
Revista Ciência Agronômica, v. 54, e20228567, 2023
Centro de Ciências Agrárias - Universidade Federal do Ceará, Fortaleza, CE
www.ccarevista.ufc.br ISSN 1806-6690

Scientifi c Article

Performance prediction of crosses using estimated breeding values for
regions of soybean production in Brazil1

Anderson Dallastra2*, Joênes Mucci Peluzio2, Leandro de Freitas Mendonça3, Rafael Ravaneli Chagas4, Bruno de
Almeida Soares4, Gabriel Mendes Villela5, Nizio Fernando Giasson6

ABSTRACT - The aim of this study was use the performance prediction of crosses in a group of conventional soybean

genotypes to obtain the breeding value (BV), and to evaluate the correlation between the prediction and the actual productive

potential of the progeny generated by this method in experimental tests for different seasons and environments, and determine

whether the methodology is efficient in generating progeny of high productive potential for the soybean macro-regions (SMR)

and soil and climate regions (SCR) of Brazil. A total of 481 conventional elite genotypes were selected as parents, the BV were

generated, and crosses were predicted using the restricted maximum likelihood/best linear unbiased prediction mixed-model

procedure (REML/BLUP). In 2019, the predicted crosses and advancement of the F1 and F2 segregating populations were carried

and sent to the breeding programs of a private company in Passo Fundo-RS, Cambé-PR, Rio Verde-GO, Lucas do Rio Verde-MT

and Porto Nacional-TO, where they were sown during the 2019/2020 crop season. During the 2020/2021 season, 1868 progeny

were selected and tested in experimental trials at these locations. The progeny were again tested during the 2021/2022 season

in experimental trials in 50 environments in SCR throughout Brazil. The result of the analysis showed a very weak to moderate

correlation, indicating little efficiency for the prediction model used in this study. It is suggested that the prediction model

be revised to include a greater number of variables, such as the kinship matrix, so that the BV of the genotypes can be more

assertively estimated, especially when the aim is to select progeny in early generations with a high degree of heterozygosity.
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INTRODUCTION

The principal aim of a breeding program is
to develop genetic combinations between parents
(RESENDE; ALVES, 2021) and then develop cultivars
that are superior to current cultivars grown and selected
in areas that represent the growing region of the species
(FRITSCHE-NETO, 2013).

Man y cultivar development programs grow a large
number of crosses in the expectation that one might result
in a superior genetic combination that can be released
as a new cultivar. With an eff ective method of choosing
the parents, the number of crosses could be considerably
reduced (BORÉM; MIRANDA, 2013).

Since its inception, plant improvement has been
based on the visual selection of individuals, i.e., selection
based on phenotypic value only (ALLARD, 1999).

It is presumed that the use of mixed models
can predict the genotypic value, also known as the
breeding value (BV), increasing the efficiency of the
selective processes in plant breeding. The REML/BLUP
(Restricted Maximum Likelihood/Best Unbiased Linear
Prediction) mixed-model method is currently used for
studying families, allowing the genetic parameters to
be estimated and the genotypic values of the families to
be predicted (RESENDE, 2002). According to Pinheiro
et al. (2013), there is a growing number of reports on
the use of BLUP/REML in soybean improvement.

Heff  ner, Sorrells and Jannink (2009), describes
how the success of a genetic improvement program
depends on the accuracy of predicting the genetic value
(BV) from phenotypic values, however, such predictive
procedures still need to demonstrate their practical
eff ectiveness in fi eld tests so that they can be incorporated
into routines as a tool to aid and advance genetic
improvement programs. The selection of good parents is
the key to success in plant breeding, with individuals to
be used as future parents being originally selected based
on their superior genotypic value (BERNARDO, 2020), in
order that methodologies which employ this information
to satisfactorily predict the performance of crosses of
high genetic potential might be promising.

Furthermore, performance prediction in crosses
of proven value can make plant breeding programs more
effi  cient in terms of genetic gains, reducing the costs of
selection processes, and of developing and obtaining new
cultivars, thereby increasing the supply of new cultivars that
can be recommended for the diff erent agricultural regions.

The aim of this study was to predict the
performance of crosses in a group of conventional
soybean genotypes from a private breeding program
to obtain the breeding value (BV) of the genotype

combination. Also, by means of experimental testing
in different seasons and environments, to evaluate the
correlation between the result of the prediction and the
actual productive potential of the progeny generated
by this method and thereby determine whether the
methodology is efficient in generating progeny of high
productive potential for the soybean macro-regions
(SMR) and soil and climate regions (SCR) of Brazil.

MATERIAL AND METHODS

All the genotypes in this study are conventional
and come from the soybean breeding programs of GDM
Genética do Brasil S.A (GDM) implemented in each
SMR and SCR in Brazil, as per the third approximation
(KASTER; FARIAS, 2012).

A total of 481 elite genotypes were selected
as genitors for predicting the crosses, including 31
genotypes from breeding program M1, relating to
SMR 1; 120 genotypes from breeding program M2,
related to SMR 2; 118 genotypes from breeding program
M3, relating to SMR 3; 176 genotypes from breeding
program M4, related to SMR 4, and 36 genotypes from
breeding program M5, relating to SMR 5.

The REML\BLUP mixed-model procedure was used
with the ASReml-R statistical package (BUTLER et al., 2017)
to predict the genetic values of the genotypes (BV) and
predict the performance of the crossings employing the
Shiny package of the R software (R CORE TEAM, 2016),
as per the following model:

( ) ( ) ijkljklijjiijkl eETEGEGnd ++´+++=Re    (1)

where µ is the overall mean value, Gi is the fi xed eff ect of
the ith genótipo( pi ,...,2,1= ); Ei is the random eff ect of
the jth environment (combination of locality + crop year +
sowing date) ( ) ( )ijE EGN ´;,0 2 is the Random eff ect of
the interaction ( ) ( )ikETN ;,0 2 is the Random eff ect of
the kth trial in the jth environment ( )

jkiT eN ;¿,0~ 2 is the
experimental error associated with the experimental unit of the
ith genótipo in the kth trial in  the jth environment ( )2,0 ejN
with a diff erent variance 2

ej for each environment j.

The predicted cro ssings and generation advancement
of the F1 and F2 populations were carried out in 2019 in Porto
Nacional-TO. After harvesting, these were sent to the GDM
breeding programs in Passo Fundo-RS (M1), Cambé-PR
(M2), Rio Verde-GO (M3), Lucas do Rio Verde-MT
(M4), and Porto Nacional-TO (M5), based on the crossing
guidelines for each SMR and the aims of each breeder. In
the 2019/2020 season, these segregating F2 populations were
sown in experimental trials (POP trials) that included controls,
to characterize the relative maturity group (MGP) of each
progeny based on comparative phenotypic observations.
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In all, 1868 F3 pr ogeny were selected, as
follows: 206 progeny from 26 M1 pedigrees with an
MGP ranging from 5.0 to 6.8; 202 progeny from 106
M2 pedigrees with an MGP ranging from 6.0 to 7.0; 679
progeny from 120 M3 pedigrees with an MGP ranging
from 6.5 to 7.6; 732 progeny from 180 M4 pedigrees with
an MGP ranging from 7.4 to 8.5, and 49 progeny from 28
M5 pedigrees with an MGP ranging from 8.0 to 8.7.

In the 2020/2021 s eason, the F3 progeny were
sown in the respective breeding programs to evaluate
phenotype and yield (YLD) in trials (MROW trials)
consisting of 50 treatments containing progeny with
no repetitions, and 10 treatments containing controls
repeated between each trial. The plot layout comprised
two rows of fi ve meters at a spacing of half a meter
between rows and half a meter between plots (plant corridor)
in an augmented block design (ABD), as described by

Federer (1956). To analyze the data, the R software
(R CORE TEAM, 2016) was used employing mixed-
model methodology and considering random effects,
as per the formula:

ikkiijk eBGnd +++=Re                                                                                               (2)

where µ is the overall mean; Gi is the fi xed eff ect of the
ith genotype ( ) kBpi ;,...,2,1= is the random eff ect of the
kth block ( ) ikB eN ;,0 2 is the experimental error associated
with the experimental unit of the ith genotype in the kth
block ( )2,0 eN .

For the 2021/2022 seaso n, the F4 progeny were sown
in experimental trials (RETEST trials) in 50 environments
throughout Brazil, corresponding to the SCR in each SMR
under the responsibility of the breeding programs, as
shown in Table 1, allowing information on the genotype x
environment interaction (GxE) to be captured.

Table 1 - Environments,  SMR, SCR and number of progeny sown in the 2021/2022 season

Environment SMR SCR Program Number of progeny
Cachoeira do Sul-RS SMR 1 101 M1 206
Restinga Seca-RS SMR 1 101 M1 206
Abelardo Luz-SC SMR 1 102 M1 206
Condor-RS SMR 1 102 M1 206
Passo Fundo-RS SMR 1 102 M1 206
Giruá-RS SMR 1 102 M1 206
São Luiz Gonzaga-RS SMR 1 102 M1 206
Itapeva-SP SMR 1 103 M1 206
Muitos Capões-RS SMR 1 103 M1 206
Ponta Grossa-PR SMR 1 103 M1 206
Cascavel-PR SMR 2 201 M2 202
Itaipulândia-PR SMR 2 201 M2 202
Rolândia-PR SMR 2 201 M2 202
Batayporâ-MS SMR 2 202 M2 202
Caarapó-MS SMR 2 202 M2 202
Francisco Alves-PR SMR 2 202 M2 202
Naviraí-MS SMR 2 202 M2 202
Dourados-MS SMR 2 204 M2 202
Maracaju-MS SMR 2 204 M2 202
Ponta Porã-MS SMR 2 204 M2 202
Rio Brilhante-MS SMR 2 204 M2 202
Sidrolândia-MS SMR 2 204 M2 202
Jataí -GO SMR 3 301 M3 679
Rio Verde -GO SMR 3 301 M3 679
Santa Helena-GO SMR 3 302 M3 679
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Turvelândia -GO SMR 3 302 M3 679
Uberlândia -MG SMR 3 303 M3 679
São Miguel do Passa Quatro-GO SMR 3 304 M3 679
Montividiu-GO SMR 4 401 M3 679
Paraúna -GO SMR 4 401 M3 679
Campo Verde-MT SMR 4 401 M4 732
Primavera do Leste -MT SMR 4 401 M4 732
Campo Novo do Parecis-MT SMR 4 402 M4 732
Campos de Julio-MT SMR 4 402 M4 732
Lucas do Rio Verde-MT SMR 4 402 M4 732
Nova Mutum-MT SMR 4 402 M4 732
Santa Rita do Trivelato-MT SMR 4 402 M4 732
Sinop-MT SMR 4 402 M4 732
Sorriso-MT SMR 4 402 M4 732
Santo Antonio do Leste-MT SMR 4 403 M4 732
Santa Rosa do Tocantins-TO SMR 4 404 M5 49
Barreiras-BA SMR 4 405 M5 49
Correntina-BA SMR 4 405 M5 49
Baixa Grande do Ribeiro-PI SMR 5 501 M5 49
Campos Lindos-TO SMR 5 501 M5 49
Caseara-TO SMR 5 501 M5 49
Porto Nacional-TO SMR 5 501 M5 49
São Domingos do Azeitão-MA SMR 5 501 M5 49
Tasso Fragoso-MA SMR 5 501 M5 49
Uruçuí-PI SMR 5 501 M5 49

Continuation Table 1

The RETEST trials comprised 50 treatments
containing progeny with no replications, and 10 treatments
containing controls that were repeated between each trial,
using the ABD experimental scheme in plots of four rows of
fi ve meters, at a spacing of half a meter between rows and
half a meter between plots. The data were analyzed using
the R software (R CORE TEAM, 2016) to obtain the fi nal
yield of each progeny, considering the dataset from all the
environments, respectively, using mixed-model methodology
and including random eff ects, as per the formula:

ijkjkjiijk eEBEGnd ++++= )(Re                                                    (3)

where µ is the overall mean; Gi is the fi xed eff ect of the ith
genotype ( ) iEpi ;,...,2,1= is the Random eff ect of the jth
environment ( )( )jkE EBN ;,0~ 2 is the Random eff ect of
the kth block in the jth environment ( ) ijkB eN ;,0~ 2 is the
experimental error associated with the experimental
unit of the ith genotype in the kth block of the do jth
environment ( )2,0 ejN with a different variance 2

ej for
each environment j.

To comp are the effectiveness of the predictions
(YLD BV) in relation to the actual potential of the
progeny in the trials (YLD MROW and YLD RETEST),
correlation analysis was used, which, as described by
Henriques (2011), studies the relationship between a
dependent variable and other independent variables,
expressed by one equation that associates them all.
According to Martins (2014), the coefficient of
determination (R2) gives the percentage variability of
the independent variable that can be explained as a
function of the variability of the dependent variable.
The square root of the coefficient of determination
corresponds to the correlation coefficient (r) whose
value should vary between 0 and 1. A value of zero
means that there is no linear relationship between the
variables (HENRIQUES, 2011). When interpreting the
correlations, three aspects should be considered: magnitude,
direction, and significance (NOGUEIRA et al. 2012).
The linear regression model is represented by:
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eXY ++= 10
                                                                                                             (4)

where Y = Dependent variable; β0 = Coeffi  cient of
intersection (Value of Y for X = 0); β1 = Inclination of the
line (can be positive, negative or zero); x = Independent
variable; e = Error due to random eff ects.

The degree of correlation between the variables
(YLD BV, YLD MROW and YLD RETEST) was

analyzed as per Devore (2006) and is shown in
Table 2.

The correlations were analyzed using the R v4.2.1
software (R CORE TEAM, 2016), independently in the
following different scenarios: Scenario M1, Scenario
M2, Scenario M3, Scenario M4, Scenario M5, and
jointly in a general scenario, to study the methodology
applied in each SMR and breeding program.

Table 2 -  Reference correlation coeffi  cient (DEVORE, 2006)

Value of r Defi nition
0.00 to 0.19 Very weak correlation
0.20 to 0.39 Weak correlation
0.40 to 0.69 Moderate correlation
0.7 to 0.89 Strong correlation
0.90 to 1.00 Very strong correlation

RESULTS AND DISCUSSION

In Scenario M1, the result of 0.3278 for r shows
that there is a weak correlation between YLD BV and
YLD MROW, i.e., around 32.7% of the values of YLD
BV explain the result of YLD MROW. The result of 0.2206
for  r  shows  that  there  is  a  weak  correlation  between
YLD BV and YLD RETEST, around 22% of the values

of YLD BV explaining the result of YLD RETEST, as
shown in Table 3.

The results showed a weak correlation between YLD BV
and YLD MROW (0.088). The values of the variables are highly
dispersed and distanced in relation to the line, which makes this
correlation eff ectively weak. The correlation between YLD BV
and YLD RETEST is also weak and only minimally positive
(0.086), with highly dispersed data, as shown in Figure 1.

  Table 3 - Correlation analysis between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M1

Note: *p < 0.1; **p < 0.05; ***p < 0.01

Dependent variable: YLD BV
(1) (2)

YLD MROW
0.088***

(0.018)

YLD RETEST
0.086***

(0.026)

Constant
4,427.646*** 4,422.639***

(75.072) (116.579)
Observations 206 206
R2 0.108 0.049
r 0.3278 0.2206
Adjusted R2 0.103 0.044
Residual Std. Error (df = 204) 83.690 86.406
F Statistic (df = 1; 204) 24.580*** 10.434***
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Figure 1 - Correlation between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M1

Dependent variable: YLD BV
(1) (2)

YLD MROW
-0.070**
(0.034)

YLD RETEST
0.022

(0.052)

Constant
4,594.055*** 4,029.229***
(226.818) (242.660)

Observations 202 202
R2 0.020 0.001
r 0.1428 0.030
Adjusted R2 0.016 -0.004
Residual Std. Error (df = 200) 252.781 255.286
F Statistic (df = 1; 200) 4.169** 0.182

Note: *p < 0.1; **p < 0.05; ***p < 0.01

T able 4 - Correlation analysis between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M2
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In Scenario M2, the result of 0.1428 for r shows that
there is a very weak correlation between YLD BV and YLD
MROW, i.e., 14.2% of the values for YLD BV explain the
result of YLD MROW. The result of 0.030 for r shows that
there is a very weak correlation between YLD BV and YLD
RETEST, only 3% of the values for YLD BV explaining the
result of YLD RETEST, as shown in Table 4.

The results also showed a very weak correlation
between YLD BV and YLD MROW (-0.070) with highly
dispersed data. The correlation between YLD BV and
YLD RETEST is also weak (0.022) with highly dispersed
data, as shown in Figure 2.

In Scenario M3, the result of 0.0360 for r shows
that there is a very weak correlation between YLD BV and
YLD MROW, where only 3.6% of the YLD BV values
explain the result of YLD MROW. The result of 0.010 for r

shows that there is a very weak correlation between YLD
BV and YLD RETEST, only 1% of the YLD BV values
explaining the result of YLD RETEST, as shown in Table 5.

In this Scenario there was a very weak correlation
between YLD BV and YLD MROW (0.006) with highly
dispersed data. The correlation between YLD BV and
YLD RETEST is also very weak (-0.003), again showing
highly dispersed data, as shown in Table 3.

I n Scenario M4, the result of 0.0574 for r
showed that there is a very weak correlation between
YLD BV and YLD MROW, i.e., 5.7% of the values
for YLD BV explain the result of YLD MROW. The
result of 0.0223 for r shows that there is a very weak
correlation between YLD BV and YLD RETEST, with
only 2.2% of the values for YLD BV explaining the
result of YLD RETEST, as shown in Table 6.

Figure 2 - Correlation between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M2
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Dependent variable: YLD BV
(1) (2)

YLD MROW
0.006

(0.007)

YLD RETEST
-0.003
(0.015)

Constant
4,118.097*** 4,164.108***

(36.323) (64.027)
Observations 679 679
R2 0.001 0.0001
r 0.0360 0.010
Adjusted R2 -0.0002 -0.001
Residual Std. Error (df = 677) 109.798 109.864
F Statistic (df = 1; 677) 0.856 0.039

Note: *p < 0.1; **p < 0.05; ***p < 0.01

T able 5 - Correlation analysis between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M3

 Figure 3 - Correlation between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M3
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 Figure 4 - Correlation between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M4

T able 6 - Correlation analysis between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M4

Dependent variable: YLD BV
(1) (2)

YLD MROW
0.031

(0.020)

YLD RETEST
0.012

(0.020)

Constant
4,204.924*** 4,293.395***

(89.043) (83.968)
Observations 732 732
R2 0.003 0.0005
r 0.0574 0.0223
Adjusted R2 0.002 -0.001
Residual Std. Error (df = 730) 149.704 149.915
F Statistic (df = 1; 730) 2.408 0.348

Note: *p < 0.1; **p < 0.05; ***p < 0.01
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There was also a very weak correlation between
YLD BV and YLD MROW (0.031) showing high data
dispersion. The correlation between YLD BV and YLD
RETEST is also characterized as very weak (0.012) and
with high data dispersion, as shown in Figure 4.

For Scenario M5, the result of 0.0141 for r
shows that there was a very weak correlation between
YLD BV and YLD MROW, i.e., only 1.4% of the
values for YLD BV explain the result of YLD MROW.
The result of 0.0812 for r shows that there is a very
weak correlation between YLD BV and YLD RETEST,
approximately 8.1% of the values for YLD BV
explaining the result of YLD RETEST, as per Table 7.

The correlation between YLD BV and YLD MROW
is very weak (0.004) and shows high data dispersion. The
correlation between YLD BV and YLD RETEST is also
very weak (-0.039) with high data dispersion (Figure 5).

The general scenario is shown in Table 8. The result
of 0.4800 for r shows that there is a moderate correlation
between YLD BV and YLD MROW, where around 48% of
the values for YLD BV explain the result of YLD MROW.
The result of 0.0447 for r shows that there is a very weak
correlation between YLD BV and YLD RETEST, with
approximately 4.4% of the values for YLD BV explaining
the result of YLD RETEST.

The correlation between YLD BV and YLD
MROW is classifi ed as moderate and negative (-0.138)
and is shown in Figure 6. The correlation between YLD
BV and YLD RETEST was also very weak (-0.035) and
with highly dispersed data.

As the environmental eff ect exerts a great infl uence
on the behavior of the germplasm, it was certainly one of the
causes of the diff erences in YLD between and in each SMR.

One probable explanation for this low and negative
correlation may be connected to the prediction model used
in the study, which may not be adjusted or suitable for
estimating the correct values for BV. Another possible
explanation could be related to the number of data
environments of each parent used in predicting the crosses,
since the data from one environment might be used against
the data from up to 133 diff erent environments, depending
on the phase of each parent in the breeding program.

Despite being a viable alternative, because of
the low availability of seeds during the initial stages
of plant breeding programs, as described by Duarte,
Vencovsky and Dias (2001), the ABD experimental model
may have infl uenced the results, since the experimental
error associated with the lack of repetitions can be
signifi cant (Silva and Silva, 1999). One way to reduce
the experimental error might be to change to a layout that
reduces the border eff ect, since, as described in Silva,
Souza and Montenegro (1991), this eff ect can result in low
experimental precision. However, these improvements
are subject to the volume of seeds available in the initial
generations of the breeding programs.

Another causal factor of the very weak to
moderate correlation between variables may be related
to the size and number of the diff erent environments
under analysis. Lima et al. (2008) describe how the
genotype x environment (GxE) interaction is one of the

T able 7 - Correlation analysis between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M5

Dependent variable: YLD BV
(1) (2)

YLD MROW
0.004

(0.041)

YLD RETEST
-0.039
(0.069)

Constant
4,035.583*** 4,218.453***
(233.874) (288.572)

Observations 49 49
R2 0.0002 0.007
r 0.0141 0.0812
Adjusted R2 -0.021 -0.015
Residual Std. Error (df = 47) 128.821 128.405
F Statistic (df = 1; 47) 0.009 0.314

Note: *p < 0.1; **p < 0.05; ***p < 0.01
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Figure 5 - Correlation between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for Scenario M5

main complicating factors in the work of breeders. To
reduce the eff ect of the GxE interaction, it is necessary
to conduct experiments in a greater number of locations,
evaluating the strength of the interaction and its possible
impact when selecting and recommending genotypes.

Most agronomic characteristics are controlled by
several genes, where the environment aff ects expression
of phenotypic traits, especially quantitative traits such as
YLD (LEITE et al., 2016). The prediction accuracy for
any one characteristic across various environments can
diff er due to the GxE interaction (WANG et al., 2018).

Furthermore, most characteristics of agronomic
importance have low heritability (BORÉM; MIRANDA, 2013).
Because of this, one alternative might be the joint
analysis of multiple traits that, according to Alimi et al.
(2013), can improve prediction accuracy when using

highly correlated characteristics, especially for some
of the characteristics of low heritability. Heritability is
positively related to prediction accuracy.

As these are progeny of generations F3 and F4 with
a high degree of heterozygosity, the variation in YLD
response is expected since the alleles are still undergoing
genetic recombination. As stated by Mendonça et al.
(2020), it is diffi  cult to select for quantitative characteristics
during the initial stages of breeding due to the high level
of heterozygosity and the large number of new progeny.
The correlation between the analyzed variables may show
an increase in magnitude and a change in direction to the
point where the degree of heterozygosity is reduced.

To accelerate the homozygous process, methods of
rapid generation advancement can be effi  ciently adopted,
advancing two, three or even four generations in the same
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Dependent variable: YLD BV
(1) (2)

YLD MROW
-0.138***
(0.006)

YLD RETEST
-0.035*
(0.018)

Constant
4,978.505*** 4,446.684***

(29.431) (79.666)
Observations 1,868 1,868
R2 0.230 0.002
r 0.4800 0.0447
Adjusted R2 0.230 0.001
Residual Std. Error (df = 1866) 218.778 249.133
F Statistic (df = 1; 1866) 558.559*** 3.726*

Note: *p < 0.1; **p < 0.05; ***p < 0.01

T able 8 - Correlation analysis between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for the general scenario
and breeding programs

year, depending on the cycle of the progeny and the region
to be cultivated, and on such techniques and supplementary
tools as greenhouses, heating and ventilation systems,
supplementation or suppression of the light to change the
photoperiod, the use of hormones, the early harvesting of
seeds, and changes in the CO2 concentration in controlled
environments, among others. In this case, as the interest of
the breeder is only to advance generations without carrying
out any direct selection process where the number of seeds
does not become a limiting factor, this rapid generation
advancement can be achieved outside the original SMR
of the breeding program, for example, in regions of low
latitude. From the point of view of genetic gain, combining
strategies that sum the selection of superior genotypes in
the early generations of a breeding program, reducing the
time and cost of obtaining a new cultivar, is undoubtedly
the best strategy for the breeder to adopt.

Com bining different methods can improve
assertiveness in predicting crossings and selecting
better individuals and/or better pedigrees, such as BLUP
at the individual level (BLUPI) (RESENDE, 2002),
simulated individual BLUP (BLUPIS) (RESENDE;
BARBOSA, 2006) and modified simulated individual
BLUP (BLUPISM – BLUP) (CASTRO et al., 2016).
Furthermore, as stated by Bauer and León (2008),
considering information of the parents or pedigree
tends to be more efficient than only considering
information of the progeny, as is the case when using
a kinship matrix, as reported by Resende and Alves
(2021) and Clark et al. (2012).

When using parents that are genetically highly
dissimilar in crosses to increase genetic variability, the
process of progeny selection in early generations becomes
more complex and challenging. As such, the response
of these correlations may be associated with divergent
crosses; there is a need for a better understanding of the
genetic dissimilarity between parents and the direct and
indirect eff ects on the progeny.

In the correlations in each of the presented
scenarios the data was highly dispersed, and culminated
in low correlation between the variables, indicating that
the regression model may not fi t the data.

From the genetic point of view, another factor to
be considered in the results is related the germplasm used
in this study, which is essentially conventional. According
to the International Service Acquisition of Agri-biotech
Applications (2018), around 94% of the soybean planted in
Brazil is genetically modifi ed (GMO). The wide adoption
of new biotechnologies has made practically all the
companies carrying out soybean breeding, whether public
or, particularly, private, migrate their research to GMOs,
causing a drastic reduction in the commercial availability
of conventional cultivars, and severely limiting and
narrowing the genetic base.

In the germplasm of a breeding program that includes
superior genotypes, it cannot necessarily be considered
that these will inevitably generate agronomically superior
progeny when used as parents, albeit recurrent selection
proves to be effi  cient in most cases.
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Figure 6 - Correlation between the results of YLD BV x YLD MROW and YLD BV x YLD RETEST for the general scenario

The correlation between YLD BV and YLD
MROW in the general scenario, with an r value of 0.4800,
was moderate, showing that, for this scenario, predicting
crosses can be used as one way of identifying crosses
of greater potential, or even of discarding the worst
crosses, providing it is used cautiously. As a comparison,
Mendonça et al. (2020) achieved models that reached
predictive abilities of between 0.40 and 0.56, thereby
allowing low-intensity selection to be applied in F2. As a
result, half of the progeny could be discarded without major
losses, showing that with the use of genomic prediction, it
is possible to select for quantitative characteristics during
the initial stages of breeding.

Although the use of phenotypic data in this study
to predict the performance of crosses and identify better
crosses that might generate progeny of agronomically

superior characteristics has not proven to be highly
efficient to the point of being widely applied, several
other studies show extremely positive results when
using this methodology, such as Xu, Zhu and Zhang
(2014) with rice, Daetwyler et al. (2014) with wheat,
and Mendonça et al. (2020) working with segregating
populations and soybean progeny.

Most of the reported results derive from the
study of homozygous populations (DUHNEN et al.,
2017; JARQUÍN et al., 2014; ZHANG et al., 2016),
and consider different crops and the GxE interaction.
However, this does not include the complete set of
situations for which prediction can be used. As such,
little information on performance is available during
the early stages of breeding to predict segregating
progeny or populations (MENDONÇA et al., 2020).
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Certainly, with advances in the processes of genetic
improvement, the adoption of new methodologies and
equipment, new biotechnological tools, statistical models,
more improved predictive models, high-throughput
phenotyping, and reductions in the costs of genotyping and
data analysis, the time and resources spent on obtaining
progeny of high productive potential and with superior
agronomic characteristics tends to be reduced, thereby
increasing genetic gain per year of breeding. As such, the
genetic improvement of plants will continue to make a
considerable contribution to increasing productivity.

CONCLUSION

The model for predicting the performance of crosses
using estimates of the breeding value was not very effi  cient
in initially identifying crosses with a high potential for
generating agronomically superior soybean progeny for the
soybean regions of Brazil. The correlations between YLD BV
(estimates of the breeding value) x YLD MROW (F3 progeny)
and YLD BV x YLD RETEST (F3 progeny) were classed as
very weak to moderate.
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