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Airborne hyperspectral remote sensing applied to determine the 

texture of a Cambisol in the Chapada do Apodi, Ceará1

Sensoriamento remoto hiperespectral aerotransportado aplicado na determinação da 
textura de um Cambissolo da Chapada do Apodi-CE

Eurileny Lucas de Almeida2*, Marcio Regys Rabelo de Oliveira3, Odílio Coimbra da Rocha Neto3, Luís Clenio 

Jário Moreira4 and Adunias dos Santos Teixeira3

ABSTRACT - Texture is of great importance in soil management, as it strongly influences the physical, hydraulic and chemical 
behaviour of soils. It is therefore necessary to determine texture, with the spectral band ratio being a fast and precise alternative 
method for this purpose. The aim of this study was to evaluate the use of spectral data, acquired by the ProSpecTIR-VS 
airborne sensor with a spatial resolution of 1 m, in selecting two bands for building a Normalised Difference Index that allows 
the textural attributes of the soil to be estimated, besides preparing a texture map of the soil in the image. Sixty-four samples 
were collected from several areas inserted in the Jaguaribe-Apodi irrigated perimeter, which is located in the Chapada do 
Apodi, in the Lower Jaguaribe Basin, where the predominant soil classes are Cambisols. The samples were collected from 
exposed soil, based on the hyperspectral images of the ProSpecTIR-VS airborne sensor. The Normalised Difference Index 
(NDI) was constructed, carrying out all possible normalised band ratios, with the best indices selected based on the coefficient 
of determination (R²). The most promising results for R² were obtained when estimating sand in the 1045 and 1323 nm bands, 
with an R² of 0.5. The low values for R² can be explained by interference in the spectral response from materials on the soil 
surface, such as crop residue, gravel and vegetation. Preparing the sand map using the best model resulted in 82.1% of the 
pixels having values between 20 and 60% sand, falling between the minimum and maximum sand content of the soil samples.

Key words - Precision agriculture. Reflectance spectroradiometry. SpecTIR-VS sensor.

RESUMO - A textura tem grande importância no manejo dos solos, pois influencia fortemente o comportamento físico-hídrico e químico 
dos solos. É necessário, portanto, a determinação de tal textura, sendo a razão de bandas espectrais, uma alternativa rápida e precisa para 
este fim. O objetivo deste trabalho foi avaliar o uso de dados espectrais, adquiridos pelo sensor aerotransportado ProSpecTIR-VS, com 
resolução espacial de 1 m, na seleção de duas bandas para composição de um Índice por Diferença Normalizada, que permita estimar 
os atributos texturais do solo, além de elaborar o mapa textural do solo na imagem. Foram coletadas 64 amostras em áreas inseridas no 
perímetro irrigado Jaguaribe-Apodi, que se localiza na Chapada do Apodi, Bacia do Baixo Jaguaribe, cujas classes predominantes são 
Cambissolos. As amostras foram coletadas em solo exposto, tendo como base as imagens hiperespectrais do sensor aerotransportado 
ProSpecTIR-VS. O Índice por Diferença Normalizada (NDI) foi construído, realizando-se todas as possíveis relações normalizadas de 
bandas e os melhores índices foram selecionados com base no coeficiente de determinação (R²). Os resultados mais promissores de R² 
foram obtidos na estimativa da areia, com as bandas 1045 e 1323 nm, com R² de 0.5. Os baixos valores de R² podem ser explicados 
pela interferência na resposta espectral por materiais que estavam na superfície do solo, como resto de cultura, cascalho e da vegetação. 
A elaboração do mapa de areia utilizando o melhor modelo resultou em 82.1% dos pixels com valores entre 20 e 60% de areia, 
enquadrando-se entre mínimo e máximo dos teores de areia das amostras de solos.

Palavras-chave - Agricultura de precisão. Espectrorradiometria de reflectância. Sensor SpecTIR-VS.
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INTRODUCTION

Soil texture, which represents the relative 
proportions of sand, silt and clay particles (BRADY; 
WEIL, 2013), is of great importance in soil management, 
as it affects the physical, hydraulic and chemical behaviour 
of the soil. However, obtaining textural data via particle-
size analysis when it is necessary to prepare thematic maps 
of sand or clay, for example, is costly in large areas, given 
that soil texture usually displays high spatial variability.

Techniques that estimate this soil attribute more quickly 
and less invasively are therefore of great value. It is here that 
reflectance spectroradiometry is seen as a viable alternative 
for estimating various soil attributes, including texture (CASA 
et al., 2013; CASTALDI et al., 2014, 2016; CEZAR et al., 
2012; LIAO et al., 2013), as the technique is fast and non-
destructive, especially when using aerial sensors.

One of the ways to use the spectral data of soils 
is through the division or ratio between bands using a 
non-linear mathematical operation. The principal aim is 
to highlight the spectral differences in a pair of bands that 
characterise certain features of the target spectral signature 
curve (NANNI; DEMATTÊ, 2006; RIBEIRO; SILVA; 
SILVA, 2016; VIÑA et al., 2011), also called an index.

Hyperspectral data, which are characterised as data 
collected in narrow and continuous bands of the spectrum, 
have greater potential for preparing indices than do 
multispectral data (broad bands), as they enable the acquisition 
of far more detailed information about the target, such as the 
physical properties of the soil. This data can be obtained at 
different levels of acquisition, for example, the ProSpecTIR-
VS airborne sensor (SpecTIR Advanced Hyperspectral 
Solutions), which operates in 357 spectral bands in the visible 
(VS), near infrared (NIR) and shortwave infrared (SWIR), 
to which Brazil gained access in 2010, when the Brazilian 
company FotoTerra® entered into a technological partnership 
with the American company SpecTIR®. Since then, 
numerous studies in various areas have been carried out 
using data from this sensor (AMARAL et al., 2015, 2018; 
ROCHA NETO et al., 2017; SANCHES; SOUZA FILHO; 
KOKALY , 2014; STREHER et al., 2014).

Given the above, the aim of this study was to apply 
spectral data, acquired by the ProSpecTIR-VS sensor, to 
selecting bands for building a Normalised Difference Index 
capable of estimating the textural attributes of the soil, as 
well as prepare a texture map of the soil in the image.

MATERIAL AND METHODS

Study area

The study was carried out in several areas inserted 
in the Jaguaribe-Apodi irrigated perimeter, which is located 

in the Chapada do Apodi, in the Lower Jaguaribe Basin 
(Figure 1). In general, the Chapada do Apodi consists of 
cretaceous sediments of the Jandaíra and Açu formations, 
with the predominant occurrence of Cambisols (JACOMINE; 
ALMEIDA; MEDEIROS, 1973). In the areas of flat relief 
there are eutrophic Cambisols, derived from carbonate rocks 
of the Apodi Group comprising high-activity clay of a clayey 
texture. These soils have high natural fertility and great 
potential for agricultural use (GATTO, 1999).

According to the Köppen classification, the climate 
in the region is type BSw’h’, characterised by an average 
annual temperature of 28.5ºC, with a minimum of 22ºC 
and maximum of 35ºC. The average annual rainfall is 772 
mm, with irregular rainfall over the years (AGÊNCIA DE 
DESENVOLVIMENTO DO ESTADO DO CEARÁ, 2011). 

ProSpecTIR-VS airborne sensor

On 24 May 2015, hyperspectral images were 
obtained from the ProSpecTIR-VS airborne sensor through 
a technological partnership with the Brazilian company 
FotoTerra® and resources from the National Council for 
Scientific and Technological Development (CNPq), via 
the National Institute for Salinity Science and Technology 
(INCT-Sal). Table 1 shows the characteristics of the sensor 
used to obtain the hyperspectral images.

Transformation of the spectral data (Digital 
Number-DN) into surface reflectance, applying 
atmospheric correction, was carried out by the FotoTerra® 
company using a method based on the MODTRAN-4 radiative 
transfer model (Moderate Resolution Atmospheric 
Transmission). The respective GLT files (Geographic 
Lookup Table) provided by the company were used for 
georeferencing the hyperspectral images.

Collecting soil samples

Sixty-four deformed soil samples were collected 
at a depth of 0-10 cm, with the sampling points located in 
areas of exposed soil, based on the images acquired with the 
ProSpecTIR-VS airborne sensor. Particle size analysis was 
carried out using the pipette method as described by Teixeira 
et al. (2017), to obtain the sand, silt and clay content.

The soil samples were collected from November 2017 
to February 2018; the following procedure was carried out 
to assist in allocating the points: I - the NDVI (Normalised 
Difference Vegetation Index) was calculated using the spectral 
data acquired by the ProSpecTIR-VS airborne sensor; II - using 
map algebra with pixel grouping, pixels with an NDVI value 
of less than 0.3 were separated, this value being considered 
for exposed soils, as observed by Rocha Neto et al. (2017), 
and III - pixels with an NDVI of less than 0.3 were plotted on 
a Google Earth® image using the QGIS® 2.18 software 
(Figure 2), this last step being necessary to help locate the 
points when collecting in the field.
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Figure 1 - Location of the study area

Sensor ProSpecTIR-VS

Spectral band 400 a 2500 nm

Spectral resolution 5 nm

Number of bands 357

Spatial resolution* 1 metre

Table 1 - Characteristics of the hyperspectral sensor

*Flight plan projected for a spatial resolution of 1m

Figure 2 - Location of the soil sampling points

The soil samples were divided, with 80% 
used to obtain the prediction model and 20% for 

validation, as per the methodological flowchart shown 
in Figure 3.
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Figure 3 - Methodological flowchart

Data analysis

A descriptive analysis of the sand, silt and clay 
content was carried out: mean, median, mode, standard 
error of the mean, minimum and maximum values, 
standard deviation, variance, coefficient of variation, 
kurtosis and asymmetry. All classical statistics, graphs 
and tables were obtained using the Microsoft Office® 
spreadsheet software.

A frequency distribution analysis of the attributes 
was made, together with a test for normality using 
the Kolmogorov-Smirnov test at 5%. This considers 
a null hypothesis for a sample taken from a normal 
population. To analyse the relationship between the 
spectral data and the sand and clay content, Pearson’s 
correlation was applied, as per Equation (1).

                                                                            (1)

where, r is Pearson’s correlation coefficient, Yc is the 
calculated value, Yo is the observed value and N the 
number of samples.

Preparation of the Normalised Difference Index

To build the Normalised Difference Index (NDI), 
all possible band ratios were tested in search of one that 
might estimate the texture of analysed soils with greater 
precision, as in Equation (2).

                                                                                       (2)

where, ρj and ρi are the reflectance of any two wavelengths 
within the 357 bands of the spectrum, and where i ≠ j.

The index was chosen based on the best coefficient 
of determination (R²) [Equation (3)] between the value 
obtained by the index and the sand or clay content 
determined in the laboratory. The calculations were made 
using a routine from the MatLab software. In order to 
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visualise the R² values, contour maps were prepared by 
interpolation, employing the nearest neighbor method.

                                                                                       (3)

where, Yc is the calculated value, Yo is the observed value 
and N is the total number of samples.

RESULTS AND DISCUSSION

Analysis of the textural data and descriptive statistics

Figure 4 - Soil textural triangle (a) and sample-point distribution by texture (b)

Figure 4 shows the textural classification of the 64 
soil samples, where 40.6% were classified in the sandy 
clay-loam texture class, 34.4% were classified as clayey 
loam, 20.3% as clayey and 4.7% as having a loamy texture.   

Table 1 shows the descriptive statistics for the sand, 
silt and clay content of the 64 soil samples. Among the 
fractions, the highest values for mean, variance and standard 
deviation were obtained for the sand content. The mean and 
median of the sand and clay values are close, indicating 
symmetrical distribution, which can be confirmed by the 
values for asymmetry being close to zero.

Descriptive statistics
Sand Silt Clay

------------------------------------------------- g.kg-1 -------------------------------------------------

Mean 422.8 240.5 336.6

Standard error 10.8 6.5 8.2

Median 427.1 232.8 338.0

Standard deviation 86.8 52.3 65.2

Sample variance 7529.9 2735.4 4251.8

Coefficient of variation 20.52 21.74 19.37

Kurtosis -0.9 2.6 -0.5

Asymmetry 0.0 1.3 -0.4

Amplitude 361.0 258.8 287.6

Minimum 236.9 171.5 169.9

Maximum 597.9 430.2 457.4

K-Smirnov (P-values) 0.6 0.5 0.7

Normality Normal Normal Normal

Table 2 – Descriptive statistics for the sand, silt and clay content of the 64 soil samples
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The coefficient of asymmetry and kurtosis is more 
sensitive to extreme values than are the mean or standard 
deviation, since a single value can strongly influence these 
coefficients (ISAAKS; SRIVASTAVA, 1989). This can 
especially be seen in the values for silt (Table 2), which 
registered the greatest asymmetry.

Analysis of the spectral data

Figure 5 shows the mean, standard deviation, 
maximum and minimum values for reflectance at all 
wavelengths, as obtained by the ProSpecTir-VS airborne 
sensor. The low reflectance values can be explained by 
the interaction between the radiation and atmospheric and 
environmental factors such as humidity and soil structure. 
As determined by Dewitte et al. (2012), the humidity and 
roughness of the soil surface reduce reflectance, since these 
are the main factors to influence backscatter radiation.

Pearson’s correlation between the sand and clay 
content and soil reflectance (Figure 6) achieved the best results 
between 400 and 1350 nm, particularly in the 660 nm region, 
with correlation values reaching 0.30. The wavelength that 
most correlated with the sand content was 662 nm, showing a 
negative correlation. For clay, the best result was at 658 nm, 
with a positive correlation.

The low correlation (Figure 6) between the mineral 
particles of the soil and reflectance, can be explained by the 
spectral mixture, with interference in soil surface reflectance 
coming mainly from the gravel, as well as by the mineralogy 
of this gravel in the study region, which is composed mainly 
of nodules and ferruginous concretions (GIRÃO et al., 2014). 
The gravel in the soil samples ranged from 56 to 171 g kg-1. 
This is an indication that the spectral response of the soils, 
obtained by the ProSpecTIR-VS sensor, may have been 

Figure 5 - Mean (blue line), standard deviation (grey border), maximum (orange line) and minimum (green line) for reflectance at the 
different wavelengths in the 64 soil samples, obtained by the ProSpecTIR-VS sensor

influenced by the surface roughness and mineralogy of the 
gravel, resulting in a decrease in reflectance. The nodules 
and concretions, also found on the surface, are ferruginous, 
with oxidic mineralogy, especially hematite and goethite, 
and the presence of kaolinite as the main phyllosilicate 
(GIRÃO et al., 2014; MOTA et al., 2007).

Spectral mixing can occur when the materials are 
smaller than the dimensions of the pixel; as such, the 
radiation flow detected by the sensor is composed of a 
mixture of radiation from all the materials within the pixel 
(SHIMABUKURO; PONZONI, 2017).

Figure 7 plots the spectra of the most sandy and 
clayey soil samples. In general, sandy soils tend to have 
greater reflectance due to their mineralogical composition 
(rich in quartz); whereas in medium to clayey soils the 
opposite occurs, as underlined by Cezar et al. (2012). 
However, with the soil samples in this research, the 
loamiest soil was characterised by greater reflectance than 
the sandy soil, as shown in Figure 7.

This is probably due to the soils of the study 
region containing nodules and ferruginous concretions 
(GIRÃO et al., 2014), and also to the size of the sand, with 
the sandy soil, therefore, reflecting less than the clayey soil. 
Cezar et al. (2012), when comparing the reflectance factor of 
sand with and without the presence of iron oxide, observed the 
ability of iron oxides to absorb electromagnetic energy.

Normalised Difference Index - NDI

Figure 8 shows a plot of the Coefficients of 
Determination (R²) between the results of the indices, using 
the spectra obtained with the ProSpecTIR-VS sensor, and the 
sand and clay content. The best results for R² were found in 
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Figure 6 - Pearson’s correlation between the sand and clay content and reflectance of the soil samples

Figure 7 - Spectral response of two soil samples with different texture

Figure 8 - Coefficient of Determination (R²) between the NDI of the spectral data and the sand and clay content
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the estimate for sand, especially when the band ratio involved 
wavelengths around 1050 and 1300 nm, as well as around 600 
and 1800 nm, as also shown in Table 3. These bands may be 
related to humidity (1300 and 1800 nm) and the presence of 
iron oxides (600 and 1050 nm); bands close to these were also 
seen by Genú and Demattê (2012) and Demattê et al. (2015).

The model for estimating sand using the NDI in 
bands 1045 and 1323 can be seen in Figure 9, where the 
Coefficient of Determination was 0.50. 

To validate the model, the coefficient of 
determination (R²) was obtained between the estimated 
and measured values for sand in the 20% of samples not 
used for calibration. Figure 10a shows the ratio between 
the measured sand content and that estimated by the model 
from Figure 9. Among the validation samples, an outlier 
can be seen in the graph in Figure 10a, which caused a 
reduction in R² from 0.84 to 0.45, as well as an increase in 
the RMSE from 3.71 to 4.29, considering the value outside 
the curve when compared with Figure 10b.

After applying the NDI to the ProSpecTIR-VS 
hyperspectral images to pixels with exposed soil only, 
the sand was estimated using the regression model shown 

in Figure 9. This generated the map shown Figure 11, 
resulting in 82.1% of the pixels with values between 200 
and 600 g.kg-1 sand, falling between the minimum and 
maximum sand content of the soil samples. It is important 
to note that 41% of the pixels had a sand content close to 
the mean value of the soil samples (Table 1).

Sand Clay

Band 1 Band 2 R2 Band 1 Band 2 R2

1045 1323 0.50 1667 1717 0.40

1052 1323 0.49 1661 1717 0.38

1045 1317 0.49 1667 1724 0.38

1045 1329 0.49 1655 1724 0.37

662 1774 0.49 1661 1724 0.37

662 1780 0.49 1649 1724 0.36

Table 3 – The best NDIs for estimating sand and clay

Figure 9 – Model for estimating sand, using the NDI comprising 
the 1045 and 1323 nm bands

Figure 10 - Ratio between the measured and estimated sand 
content (a) and without the outlier (b)

Figure 11 - Map of the sand content
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In the generated map (Figure 11), a reduction in sand 
content can be seen from northwest to southeast, which 
indicates a spatial dependence of the attribute. It is worth 
pointing out that outliers were found in the spectral response 
of the soil, but this is due to the presence of materials on the 
soil surface, such as invasive plants and crop stubble.

CONCLUSIONS

1. It was concluded that it is possible to build a Normalised 
Difference Index using data from the ProSpecTIR-VS 
sensor in bands 1045 and 1323, capable of estimating 
textural attributes, especially the sand content of the 
soil, with an R2 value of 0.50;

2. In addition, the NDI was applied to the image 
obtained by the ProSpecTIR sensor, which enabled the 
construction of a sand map that could then serve as a 
basis for decision making by irrigators in the Jaguaribe-
Apodi irrigated perimeter.
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