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 Estimating texture and organic carbon of an Oxisol by near infrared
spectroscopy1

Estimación de textura y carbono orgánico de un Oxisol mediante espectroscopia de
infrarrojo cercano

Felipe Fernández-Martínez2*, Jesús Hernán Camacho-Tamayo3, Yolanda Rubiano-Sanabria4

ABSTRACT - Laboratory analyses are a fundamental basis for monitoring soil behavior. These analyses are usually tedious and
expensive depending on the methodology used, which may limit data acquisition. The aim of this research was to evaluate the potential
of Near Infrared (NIR) diffuse refl ectance spectroscopy for the estimation of texture and Soil Organic Carbon (SOC) of an Oxisol. A
total of 313 samples were collected at fi xed depths of 0.0-0.10, 0.10-0.20, 0.20-0.30, 0.30-0.40 and 0.40-0.50 m in 70 points distributed
in 248 ha, from which SOC and the fractions of sand, silt and clay were determined. The spectral signatures were obtained from a
NIRFlex sensor, and the modeling was done applying partial least squares regression. A highly representative model was obtained for
the SOC estimation, with a coeffi cient of determination (R2) of 0.97, Root Mean Square Error (RMSE) of 1.10 g kg-1 and Residual
Prediction Deviation (RPD) of 5.63. For the textural fractions, estimation models of lesser performance were obtained, with R2 values
of 0.62; 0.44 and 0.62, RMSE values of 1.10%, 2.92% and 3.08%, and RPD values of 1.82, 1.61 and 1.81 for sand, silt and clay,
respectively. By means of geostatistical interpolation surfaces, the behavior of the measured and spectrally estimated variables was
compared. NIR spectroscopy proved to be a viable alternative for the precise estimation of SOC, while for the textural fractions it is
convenient to explore the improvement of the estimates.
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RESUMEN - Los análisis de laboratorio de suelos son una base fundamental para monitorear su comportamiento. Estos análisis
suelen ser tediosos y de costo elevado según la metodología empleada, lo que puede limitar la obtención de esta información.
El objetivo de esta investigación fue evaluar el potencial de la espectroscopía de reflectancia difusa deInfrarrojo Cercano (NIR)
en la estimación de la textura y el Carbono Orgánico del Suelo (COS) de un Oxisol. Se recolectaronen total 313 muestras
a profundidades fijas de 0.0-0.10, 0.10-0.20, 0.20-0.30, 0.30-0.40 y 0.40-0.50 m en 70 puntos distribuidos en 248 ha, y les
fueron determinadas el COS, la fracción de arena, limo y arcilla. Con un sensor NIRFlex se obtuvieron las firmas espectrales,
y la modelación se efectuó aplicando regresión por mínimos cuadrados parciales. Se obtuvo un modelo de alta representatividad para la
estimación del SOC, con coefi ciente de determinación (R2) de 0.97, Raíz del Error Cuadrático Medio (RMSE) de 1.10 g kg-1 y Desviación
Residual de la Predicción (DRP) de 5.63. Para las fracciones texturales se obtuvieron modelos de estimación de menor
desempeño, con R2 de 0.62, 0.44 y 0.62, RMSE de 1.10%, 2.92% y 3.08%, y DRP de 1.82, 1.61 y 1.81 para arena, limo y arcilla
respectivamente. Por medio de superficies de interpolación geoestadística se comparó el comportamiento de las variables
medidas y estimadas espectralmente. La espectroscopía NIR mostró ser una alternativa viable para la estimación precisa del
COS, mientras que para las fracciones texturales es conveniente explorar el mejoramiento de las estimaciones.
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INTRODUCTION

Soil is a non-renewable resource, whose knowledge
and management are key in agricultural production. For
this, laboratory analyses are required, which are usually
demanding in time and resources (VENDRAME et al.,
2012; NOCITA et al., 2014). Therefore, it is necessary to
apply techniques that reduce processing times and costs.

Soil texture infl uences soil physical and chemical
properties (JOVIĆ et al., 2019), and hydrodynamic
processes such as drainage and water retention (POGGIO;
GIMONA, 2017). Its determination, in addition to serving as
a factor for the classifi cation of soils, can serve for decision-
making for production and conservation processes.

Soils are the most important reserve of organic
carbon in terrestrial ecosystems, small changes in this
can signifi cantly alter the concentration of CO2 in the
atmosphere and, therefore, contribute to the phenomenon
of global warming (TEKIN; TUMSAVAS; MOUAZEN,
2012; ANGELOPOULOU et al., 2019). Soil Organic
Carbon (SOC) is a measurable component of soil organic
matter, which is a key attribute to assess soil quality, since it
has a great infl uence on its physical, chemical and biological
properties, and is also related with macronutrients, such as
nitrogen and phosphorus, which are determinants in terms
of fertility (LAAMRANI et al., 2019).

NIR spectroscopy is a technique used for prediction
of the physical and chemical properties of various
materials, and has shown great potential for application in
soil science and the agricultural sector, given the quality
of the estimates obtained for soil properties and the lower
amount of resources used compared to other conventional
laboratory analyses (SUMMERS et al., 2011; VISCARRA
ROSSEL et al., 2016; NAWAR; MOUAZEN, 2019). Due
to their sensitivity to wavelengths in the NIR range of
the electromagnetic spectrum, certain soil organic and
inorganic components can be evaluated qualitatively
and quantitatively using spectral analysis (HOBLEY;
PRATER, 2019). For texture and SOC, several spectral
modeling studies have been reported for the estimation
of properties (VISCARRA ROSSEL et al., 2016;
CAMACHO-TAMAYO et al., 2017; LASHYA et al.,
2018; POPPIEL et al., 2018; LIU et al., 2019), in which
factors such as the sensor that acquires the spectra (in
the fi eld or laboratory), the pretreatments applied to the
spectral signatures, the multivariate analysis techniques
used with the reference data and the robustness of the soil
property databases are used to calibrate the models.

However, for equatorial oxisols, few studies have
been carried out on the application of NIR spectroscopy
for soil analysis (CAMACHO-TAMAYO; RUBIANO;
HURTADO, 2014; CAMACHO-TAMAYO et al., 2017).
Given the agricultural expansion that these soils are

experiencing in Colombia, together with the need to
adopt technologies that allow the monitoring of soil
properties in a rapid way in the context of climate change
(ANGELOPOULOU et al., 2019), this research was
proposed with the objective of evaluating prediction
models made from NIR spectroscopy in estimating the
texture (sand, silt and clay fractions) and the SOC of
an equatorial Oxisol. The standard laboratory reference
methods applied were: 1) the pipette for the texture and 2)
the elemental analyzer for the SOC.

MATERIAL AND METHODS

Study area

The study area is located in the Carimagua
Research Center of the Colombian Agricultural Research
Corporation - AGROSAVIA, located in the municipality
of Puerto Gaitán, department of Meta, Colombia. It is
located at the geographic coordinates of 4° 34’01.6”N 71°
19’58.0”W and has an area of 248 ha, an average altitude
of 175 meters above sea level, average temperature of 28 °C
and average annual rainfall of 2339 mm. The relief of the
area is fl at to slightly undulating, with slopes ranging
from 0 to 7%. The soils in the study area are classifi ed
as Typic Hapludox, characterized by their low pH
values and organic matter (CAMACHO-TAMAYO;
RUBIANO; HURTADO, 2014).

Sampling and laboratory analysis

The sampling was carried out by means of a
rigid network separated perpendicularly every 200 m
in the month of July 2018. It consisted of 70 cells, in
which disturbed soil samples were extracted at depth ranges
of 0.0-0.10, 0.10-0.20, 0.20- 0.30, 0.30-0.40 and 0.40-0.50 m,
that is, 5 samples for each trunk. In total, 313 soil samples
were collected, of which 70 correspond to the fi rst depth, 70
to the second, 68 to the third, 59 to the fourth and 46 to
the last depth. The difference in samples by depth is due
to the occurrence of the water table in some positions.
Figure 1 shows the detail of the sampling, indicating the
number of samples per point.

The soil samples were oven-dried at a temperature
of 35 °C for 48 hours, and sieved through a 2 mm
mesh. Soil texture was determined by sieving using the
pipette method according to the procedure proposed by
DAY (1965), applying sodium hexametaphosphate as
a dispersing agent. In this procedure, the sand and clay
fractions are calculated by sieving, and the silt fraction by
the difference with the total mass of soil. Since the soils of
the study area did not show the presence of carbonates, the
determination of SOC was carried out using an Elemental
Analyzer (TruSpec CN Carbon Nitrogen Determinator,
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Figure 1 - Location of the study area with the number of samples collected per sampling point

LECO co., St. Joseph, Mi, USA). The spectral
signatures were obtained from a NIRFlex N-500
sensor (BÜCHI Labortechnik AG), which has a resolution
of 8 cm-1 and collects 1500 spectral response readings
in the entire near infrared range (from 1000 to 2500 nm).
Between 60 and 70 g of sieved soil sample was placed
in Petri dishes 10 cm in diameter by 2 cm high. The
scanned area of the Petri dish corresponded to a diameter
of 9 cm, of which the sensor recorded a mean value of 32
reflectance scans for each wavelength value.

Spectral analysis

Prior to the application of Partial Least Squares
Regression (PLSR) for the generation of models, the
total of the samples was divided into two groups, a
calibration group and a validation group. These groups
corresponded to 70% and 30% of the total samples, that
is, 219 for the calibration group and 94 samples for the
external validation group. The division of these groups
was carried out using the Kennard-Stone algorithm
(KENNARD; STONE, 1969), which allowed the selection
of the samples for each group in a uniform way within the
predictor space, in such a way that they represented the
total variability of the data set. The procedure followed by
this algorithm is that for a calibration group of n samples
(XCAL = {xCALj}n

j=1) to be selected from the total group of
samples N { }( )NnwherexX N

ii <= = ,1
:

The sample that best represents the mean in the
predictor space is found in X, removing it from X and
placing it in XCAL. This sample will be named xCAL1.

The sample of X that is most dissimilar to xCAL1
is found, it is removed from X and placed in XCAL. This
sample will be named xCAL2.

The sample of X is found that is most dissimilar to
those that are already part of XCAL, it is removed from X
and located in XCAL.

Step 3 will be repeated n-4 times to complete the
selection of XCAL (xCAL4, …, xCALn).

It is important to note that the dissimilarity between
XCAL and xi is defi ned by the smallest distance of any
sample assigned in XCAL for  each  xi. After the defi nition
of groups, the spectral signatures obtained were subjected
to pretreatments that consisted of the combination of
transformations from refl ectance to absorbance, fi rst
derivative of Savitzky-Golay and Standardized Normal
Variate (SNV) in order to correct the possible noise of
the spectra and optimize the prediction of the models to
be generated. The PLSR was carried out after performing
each combination of spectral pretreatments.

For evaluation of the models, the R2 (Equation 1)
was taken into account between the data measured and
estimated by each model, the RMSE (Equation 2) of the
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data derived from the spectral modeling, and the RPD
corresponding to the factor by which the precision of the
estimate has been increased was compared to the use of
the mean of the reference data (Equation 3).

                                                                             (1)

                                                                                        (2)

                                                                                                (3)

Where yi and ŷi correspond to the measured and estimated
data respectively, ȳi corresponds to the mean of the
measured data and N is the total number of samples. For
the RPD, SDMED corresponds to the standard deviation
of the total data measured in the laboratory, while the
RMSEVAL corresponds to the root of the mean square error
of the data from the external validation group.

The maximum number of components in modeling
by partial least squares was defi ned at 10. By means of
a 20-fold cross validation process, the optimal number
of latent variables that were included as estimators in the
calibration models was determined, which were based on
the lowest calibration RMSE (PINHEIRO et al.,  2017;
HOBLEY; PRATER, 2019; LAAMRANI et al., 2019).
The distribution of calibration and validation groups, the
construction and subsequent validation of the models was
carried out with the software R (R Core TEAM) and the
“prospectr” and “pls” libraries.

The performance of the estimation models
of each land property was based on the RPD values,
applying the classification proposed by Viscarra
Rossel, Mcglynn and McBratney (2006), a quantitative
model that obtains a RPD less than 1.0 is defined as
very poor; a RPD between 1.0 and 1.4 indicates a poor
model; RPD values between 1.4 and 1.8 will indicate
a regular model; a RPD between 1.8 and 2.0 will be
a good model and between 2.0 and 2.5 will indicate
a very good model; and a RPD greater than 2.5 will
be considered an excellent model. Regarding the R2

values, according to McBratney and Viscarra Rossel
(2008), the estimates of soil properties will be classifi ed
as: very good (R2 > 0.80), good (0.80 > R2 < 0.60),
regular (0.60 > R2 < 0.40) and poor (R2 < 0.40).

The regression coeffi cients obtained from the
PLSR provide qualitative information on the correlations
between the data measured in the laboratory and the
spectral signatures (SUMMERS et al., 2011; TEKIN;
TUMSAVAS; MOUAZEN, 2012). From this information,
the most representative spectral bands were identifi ed to
estimate the SOC and textural fractions of the soil.

Geostatistical analysis

Once the models were calibrated and validated,
the experimental semivariograms were calculated for
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the measured and spectrally estimated data. These
semivariograms were adjusted to theoretical models,
whose best adjustment performance was based on obtaining
lower values of the sum of squares of the residuals, and the
higher values of R2 and the Cross-Validation Coeffi cient
(CVC). Once the semivariogram of each property was
adjusted, the Degree of Spatial Dependence (DSD) was
verifi ed by the relationship between the nugget effect (C0)
and the sill (C0 +  C1). DSD is classifi ed as weak when
it is less than 25%, moderate when it reaches values
between 25% and 75%, and strong at values greater
than 75% (CAMBARDELLA et al., 1994). From the
adjusted semivariograms, ordinary kriging was applied
to perform spatial interpolation. Ordinary kriging is a
widely used method for spatial prediction analysis, as it
allows obtaining unbiased linear predictions with minimal
variance (DIGGLE; RIBEIRO, 2007). The geostatistical
processing of the data was carried out with the GS + ™ v.9
software (Gamma Design Software, LLC, Plainwell, MI)
in combination with ArcGIS® v. 10.8 (ESRI).

RESULTS AND DISCUSSION

Descriptive analysis of the measured variables

The predominant texture classes in the study area
were silty loam for the fi rst three depths (0.0-0.30 m) and
silty clay loam for the remaining two depths (0.30-0.50 m). The
fi ner texture present in the deeper thicknesses, compared
to the surface thicknesses, is characteristic of Oxisols with
an intense degree of physical weathering (CAMACHO-
TAMAYO et al., 2017). As for the SOC contents, a
downward behavior is evident in the soil profi le, that is,
lower SOC contents were found with increasing profi le
depth. The descriptive analysis of the measured variables
is shown in Table 1. The behavior of increase and decrease
of SOC and textural fractions, similar to that of the present
research, has also been reported by other studies carried
out in oxisols in South America (RAMIREZ-LOPEZ;
REINA-SÁNCHEZ; CAMACHO-TAMAYO, 2008;
CAMACHO-TAMAYO; RUBIANO; HURTADO, 2014).

Soil spectral signatures

Figure 2A shows all the spectral signatures
obtained in the study area. The refl ectance behavior of
these soils proved to be similar to that of other studies
previously reported in Oxisols, which were developed in
Brazil (PINHEIRO et al., 2017; POPPIEL et al., 2018).
To understand how a spectral response can explain a given
response variable, it is useful to do a qualitative analysis
of these spectra. In the spectral signatures obtained in this
research, a variation in the refl ectance of the samples is
evidenced, which tends to increase as the depth within
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SD = standard deviation. CV = coeffi cient of variation

Table 1 - Descriptive analysis of the texture and SOC for each depth sampled

Property Unit Depth [m] Mean Minimum Maximum SD CV

SOC g kg-1

0.0-0.10 26.15 19.76 32.41 0.26 10.08
0.10-0.20 17.49 13.30 21.57 0.18 10.51
0.20-0.30 13.87 10.76 17.53 0.16 11.33
0.30-0.40 11.24 8.46 15.04 0.17 14.78
0.40-0.50 9.53 5.77 13.11 0.16 16.50

Sand %

0.0-0.10 6.45 1.85 9.65 2.04 31.82
0.10-0.20 4.47 1.53 7.53 1.44 32.26
0.20-0.30 3.16 1.00 5.29 1.03 32.23
0.30-0.40 2.72 1.03 5.00 0.94 33.68
0.40-0.50 2.39 1.18 3.83 0.78 33.43

Silt %

0.0-0.10 74.63 66.22 82.37 3.44 4.64
0.10-0.20 73.89 63.44 83.89 4.28 5.81
0.20-0.30 71.85 62.13 82.34 4.37 6.08
0.30-0.40 69.40 60.47 81.60 4.69 6.73
0.40-0.50 67.80 60.53 75.10 3.75 5.55

Clay %

0.0-0.10 18.92 11.21 26.46 3.42 17.87
0.10-0.20 21.64 11.77 32.23 4.39 20.06
0.20-0.30 24.99 13.69 35.62 4.70 18.99
0.30-0.40 27.88 16.96 36.71 4.26 15.28
0.40-0.50 29.81 22.90 36.91 3.74 12.55

the soil profi le increases (Figure 2B). This distinction is
due to the characteristic contents of organic matter (or
organic carbon) and iron oxides characteristic of Oxisols
(CARNIELETTO et al., 2018).

The effects of iron oxides and their relationship
with color variation in soils can also be described from
spectral data. Yellowish soils show a spectral behavior
infl uenced by goethite, presenting higher spectral
refl ectance (POPPIEL et al., 2018), while reddish soils,
characteristic for their hematite content, tend to present
lower refl ectance (CARNIELETTO et al., 2018). The
highest proportion of clay in the samples corresponding
to the depths of 0.30-0.50 m, in relation to the fi rst three
depths, is exhibited by the greater decrease in the refl ectance
of these deeper thicknesses from the wavelength 2200 nm,
which has been reported in other investigations (SUMMERS
et al., 2011; CURCIO et al., 2013). The highest SOC contents
were found in the most superfi cial depths (Table 1), and the
spectral responses corroborated this, since the refl ectance
decreased with increasing SOC content. This is due
to the fact that the organic material present in the soil
samples absorbs energy, which triggers a low intensity

of refl ectance throughout the spectrum, which tends to
decrease at higher wavelengths (CAMACHO-TAMAYO;
RUBIANO; HURTADO, 2014).

Performance of spectral models

The models that achieved a better performance
according to the RPD and R2 parameters for the evaluated
properties can be seen in Table 2. The graphs of the linear
regression for the measured and estimated data in the
validation and calibration groups are shown in Figure 3. It
is evident that for the validation of the models, according
to McBratney and Viscarra Rossel (2008) for R2, and
Viscarra Rossel, Mcglynn and McBratney (2006) for RPD,
an excellent estimate of SOC was achieved, followed by
good estimates for sand and clay fractions, and fi nally, a
regular performance for silt.

For SOC, the model showed an excellent
performance with very good estimates according to its
RPD (5.63) and its R2 (0.97) respectively, and the RMSE
in validation reached a value of 1.10 g kg-1 (Table 2). This
performance obtained with spectral models is similar
to studies carried out on a large scale, such as the one
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Figure 2 - A) Spectral signatures obtained for all the samples. B) Spectral signatures averaged according to sampling depth

Table 2 - Parameters for evaluating the performance of spectral models

Property Unit
Calibration Validation

Range RMSE R2 RPD Range RMSE R2 RPD
SOC g kg-1 5.77 -32.41 1.14 0.97 5.46 7.48 – 32.40 1.10 0.97 5.63
Sand % 1.00 - 9.65 1.13 0.69 1.76 1.03 - 9.50 1.10 0.62 1.82
Silt % 60.47 - 82.37 3.03 0.59 1.56 64.24 - 82.34 2.92 0.44 1.61
Clay % 11.77 - 36.91 3.12 0.70 1.79 11.21 - 33.80 3.08 0.62 1.81
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developed by Liu et al. (2019), in which they obtained
in the validation a performance with excellent RPD, R2

equal to 0.96 and an RMSE of 2.90 g kg-1 for a calibrated
model with a total of 11213 soil samples. Jaconi, Don and
Freibauer (2017) reported in their review of studies in
Europe, on a regional and continental scale, with stratifi ed
samples, very good calibrations according to R2 and
excellent for their RPD. For many applications, this degree
of estimation is permissible, which makes NIR spectroscopy
analysis a cost-effective option for the determination of

SOC, and can be applied to a wide range of soil types,
when a representative dataset is available, robust enough
to build the models (JACONI; DON; FREIBAUER, 2017).
The sampling carried out at the different depths in this
investigation allowed to generate a spectral model robust
enough to estimate, in a way closer to reality, the variation
of the SOC in the soil profi le compared to other studies
where, in general, one or two depths are sampled, either
horizon A or B, or both, as is the case of the research of
Camacho-Tamayo, Rubiano and Hurtado (2014).

Figure 3 - Results of the validation of the spectral models for (a) SOC, (b) sand, (c) silt and (d) clay

(D)

Figure 3 - Results of the validation of the spectral models for (A) SOC, (B) sand, (C) silt and (D) clay
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For the texture fractions, contrasting results were
obtained in the validation of the models compared to other
investigations. This may be due to the fact that together,
the sand, silt and clay fractions add up to 100%, and
the uncertainty in their calculation may increase when
obtaining a fraction indirectly, while in the case of SOC, it is
obtained directly with laboratory methodology (AHMADI
et al., 2021). For sand, a good R2 (0.62) was obtained, a
good quantitative prediction (RPD = 1.82), which agrees
with what was found by Pinheiro et al. (2017) in soils with
an average sand content of 39% in which they achieved an
R2 of 0.62 and a RPD 1.61. In soils with average sand contents
of 9.3% (varying between 1.9% and 82.9%), applying PLSR
and various calibration models, Hobley and Prater (2019)
obtained excellent RPD (from 3.90 to 4.49) together with
an R2 of 0.95. For the clay fraction, the model reached
a R2 of 0.62, which is considered good, and a RPD of 1.81.
For soils with an average clay percentage of 32%, a
validation RMSE of 8.49% and a very good RPD (2.35)
are reported in the study developed by Viscarra Rossel
and Webster (2012) in Australia. These good estimates for
the calculation of clay have also been reported by Curcio
et al. (2013) showing R2 greater than 0.80. Regarding the
fraction of silt, the obtained models showed less satisfactory
results (R2 = 0.44 and RPD = 1.61), which agrees with that
reported by Tumsavas et al. (2018) and Pinheiro et al.
(2017), the latter obtaining an R2 of 0.36 and a RPD
of 1.25. The poor performance in predicting the fraction
of silt may be due to errors associated with the laboratory
methodology used to measure the texture. When the silt
content is calculated as the remaining percentage of 100%
after adding the clay and sand contents, this would then
generate a greater degree of analytical error, which would
be refl ected in the silt fraction, as is the case with what
happened in the study by Pinheiro et al. (2017). In the
study carried out by Camacho-Tamayo et al. (2017) in
the eastern plains of Colombia at the Research Center
of Carimagua, estimation of the models of the textural

fractions was made using the reference data obtained from
the Bouyoucos methodology. The pipette, compared to
Bouyoucos, can disaggregate the soil particles in a greater
proportion due to the longer stirring time in the procedure,
which was evidenced in the increase in the silt fraction
and the decrease in the sand fraction in comparison with
the study carried out by Camacho-Tamayo et al. (2017),
which was also refl ected in the performance of the models
calculated in these two investigations.

The application of multivariate statistical methods
is necessary to fi nd correlations of spectral signatures
with soil properties, with PLSR being the most applied
methods (ANGELOPOULOU et al., 2019; NAWAR;
MOUAZEN, 2019), which bases its operation on the
description of linear relationships of the variables of
interest. However, these relationships are not always
linear, and it is necessary to apply techniques such
as neural networks or machine learning, to optimize
the estimates, especially with more robust databases.
Although, for this research it was possible to obtain
an excellent model for the estimation of SOC, for the
texture, on the other hand, not so satisfactory results
were obtained, for which it could be explored in the
application of these other techniques to achieve better
quality estimates, or make the reference database more
robust. Although it is possible to obtain good results with
samples external to the study area, it would be convenient
to include these external samples in a recalibration of
the model, in order to strengthen its predictive capacity
and ensure that these estimated values have a greater
representativeness, especially with studies at a local or
regional scale (VISCARRA ROSSEL et al., 2016).

Representative wavelengths in spectral modeling

The  beta  regression  coefficients  (β)  as  a
function of wavelength, derived from the PLSR, are
shown in Figure 4 for each of the properties addressed.

Model/ Property Unit β Coeffi cient considered Spectral bands with the greatest infl uence on the model Number of spectral bands

SOC g kg-1 β ≥ 0.03; -0.03 ≥ β
1410-1418, 1869-1876, 2017-2065, 2155-2176,
2200-2207, 2210-2219, 2234-2279, 2312-2322,

2351-2359
163

Sand % β ≥ 150; -150 ≥ β
1410-1413, 1875-1876, 1909-1926, 2029-2053,
2168-2174, 2234-2269, 2314-2322, 2351-2361,

2448-2454
110

Silt % β ≥ 1.0; -1.0 ≥ β
1395-1416, 1430-1453, 2145-2159, 2189-2197,

2204-2211, 2218-2277, 2487-2495
140

Clay % β ≥ 1.0; -1.0 ≥ β
1395-1410, 1895-1913, 2145-2159, 2189-2211,

2218-2284, 2376-2397
156

Table 3 - Relative bands of greater weight in the construction of spectral models according to the estimated property
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These regression coefficients are obtained from the
linear combination of the predictive values in the
PLSR, and can be used to highlight wavelengths with
a greater degree of infl uence on the property of interest
(TEKIN; TUMSAVAS; MOUAZEN, 2012; TUMSAVAS

Figure 4 - Regression coeffi cients β as a function of wavelength for the spectral models of (A) SOC, (B) sand, (C) silt and (D) clay

et al., 2018).  Table 3 shows the relative spectral bands
of greater weight in the construction of the spectral
model of each property, in which the greater number of
relevant wavelengths is evidenced in the estimation of
SOC in comparison with sand, silt and clay.
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Considering regression coefficients as a function
of the wavelength generated from the PLSR, spectral
bands of greater representativeness are identified for
the estimation models, which manifest themselves in
the form of peaks, which are generated through the
wavelength. These peaks are considered as indicators
of the correlation between the infrared frequencies
and the constituents of interest in the soil, in this case,
the SOC and the texture fractions. Figure 4 shows
approximate lengths of 1400, 1900 and 2200 nm that
had the greatest influence on the generation of models
for the four properties. These three characteristic bands
are related to the bending and stretching of the O – H
bonds in networks of minerals and water molecules,
associated with clay minerals and other components
of the soil matrix (SUMMERS et al., 2011; TEKIN;
TUMSAVAS; MOUAZEN, 2012).

Because it is an Oxisol, the soil in this study is
characterized by the presence of clay minerals such as
hematite, kaolinite, gibbsite and goethite, which have an
infl uence on the spectral response in the NIR (VISCARRA
ROSSEL; MCGLYNN; MCBRATNEY, 2006), as in
wavelengths of 1400 and 2200 nm for kaolinite, gibbsite at
approximately 2250 nm due to its OH-AL characteristics
and goethite with weak distinctions at wavelengths close
to 1700 nm (VENDRAME et al., 2012). Figure 4 shows
the behavior of peaks in the spectral bands adjacent
to those reported for the characteristic presence of
these minerals. For the soils in the study area, the
predominant mineral in the clay fraction is kaolinite,
which is manifested in the peaks of 1900 and 2200
nm (CAMACHO-TAMAYO et al., 2017). It should be
clarified that the estimation of clay and its associated
minerals has achieved correlations with spectral bands
in the visible spectrum (CARNIELETTO et al., 2018;
TUMSAVAS et al., 2018; HOBLEY; PRATER, 2019),
which is not part of this research.

The results of this research showed that the
prediction performance of sand and clay were very similar
(Figures 3D and 3D), while for silt a lower performance
was achieved (Figure 3C). The similarity in the quality of
the models is verifi ed with the greater infl uence of similar
or close wavelengths in the generation of the models
(Figures 4B, 4C and 4D). This may be because clay, silt,
and sand can be associated with similar spectral regions
of the NIR range (LASHYA et al., 2018). For the SOC,
it was possible to obtain an accurate estimation model
(Figure 3A), and in turn in the spectrum, it was possible to
evidence a greater number of wavelengths of relevance for
the generation of the model (Figure 4A) compared to those
obtained for the estimation of the texture (Tabla 3). The
wavelengths of greater weight in spectral models for SOC
found in this investigation were mostly similar to those
reported by other carbon studies with NIR spectroscopy
(SUMMERS et al., 2011; ANGELOPOULOU et al., 2019;
LAAMRANI et al., 2019), such as, for example, the 2200 nm
region, which has been shown to be correlated with lignin and
humic acids, important in the prediction of SOC (SUMMERS
et al., 2011). The spectral bands highlighted in Table 3 may
be useful for other investigations, with which it could be
corroborated if they are analogous in more types of soil, or if
they could only be applicable for the study of Oxisols.

Geostatistical interpolation surfaces

The semivariograms adjusted for the analyzed data
are shown in Tables 4 and 5. It is important to mention that,
for each of the properties at each depth, with measured and
estimated data, no weak DSDs were presented; therefore,
no nugget-type models were evidenced. The spatial
structure of the adjusted theoretical semivariogram model
was conserved in most cases between the measured and
estimated data for each property. For the CVC and R2

parameters, values greater than 0.70 were obtained in
almost all of the semivariograms generated.

Property Depth [m] Semivariogram model C0 C0 + C1 Range [m] CVC R2 DSD [%]

Measured SOC [g kg-1]

0.00-0.10 Exponential 2.1E-2 5.9E-2 753 0.73 0.95 65
0.10-0.20 Spherical 1.5E-2 3.3E-2 1046 0.72 0.96 56
0.20-0.30 Spherical 8.1E-3 2.0E-2 695 0.85 0.83 59
0.30-0.40 Exponential 1.1E-2 2.7E-2 711 0.77 0.90 59
0.40-0.50 Spherical 1.0E-2 2.4E-2 538 0.76 0.91 58

Estimated SOC [g kg-1]

0.00-0.10 Spherical 1.6E-1 1.2E+0 582 0.81 0.94 87
0.10-0.20 Exponential 1.5E-1 3.8E-1 828 0.79 0.97 60
0.20-0.30 Exponential 7.3E-2 1.8E-1 760 0.71 0.99 58
0.30-0.40 Spherical 4.6 E-2 1.7E-1 641 0.87 0.88 72
0.40-0.50 Spherical 2.6E-2 1.0E-1 490 0.94 0.85 75

Table 4 - Parameters of the theoretical semivariograms for SOC and sand obtained from measured and spectrally estimated data



Rev. Ciênc. Agron., v. 53, e20218167, 2022 11

Estimating texture and organic carbon of an Oxisol by near infrared spectroscopy

Measured sand [%]

0.00-0.10 Exponential 1.20 4.12 700 0.71 0.96 71
0.10-0.20 Exponential 0.65 1.84 600 0.71 0.95 65
0.20-0.30 Spherical 0.47 0.98 391 0.89 0.74 52
0.30-0.40 Exponential 0.29 0.73 950 0.90 0.85 60
0.40-0.50 Spherical 0.16 0.49 427 0.78 0.87 67

Estimated sand [%]

0.00-0.10 Spherical 0.16 1.24 582 0.81 0.94 87
0.10-0.20 Exponential 0.15 0.38 828 0.79 0.97 60
0.20-0.30 Exponential 0.07 0.18 760 0.71 0.99 58
0.30-0.40 Spherical 0.05 0.17 641 0.87 0.88 72
0.40-0.50 Spherical 0.03 0.10 490 0.94 0.85 75

Continuation Table 4

Property Depth [m] Semivariogram model C0 C0+C1 Range [m] CVC R2 DSD [%]

Measured silt [%]

0.00-0.10 Spherical 3.50 11.50 635 1.00 0.92 70
0.10-0.20 Spherical 8.67 21.29 1029 0.85 0.95 59
0.20-0.30 Spherical 8.15 19.12 763 0.79 0.96 57
0.30-0.40 Spherical 6.29 21.94 575 0.88 0.92 71
0.40-0.50 Spherical 4.17 16.93 891 0.91 0.97 75

Estimated silt [%]

0.00-0.10 Spherical 0.63 2.08 672 0.87 0.98 70
0.10-0.20 Spherical 0.33 4.26 685 0.82 0.94 92
0.20-0.30 Spherical 2.93 8.27 793 0.70 0.92 65
0.30-0.40 Exponential 4.56 12.60 706 0.78 0.81 64
0.40-0.50 Spherical 2.93 8.81 739 0.73 0.88 67

Measured clay [%]

0.00-0.10 Spherical 5.73 12.30 1230 0.93 0.97 53
0.10-0.20 Spherical 9.06 20.60 1177 0.79 0.91 56
0.20-0.30 Spherical 10.96 25.13 912 0.80 0.94 56
0.30-0.40 Spherical 1.35 19.68 448 0.86 0.92 93
0.40-0.50 Spherical 7.39 14.79 1171 0.99 0.91 50

Estimated clay [%]

0.00-0.10 Spherical 0.87 3.37 677 0.89 0.88 74
0.10-0.20 Spherical 0.24 5.22 650 0.85 0.85 95
0.20-0.30 Spherical 3.15 11.50 900 0.82 0.97 73
0.30-0.40 Spherical 4.14 11.37 513 0.79 0.99 64
0.40-0.50 Spherical 2.91 7.35 748 0.69 0.93 60

Table 5 - Parameters of the theoretical semivariograms for silt and clay obtained from measured and spectrally estimated data

For the geostatistical interpolation surfaces
(Figures 5 and 6) it was observed that the spatial behavior
of the variables remained between the measured and
estimated data as reported by other studies (SUMMERS
et al., 2011; CAMACHO-TAMAYO; RUBIANO;
HURTADO, 2014; TUMSAVAS et al., 2018). However,
it is important to clarify that the level of correspondence

that interpolation surfaces may have between measured
and estimated data is due to the performance of the
spectral model. For the SOC (Figure 5A), there were no
differences between maximum and minimum values per
interpolation surface of measured and estimated data at
the level that did occur for the textural fractions (Figure 5B,
6A and 6B), which is attributed to lower representativeness
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Figure 5. Geostatistical interpolation surfaces obtained with measured and estimated data for (A) SOC and (B) the sand fraction

of the models of the textural fractions in comparison with
the spectral model of SOC (Table 2). The foregoing is also
evidenced when examining the behavior of each property
according to the sampling depth, where although for

measured and estimated data, the trend in the behavior of
SOC, sand and silt, is reduced to greater sampling depths,
and that of clay when increasing to greater depths, the
correspondence obeys the representativeness of the model.
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Figure 6 - Geostatistical interpolation surfaces obtained with measured and estimated data for the silt fraction (A) and the clay fraction (B)

CONCLUSIONS

1. This research confi rms that the estimation of SOC
performed by NIR spectroscopy in an Oxisol from the
equatorial tropics, in combination with chemometric

methods, shows to be a useful tool that would save
time and resources over the use of standard laboratory
methodologies that, despite being quite accurate, may
not be environmentally friendly like the Walkley Black
case or expensive like the elemental analyzer. On the
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other hand, the models for estimating the clay, silt and
sand fractions showed a lower performance compared
to that obtained for SOC, which should be explored
in future research with different methodologies for
obtaining reference data and multivariate analysis for
this type of soil. With these results, the present study
allows us to have a greater detail for the management of
soils and their potential for carbon storage;

2. NIR spectroscopy applied in soils allows the analysis
of larger volumes of samples in shorter periods of time,
which would improve the uncertainty at the spatial scale
of soil studies. A greater number of investigations in
which different types of soil, their characteristics and their
agronomic conditions are evaluated, will be imperative to
expand the application of NIR spectroscopy in estimations
of textural fractions, SOC and other properties of interest.
This can be achieved by strengthening the soil spectral
libraries, which would imply a high initial investment in
obtaining reference data, which would be offset as the
models built are implemented and with the decrease in
the execution of conventional laboratory analyses.
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