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Analysis of enamel and material wear by 
digital microscope: an in-vitro study
Abstract: The objective of the study was to analyze the surface area 
(SA) of the wear caused by simulated chewing on human enamel and 
opposing restorative material, namely: composite resin (CR), porcelain 
fused to metal (PFM), lithium disilicate (LD), or monolithic zirconia 
(MZr). Forty-eight premolars were selected as enamel specimens and 
divided randomly into 4 groups (n = 48; n =12) used as antagonists in 
chewing simulation (250,000 loading cycles) against one of the four 
selected test materials. Enamel and material specimens were scanned and 
evaluated under digital microscope, and wear SA (mm2) were recorded. 
Descriptive statistics, paired t-test, one-way ANOVA, and post-hoc Tukey-
HSD tests were used for statistics (p < 0.05). The smallest and largest SA 
were exhibited by enamel against LD (0.80 mm2) and PFM (1.74 mm2), 
respectively. PFM (3.48 mm2) showed the largest SA and CR (2.28 mm2) 
showed the smallest SA. Paired t-test for SA values showed significant 
difference (p < 0.05) in all wear comparisons between materials and 
enamel antagonists. The wear of materials were greater than that of 
their respective enamel antagonists (p < 0.05). One-way ANOVA of the 
logarithmic means of wear SA revealed significant differences (P<0.05). 
Post-hoc Tukey test revealed significance for PFM (p < 0.05) with other 
materials. Wear of all test materials was greater compared to the wear 
of enamel antagonists. PFM and LD caused the largest and the smallest 
enamel wear, respectively. CR, LD, and MZr are more resistant than PFM 
to wear after simulated chewing against enamel.

Keywords: Tooth Wear; Dental Restoration Wear; Tooth Attrition; 
Ceramics.

Introduction

Tooth wear is an irreversible process of tooth surface loss having 
multifactorial etiologies. Many researchers have studied its associations 
with age, gender, bite force, bruxism, craniofacial morphology, mouth 
breathing, and malocclusion. It is a common multifactorial phenomenon 
resulting from direct contact between teeth, restorations, or prostheses 
during mastication or para-functional habits, effects of abrasive substances, 
or effects of acids from various sources. The condition progresses rapidly 
if the etiological factors are not identified and addressed promptly.1 Tooth 
wear is becoming an ever-increasing problem as more natural teeth 
are retained in old age and is likely to continue increasing as patients’ 
demands and expectations rise. The condition causes a myriad of clinical 
problems including enamel and dentin loss, hypersensitivity, loss of 
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vertical dimension, temporo-mandibular disorders, 
impaired mastication, and compromised esthetics. 
The treatment for tooth wear is extensive, expensive, 
and complex. Early diagnosis and timely intervention 
can result in prevention of this otherwise progressive 
and destructive condition of the human teeth.2

The diagnosis and management of tooth wear 
presents a number of problems for dentists. It is 
complicated to identify and modify the etiological 
factors contributing to various forms of tooth wear and 
it is difficult to select appropriate restorative strategies.3 
Demands for esthetic alternatives have led to an 
increased development of new restorative materials. 
The wear of human enamel and of the restorative 
material are often a functional and esthetic concern 
when selecting a material for clinical restorative 
treatment. Ceramic and composite restorations are 
known to cause various levels of wear of opposing 
enamel.3,4,5 Surface loss of natural dentition may get 
aggravated due to increased hardness and wear 
properties of opposing restorations as the rates of 
enamel wear of antagonist teeth may differ.4 Seghi et al. 
recommend the selected material to have a hardness 
degree similar to that of the enamel.5

Over the years, many in vivo and in vitro methods 
were developed to describe and quantify the extent 
of tooth and restorative material wear. Advancing 
technology and reproducibility within and between 
observers have been among the factors that contributed 
to the development of new methods. Each method has 
both advantages and disadvantages. The selection of 
the appropriate measurement method requires due 
consideration to the type of experiment, accuracy, 
time, and cost. Although numerous in vitro wear 
studies have been conducted on restorative materials, 
few studies have provided detailed information to 
characterize and predict the wear behavior of a range 
of materials.6,7

Ceramics and composite resin (CR) are the most 
commonly used tooth-colored restorative materials; 
however, the abrasive effect of these materials 
against enamel is still a clinical concern. Several 
studies have demonstrated that in general, ceramic 
material causes greater enamel wear compared 
with any other restorative materials or enamel.8,9,10,11 

Enamel wear caused by ceramics or CR is also 

a multifactorial condition because the wear of a 
material is influenced by numerous factors, including 
contact geometry, surface roughness, microstructural 
features, grain size, fracture toughness, velocity, 
load, temperature, duration, environment, and 
lubrication.12,13 Lambrechts et al.,13 using clinical 
measurements, reported that enamel vertical wear 
was between 20-40 microns per year when opposing 
enamel in premolar and molar regions.13 The wear 
behavior of enamel and ceramics is different from 
that of metal and CR; enamel and ceramics wear 
through micro fracture mechanism and metal and 
composites wear by adhesion.14 The complexity of 
the wear mechanism and its measurement in the 
oral environment makes it difficult to conduct in 
vivo tooth wear studies. In order to overcome the 
difficulties of in vivo studies, in vitro methods such 
as wear simulators have been developed to study the 
wear behavior of dental materials. Advances in current 
technology have enabled simulation of the human 
chewing cycle in a laboratory using specific loads and 
frictional forces exerted by a chewing simulator and 
determination of the surface profile of worn materials 
by using advanced digital scanning methods.15,16,17,18

The aim of this in vitro research study was to 
investigate and compare the surface area (SA) of 
wear facets caused by simulated chewing on human 
enamel and on opposing restorative materials, namely: 
composite resin (CR), porcelain fused to metal (PFM), 
lithium disilicate (LD), and monolithic zirconia (MZr). 
The null hypothesis tested was that enamel and its 
opposing restorative materials would show similar 
simulated chewing wear behavior.

Methodology

This in vitro research study was reviewed and 
approved by the Ethical Committee of the College of 
Dentistry Research Center, King Saud University, Riyadh.

Preparation of enamel specimens
A total of 48 maxillary first premolar teeth from 

patients aged between 18–25 years that were recently 
extracted for orthodontic purpose were used as 
enamel specimens. Only teeth with similar sizes 
and height by visual inspection and with sound and 
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non-abraded enamel over the cusps were selected, 
whereas teeth with worn-out cusps, fractured, or 
carious teeth were excluded. Teeth were collected 
immediately after extractions, cleaned, disinfected, 
and stored in water containing 0.05% thymol to 
simulate the intra-oral condition, and used as 
samples within 30 days. To overcome anatomical 
variations in the sizes and shapes of the teeth and 
to standardize the mounting in the wear simulation 
machine holder, each tooth was embedded in an 
acrylic resin mold (Ortho-Resin, DeguDent GmbH, 
Hanau, Germany) up to the level of cemento-enamel 
junction so that the buccal cusps remained prominent 
(Figure 1A). All 48 samples were distributed equally 
among the four groups by random draw method. 
The sample size per group (n = 12) was selected 
based on previous studies.18,19,20

Fabrication of material specimens
Four commonly used restorative materials were 

selected as four test materials: CR (Nanohybrid 
Filtek Z250XT, 3M ESPE), PFM (Ivoclar Vivadent 
AG, Schaan), LD (IPS E-max, Ivoclar vivadent AG, 
Schaan), and MZr (Zolid FX preshade, Aman Girrbach, 
Austria), with 12 samples per group. Twelve discs 
of each material measuring 10 mm diameter and 
3 mm thickness were fabricated and glazed and/or 
polished according to the manufacturer’s instructions 
(Table 1). For the PFM specimens, the thickness of 
the metal and veneering ceramic was kept at 1 and 
2 mm respectively. Discs were cleaned in an ultrasonic 
cleanser for 10 min and embedded in an acrylic resin 
(Ortho-Resin, DeguDent GmbH, Germany) mold 
to facilitate locking the samples in the chewing 
simulation machine (Figure 1B).

Table 1. Tested materials with their polishing / glazing protocols.

Composite resin Brand Manufacturer Polishing / Glazing system Polishing / Glazing instructions

Composite resin Nano hybrid Filtek® z250
3M ESPE Dubai United 

Arab Emirates
PoGo (Dentsply Caulk, 

Milford, USA)

Apply light intermittent 
pressure at moderate speed for 

30 seconds

Porcelain fused 
to metal

Porcelain fused to metal
Ivoclar Vivadent AG Schaan 
(Principality of Liechtenstein)

IPS Classic Glazing material
Application of material with brush 
and firing at 900ºC for 1 minute.

Lithium disilicate IPS E-max® Ivoclar Vivadent AG Schaan 
(Principality of Liechtenstein)

IPS E.max Ceram Glaze
Application of glazing paste and 
firing at 800ºC for 1-2 minutes.

Monolithic 
zirconia 

Zolid fx Preshade® Amann Girrbach 
(Koblach, Austria)

Zolid allbright 
diamond paste

Gentle polishing with Sinter 
State polishing kit for finishing 

zirconium restorations.

Figure 1. Material specimen embedded in a resin block (A); Tooth specimen embedded in a resin block (B).

A B

3Braz. Oral Res. 2019;33:e121



Analysis of enamel and material wear by digital microscope: an in-vitro study

Chewing simulation
The chewing simulation machine (Chewing 

Simulator, CS-4.8 professional line, SD Mechatronik 
GMBH, Westerham, Germany) was used to perform 
wear tests of enamel against material specimens. 
The machine has eight chambers that simulate 
the vertical and horizontal chewing movements 
simultaneously in a thermodynamic condition. 
Basically, the machine operates by exerting a vertical 
load from the enamel antagonist onto the material 
specimen, sliding horizontally and then repeating the 
cycle (Figure 2A). The enamel specimens embedded 
in resin were fastened with a screw in the upper 
sample holder and the material specimens embedded 
in resin were fixed in the lower sample holder 
(Figure 2B). According to previous studies, a weight 
of 5 kg is comparable to 49 N of chewing force and 
250,000 loading cycles in a chewing simulator are 
comparable to approximately one year of chewing 
from a clinical perspective.18,19 Therefore, those 
parameters were used, accompanied by thermo-
cycling with distilled water, which were unchanged. 
The specific parameters for this wear test such as 
cold bath temperature of 5°C, hot bath temperature 
of 55°C, dwell time of 60 s, vertical movement of 6 
mm, horizontal movement of 0.3 mm, rising speed 
of 55 mm/s, forward speed of 30 mm/s, descending 
speed of 30 mm/s, backward speed of 55 mm/s, 
vertical load per sample of 5 kg, cycle frequency of 
0.8 Hz, kinetic energy of 2,250 × 10-6 J, and 250,000 
loading cycles were adjusted to simulate the natural 
chewing function.18,19,20,21,22,23,24,25

Wear scar SA evaluation
After the wear cycles, specimens were cleansed 

in ultrasonic bath to eliminate the debris or wear 
particles and dried. Then, each specimen was evaluated 
under digital microscope (HIROX, KH-7700, Digital 
microscope system, Tokyo, Japan) and post-wear digital 
photographs of the specimen’s surfaces were taken at 
×50 magnification (Figure 3). While recording the digital 
photographs, every attempt was made to keep the wear 
surface parallel to the base of the microscope. For each 
enamel and material specimen, the SA was outlined and 
the SA in square micrometers (μm2) of each wear surface 
was calculated digitally with the 3D Viewer Software 
(HIROX-USA, 100 Commerce Way, Hackensack, NJ, USA) 
programmed in the digital microscope (Figure 4). The 
readings of SA in μm2 were converted to mm2 for each 
specimen. To eliminate the inter-examiner variability, 
all the scans were recorded and wear facet areas traced 
twice by a trained technician.25

Statistical analysis
The obtained data were tested statistically using 

SPSS software (Ver. 21.0, SPSS, Chicago, USA) to 
calculate means and standard deviations. Data were 
evaluated with Shapiro-Wilk test for normality and 
found to be normally distributed among all groups. 
The statistical analysis included descriptive statistics, 
comparisons of the mean difference post-wear cycle 
with paired t-test, comparisons of group means 
with one-way ANOVA, and multiple comparisons 
among the groups with Tukey-HSD post hoc test at 
a significance level of p < 0.05.

Figure 2. Wear simulator machine with specimens mounted for wear test (A); Close up view of specimens mounted in upper and 
lower holders (B).

A B
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Results

In this study, the SA of wear facets of four restorative 
materials and their antagonist enamel were measured 
using a digital microscope and compared.

The descriptive statistics and ANOVA results 
are presented in Table 2. Among the overall mean 
SA values of the tested enamel, the least wear 
was found for enamel specimens tested against 
LD (0.80 ± 0.54mm2) and highest wear was found 
for enamel against PFM (1.74 ± 0.66mm2). Among 
materials, PFM (3.48 ±. 58mm2) showed the largest 
SA and CR (2.28 ±. 54mm2) showed smallest SA. The 
least and highest standard deviations were observed 
for enamel against LD (0.54 mm2) and enamel against 
MZr (0.87 mm2), respectively. One-way ANOVA 
of the enamel SA means (p = 0.001) and materials 
(p = 0.000) revealed statistically significant differences. 
Comparison between the materials SA minus enamel 
SA revealed more wear for the material specimens 
than that for antagonist enamel specimens (p = 0.000).

Multiple comparisons among the material and 
enamel groups revealed statistically significant 
differences for PFM (p < 0.05) compared with the 
other materials, and LD showed statistically significant 
difference (p < 0.05) compared to enamel and the 
other materials, as presented in Table 3.

Table 4 describes the paired samples analysis, 
which revealed significant differences for the SA 
of each test material and their enamel specimens 
(p ≤ 0.05).

Figure 3. Digital microscope (HIROX, KH-7700) with mounted specimen for scanning.

Figure 4. Post wear scans of enamel and material specimens and 
calculated wear facet surface areas (μm2) using digital microscope.

Enamel wear against  
Composite resin

Enamel wear against  
Metal ceramic

Enamel wear against  
Lithium disilicate

Enamel wear against  
Monolithic zirconia

Composite resin wear  
against Enamel

Metal ceramic wear  
against Enamel

Lithium disilicate wear  
against Enamel

Monolithic zirconia wear  
against Enamel
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Figure 5 shows the comparison of mean SA of 
enamel and materials tested. Enamel against PFM 
showed the highest (1.74 mm2) and enamel against 
LD (0.80 mm2) showed the smallest surface wear 
area. Amongst the materials, PFM had the highest 
(3.48 mm2) wear, and LD and MZr (2.66 mm2) had 
the least similar surface wear areas.

Discussion

In this in vitro study, wear SA of enamel and four 
commonly used restorative materials was tested in a 
simulated oral environment using a chewing simulator 
machine. Test specimens of identical shape and size 
were used under the standardized testing conditions. 
The two‑body wear of the chewing simulator provided 
a combined action of impact load and sliding that 
matched the natural mastication of one year of 
chewing function under normal chewing force.18,19

The results of this study indicate that there is 
significant difference in the wear SA of the antagonist 
enamel as well as the materials tested. Thus, based 
on the results, the null hypothesis of similar wear 
among the materials and antagonist enamel after 
the wear simulation test was rejected. Previous 
studies in the literature have shown the difference 
in wear behavior of various restorative materials 
against natural enamel,16,17 but most of the wear tests 
provide only limited correlation with clinical data,19,20 
even though they allow a comparative evaluation 
of different materials under standardized testing 

Table 2. Descriptive statistics and ANOVA results of the wear surface areas of tested materials and antagonist enamel specimens.

Surface area Mean Standard deviation Lower bound (95%CI) Upper bound (95%CI) Minimum Maximum *p- value

Enamel (n = 48)

CR 1.67 0.07 1.63 1.72 1.60 1.80  

PFM 1.74 0.66 1.31 2.16 0.86 2.69  

LD .80 0.54 0.46 1.15 0.18 1.95 0.001

MZr 1.63 0.87 1.07 2.19 0.14 3.11  

Total 1.46 0.70 1.26 1.67 0.14 3.11  

Materials (n = 48)

CR 2.28 0.54 1.93 2.63 1.74 3.73  

PFM 3.48 0.58 3.10 3.85 2.89 4.41  

LD 2.66 0.16 2.55 2.76 2.48 2.92 0.000

MZr 2.66 0.66 2.24 3.08 1.96 4.32  

Total 2.77 0.67 2.57 2.96 1.74 4.41  

Material minus Enamel

CR 0.60 0.58 0.23 0.97 0.06 2.13  

PFM 1.73 0.79 1.23 2.24 0.20 3.01  

LD 1.85 0.59 1.47 2.22 0.53 2.68 0.000

MZr 1.03 0.94 0.42 1.63 0.03 2.96  

Total 1.30 0.88 1.04 1.56 0.03 3.01  

*p-value is significant at p < 0.05.

Table 3. Multiple comparisons among the tested materials by 
post hoc Tukey HSD test for wear differences.

Surface area CR PFM LD MZr

Materials

CR - 0.000 0.038 0.301

PFM 0.000 - 0.002 0.003

LD 0.308 0.002 - 1.000

MZr 0.301 0.003 1.000 -

Enamel

CR - 0.994 0.006 0.998

PFM 0.994 - 0.003 0.973

LD 0.006 0.003 - 0.011

MZr 0.998 0.973 0.011 -
*p-value is significant at p < 0.05.
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conditions.21,22 Therefore, testing conditions closely 
simulating clinical situations are preferred.23,24,25,26

In this study, it was expected that continuous 
thermo-cycling with water would remove wear 
debris from the specimen’s surface; specimens were 
kept wet during the whole course of the test, which 
caused additional aging of the specimens. Enamel 
properties vary depending on the location in the 
tooth and histological structure.27 Enamel on the 
cusps is stronger and withstands high occlusal 

forces parallel to the direction of enamel rods.27 In 
this study, only the cusp tip of tooth specimens were 
held in contact with material specimens during the 
wear test. Therefore, the interpretation of the results 
of this study should consider this factor.

A digital microscope was used to evaluate 
and measure the SA of wear facets as it has been 
recommended by a previous study.18 The microscope 
offered a good resolution and accurate measurements 
of the traced wear facets on enamel and material 

Table 4. Results of paired samples statistics for comparison of material and enamel surface area for each test materials.

Test materials Surface area (n = 12) *Mean ± SD

Paired statistics

Correlations
Differences **t-test

*Mean ± SD p-value

CR
Enamel 1.67±.07

-0.423 -0.60 ±.58 0.004
Material 2.28±.54

PFM
Enamel 1.74±.66

0.205 -1.73 ±.79 0.000
Material 3.48±.58

LD
Enamel .80+.54

-0.138 -1.85 ±.59 0.000
Material 2.66±.16

MZr
Enamel 1.63±.87

0.270
-1.03 ±.94

0.003

Material 2.66±.66

*Mean surface area was calculated in mm2; **p-value significant at p ≤ 0.05.

Figure 5. Graphical comparison of mean surface area of enamel and materials.
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specimens. A key advantage of digital microscopy is 
its ability to easily and quickly autofocus an image. 
The intuitive software of the microscope allows the 
user to automatically detect the optimal focus point.

According to the results of this study, PFM 
created the highest enamel wear, followed by CR 
and MZr, and LD showed the least wear of opposing 
enamel. The high wear of antagonist enamel by 
PFM has been also reported by Etman et al.25 The 
wear mechanism of PFM is by fracture and creating 
sharp asperities on its surface that potentiate enamel 
wear by acting as a three-body wear.22,23 MZr was 
introduced to overcome the complications of chipping 
of veneer ceramics and to reduce wear of the opposing 
enamel,21,22,26 although the results of this study 
revealed high enamel wear caused by the MZr 
compared to the other tested materials. The possible 
reasons for high enamel wear caused by PFM and 
MZr could be related to the high surface hardness 
values of veneer ceramics (420 HV) and zirconia 
(1,250 HV), respectively. In addition, the removal 
of the glaze layer and exposure of the underlying 
rough surface during wear cycles can potentiate 
the wear mechanism and cause more abrasion of 
the opposing enamel.28,29

One of the findings of this study is that CR 
caused enamel wear comparable to PFM and MZr. 
The possible reasons for nanohybrid CR causing 
high wear of the opposing enamel could be related 
to its high surface roughness and microhardness 
levels attributed to filler content.30 The degree of 
wear is affected by surface microstructure, material 
roughness, and environmental factors.31 In contrast to 
other ceramics, LD exhibits a unique microstructure, 
composed of 70% of small interlocking, randomly 
oriented LD glass crystals. These glass crystals cause 
micro cracks to deflect, branch, or blunt reducing 
their propagation and resulting in less abrasiveness. 
This property of LD may be attributed to least wear 
SA of antagonist enamel.32

When comparing the overall SA mean of materials 
and antagonist enamel it was evident that PFM, 
LD, and MZr wear were highest and CR was lowest 
compared to their antagonist enamel. These differences 
could be related to the different composition and 
microstructure of restorative materials and enamel.27 

The wear of composites depends mainly on the content 
and the size of filler particles in the matrix.30 The CR 
tested in this study (Filtek Z250XT) contains nano-
hybrid filler particles that improve wear resistance 
because of less inter-particle spaces and a more 
protected resin matrix. This resulted in decreased 
wear, most probably due to better load transfer 
between matrix and filler.29

Another possible explanation for the differences 
in the wear behavior of the various restorative 
materials tested could be the different effects of 
hydrothermal aging within the chewing simulation 
machine. This could affect occlusal wear, as LD 
(glass-ceramics) and PFM (dental porcelains) are 
susceptible to slow crack growth33, MZr (zirconia) 
to low temperature degradation34, and CR (dental 
composites) to hydrolytic degradation35.

In this study, the variation in the results could be 
attributed to the inhomogeneity in enamel antagonists. 
Human tooth tissues show variations in physical 
properties, histological structure, and thickness of 
enamel layers at different locations within the same 
tooth as well among the different tooth types.26 In 
vitro wear studies have some inherent shortcomings; 
they evaluate only one or two wear mechanisms 
under limited chewing simulation conditions. Ideally, 
simulation tests should present clinical conditions 
of enamel antagonists. However, morphological 
and structural differences of enamel complicate 
standardizing wear testing leading to high variations 
in the obtained data. Despite being simple, the 
digital photographs taken for the measurement of SA 
recorded the flat area of the wear scar. Due to these 
limitations, the results of the current study should 
be interpreted with caution.

Conclusions

Within the limitations of this study it can be 
concluded that:
a.	 The wear area of all the tested materials was 

higher compared to their respective antagonist 
enamel specimens.

b.	 Among the tested materials, PFM and LD 
caused the highest and least enamel wear, 
respectively.
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c.	 CR, LD, and MZr were more resistant to wear 
against enamel, whereas PFM had higher wear 
against enamel.

d.	 The clinical implication of the study is that 
wear properties of restorative materials should 
be considered while selecting the appropriate 
material in clinical situations.
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