by the queen bee as a challenge
signal to any new queen bee in a hive). The bee’s
acoustic signal shows a distinctive energy distribution
over the spectral frequency range, which indicates
the possibility of acoustically separating the sounds
(ZGANK, 2019). The author applied the MFCC and
Hidden Markov Models (HMM) for acoustic modeling
and reached a classification accuracy of 80.89%.
Accurate monitoring of livestock grazing behavior
is important to assure the sustainable and efficient
use of grazing resources (CHELOTTI et al., 2020).
Thus, a real-time monitoring approach to measuring
feeding behavior was proposed based on acoustic

events (CHELOTTI et al., 2020). The method is based
on the recognition of jaw movements from a small
microphone placed on the cattle head. A multilayer
perceptron and a decision tree were evaluated for the
detection of rumination and grazing sounds. The MLP
showed the best results, reaching F1-scores higher than
0.75 for both sound activities.

The good performance and often low
computational cost make acoustic signals a highly
feasible method for detection and monitoring systems
in the context of Agriculture 4.0. The use of ML/
DL algorithms combined with acoustic signals will
allow the development of portable devices for remote
monitoring of animal activities and aggressive insect
pests. Thus, this allows early detection and leads to
larger production gains.

DATA PROCESSING

According to Maneta et al. (2009), agriculture
represents 70% of the water consumption of Brazil.
Understanding how evapotranspiration works is one of
the ways to reduce this problem. Different methods to
quantify evapotranspiration use several measurements at
the site, such as temperature, solar radiation, wind speed,
and relative humidity; however, these values are not
available for all regions (ALTHOFF et al., 2018).

Models of ML have the ability to generalize;
in that case, this type of model can effi ciently predict
decent results. Recent research (ALTHOFF et al., 2018)
compares how satisfactory the AI models are in contrast
to the Penman Monteith method, which has been the
standard model for evapotranspiration, and the results
show that even with a small amount of data, the ML
algorithm exhibited smaller errors than the other methods
that are settled in the literature.

The data used for the analysis were retrieved
from 11 meteorological stations located northwest of
Minas Gerais state in Brazil between 1987 and 2016.
The data used to predict the model contains minimum,
maximum, and average temperature, relative humidity,
solar radiation, and wind speed. Finally, yet importantly,
the evapotranspiration used for this study is from one
hypothetical crop.

Several ML models were applied to the dataset
and evaluated, the most relevant ones being the Bayesian
regularized neural network (BRNN), random forest (RF),
and support vector machines (SCMs). The evaluation
process examined the mean absolute error (MAE),
root mean squared error (RMSE), and coeffi cient of
determination (r2).
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The results of the experiment showed that the
BRNN for all combinations of entry has the most precise
results. This result was achieved even when the data were
limited, showing robustness of the model, even when
compared to models in the literature. Therefore, this
model can aid in the estimation of evapotranspiration for
irrigation and water balance.

Livestock production is undergoing a wave of
digitalization that is driven by market demands, such as
traceability, and applying AI to such an expanding data
availability environment is one of the most promising
short-term practical AI successes. In the egg-producing
market, traceability is required to detect and isolate
problems shown in productivity that are caused by diseases
or any other factors (LONG; WILCOX, 2011).

Any disruptor to productivity has less impact
when detected earlier, which is the challenge faced by
AI solutions in the fi eld, since spreading to other animals
can cause serious damage and economic issues to the
producers.

Ramirez-Morales et al. (2016) used a support
vector machine (SVM) model to try to prevent this type
of problem. Their results show that their model was able
to achieve an accuracy of 0.9854, a specifi city of 0.9865,
a sensitivity of 0.9333, and a positive predictive value of
0.6135; this result was obtained one day in advance.

The data collected for this experiment were
collected from 2008 to 2014 and are already labeled. The
input used was created using one window size multiple of
seven days. According to Ramirez-Morales et al. (2016),
this multiple could be related to the weekly cyclical
variations. Features, such as age of birds, production over
days minus seven previous days, and so on were used to
achieve the article goal.

The most important attribute for the SVM model is
the kernel. The authors test several kernels to fi nd which
one is the best for the problem they are trying to solve. To
select the best kernel, the accuracy, specifi city, sensitivity,
and positive predictive value were analyzed, and the kernel
with the best performance was the radial basis function
(RBF). Another important attribute was also optimized:
the sigma, and the best sigma was 5.

The results showed with this model could help
producers reduce their economic losses because they
would have one day of advance notice to act before the
disease spread.

Groundwater level changes are another important
research fi eld in which AI is being applied to predict and
monitor natural resources, overcoming historical models.
According to Sahoo et al. (2017), groundwater dynamics
are determined by several factors, such as physical

hydrogeological properties, climate variability, and
pumping. The challenge is to predict how changes in one
system variable will impact other variables that determine
the groundwater quantity and quality.

The study uses groundwater level data for 33
years collected in the USA over the years 1980 and 2012
from the USGS National Water Information System,
Standardized Pacifi c Decadal Oscillation (PDO) index,
North Atlantic Oscillation (NAO) index, and Multivariate
El Nino Southern Oscillation (ENSO) index as potential
predictor variables.

Variable preprocessing is a very important step
in any machine-learning problem. The article solved the
preprocessing step using a three-step pipeline: singular
spectrum analysis (SSA), genetic algorithm, and mutual
information. SSA, as defi ned by VAUTARD et al. (1992),
is a form of principal component analysis (PCA) used to
detect periodic signals in time series data with noisy data
inside.

In Sahoo et al. (2017), they used a multilayer
perceptron (MLP) network to predict the groundwater
level changes over time. MLP is a feed forward neural
network with at least one hidden layer, each layer is fully
connected with the subjacent layer, and the inputs are
propagated through the network in a forward direction.
MLP networks allow the approximation of any function
(FACELI et al., 2017).

As a conclusion for Sahoo et al. (2017), they
highlight the importance of data preprocessing,
comparing the model with raw data and the model feed
with preprocessed data, and the use of MLP network
and conventional regression models. The MLP network
fed with preprocessed data shows a better accuracy and
performance than another tested method. Additionally,
they highlight the importance of climate indices in
groundwater level prediction for agriculture.

CONCLUSIONS

1. We introduce several AI applications for agriculture
mainly in three different contexts: computer vision,
acoustic event processing, and data processing. Most
applications are still at a proof-of-concept maturity
level, while others are highly specialized for a
specifi c situation or domain; therefore, many desired
characteristics, such as scalability, accessibility,
usability, etc., are not fulfi lled. There are several
challenges to increasing the adoption of systems with
AI, but many of them could be alleviated with more
opportunities to explore real problems, collect data with
different sensors, interact with experienced experts,
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and receive feedback from users on how to improve
the systems. Publicly available datasets of agricultural
data could increase interest in applying successful
techniques from different domains to agricultural
problems, reduce the effort to collect and annotate
data, and enable the development and evaluation of
algorithms;

2. Traditional supervised ML algorithms, such as SVMs
or small neural networks, are very popular, but with
the increasing amount of available data and the variety
of situations that a model has to deal with, depending
on the application, the handcrafted features limit the
performance of algorithms. The development of deep
learning-based solutions is recommended, mainly for
computer vision problems. However, image processing
methods or traditional mathematical modeling
techniques could give reliable and fast responses in a
more controlled environment or limited devices;

3. Future impacts of AI in the fi eld of agriculture should
become more systemic as specialized solutions start
to integrate across the value chain. The tendency of
increased digitalization is the fuel for AI solutions; with
more available digital data, AI models should be able
to grow in maturity and start gaining traction across
traditional areas in the fi eld;

4. From the practical experience gained in such
technological projects, the Eldorado Research Institute
believes that the challenges in the near future are
concentrated on two fronts: The fi rst is explainable AI
(YI et al., 2018), which should enable the automation
of traditional processes by adding transparency to the
reasoning process, gaining trust of the stakeholders.
The second front is the great challenge faced
in implementing distributed AI considering the
complexity of the agricultural value chain. These
fronts are high impact enablers for broader AI
solutions that should be available in the near future.
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