Computational and Applied Mathematics
Vol. 22, N. 1, pp. 1-18, 2003
Copyright © 2003 SBMAC

Finding the closest Toeplitz matrix*

MARIA GABRIELA EBERLE and MARIA CRISTINA MACIEL

Department of Mathematics, Southern National University
Av. Alem 1253, 8000 Bahia Blanca, Argentina
E-mail: {geberle,immaciel}@criba.edu.ar

Abstract. The constrained least-squares< n-matrix problem where the feasibility set is

the subspace of the Toeplitz matrices is analyzed. The general, the upper and lower triangular
cases are solved by making use of the singular value decomposition. For the symmetric case, an
algorithm based on the alternate projection method is proposed. The implementation does not
require the calculation of the eigenvalue of a matrix and still guarantees convergence. Encouraging

preliminary results are discussed.
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1 Introduction

In this work the constrained least-squares Toeplitz matrix is analyzed. Let us
begin considering the general constrained least squares matrix problem

min  ||AX — BH%
s.t (1)
X eP,

whereA, B € R™" withm > n and? C R™" has a particular pattern.
Throughout this papeffA||2 denotes the Frobenius norm 4fe R™>" defined
as
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2 FINDING THE CLOSEST TOEPLITZ MATRIX

HAlez = trace(ATA) = Z Zaizj.

i=1 j=1
In the last two decades an extensive research activity has been done on this
kind of problems which arise in many areas. For instance, in statistics, the
problem of finding the nearest symmetric positive definite patterned matrix to a
sample covariance matrix is a classical example, [11]. The symmetric positive
semidefinite case has analyzed by Higham [9].
In the investigation of elastic structures, the determination of the strain matrix
which relates forceg; and displacement; according toX f; = d; is stated as
(2). The orthogonal case has been studied by Schonemann [13] and the Higham
[8] and the symmetric case by Higham [10]. These problems are known in
the literature as the orthogonal and symmetric Procrustes problems respectively.
When? is the subspace of persymmetric matrices (that is, it is symmetric about
the NE-SW diagonal) the resulting problem has been studied by Eberle [4, 5].
Now in this work we are interested in solving the constrained least squares
Toeplitz matrix problem
min  |AX — B|2
s.t 2)
XeT,

whereT c R"*" is the subspace of Toeplitz matrices.

Let us recall that a matri¥ = (7;;) € R"*" is said to be a Toeplitz matrix if it
is constant along its diagonals, i.e there exist scalarg.4, -« , ¥, -+ , Fa_1,
such that;; = r;_;, foralli, j:

ro r ra r3 e Tn—2 Fpn-1
r—1 ro ri ro r3 oo Tn_2
r_p r—1 ro ri ro NN Fn_3
T =
F-w-3 Fr—-@m-4 -+ r-1 To n 2
-2y Y—@m-3 - ce e 7o r1
| ]"7(”71) ]"7(”72) e “ e “ e r71 ro ]
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The rest of the paper is organized as follows. In section 2, the general Toeplitz
problem is studied. The special cases of triangular and symmetric Toeplitz
problems are analyzed in section 3 and 4 respectively. The numerical results are
presented in section 5 and our conclusions and final remarks in section 6.

2 Thegeneral problem

In this section the feasibility sef;, of problem (2) is characterized.
Given the matricegl, B € R"™*", the subspac@& can be represented by

(n—1)
T = X S Rnxn . X - Z OlpGpa 9
p=—(n—-1)

wherea, € R andG, € R"*" are matrices defined as follows

1 if j=i+p
0 otherwise

(Gpij = 3

We must observe that the matricgg are characterized by the following fact:
for each entry, there exists an unique index —(n — 1) < p < (n — 1), such
that(G,);; = 1. Clearly they form a basis for the subspace

2.1 Thetransformed problem

We will transform the problem (2) in a simpler one. To do this transformation
let A be the matrix have the following singular value decompaosition

— X T
=[2]er

where P ¢ R™™ and Q € R"*", are orthogonal matrices anB =
diag(al"" 70—}1)!0—12 ZUn ZO
Since the Frobenius norm remains invariant under orthogonal transformations
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4 FINDING THE CLOSEST TOEPLITZ MATRIX

it is obtained
b)) b))
|AX - B|Z = P|: }QTX—B 2=‘PT(P|: i|QTX—B> 2
0 F 0 F
% pX
— QTX—PTB 2=H QTX—CZ
0 F 0 F
= |EoHx -+ |2 = “T—Cl ®+ [
F F
with
T =307X e RV,
C= [ - } = P"B,
G
C1 € R™",
then the problem 2 is equivalent to
min |7 - c2
5.t (4)
T €T,

where7 "’ is the following subspace:

(n=1)
T ={T e R"" : T=2QT Z oGy
I=—(n—1)

2.2 Characterization of the solution on 7"’

We introduce the notatioR(A) meaning the projection of the matrion the
set'U. The following theorem characterizes the projection on the subspace of
matricesT .
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Theorem 2.1. If C1; € R™", then the unique solution of the problem (4) is

n n

(n—1) Z Z(Cl)ij Q(j-ni
* * i=1 j>I
Pr(Cy) =07 Z a’1Gy, af = d

~  n n ’
il 2_2
=m0 Y (Q-ni)oi

i=1 j>I

forall -m—-—1 <li<@®m-1.

Proof. The objective functiory : R¥*~1 — R is given by
f(a) = f(af(nflﬁ T, aOa e 7a(}’l71))
1 1
= JIr-cili=Zize"x - cil

(n=1)

1
= EHEQT Z O[IGI—C;L”'Z:
I=—(n—-1)

2
(n—1)

= %Z 20" Y G| —(Cy

i,j=1 I=—(n—1) i

, . , . . . )
Since f is twice continuously differentiable, we compugef—(a) for all p
o

p
suchthat-(n —1) < p<(n—-1)
2
n (n—1)
of B 1 T
IR ) G — (Co)ij
” ”» Z.Z 0 Z ;G (Cvij
p p ij=1 I=—(n-1) i
n (n—1)
= |2 |Z0" Y aG| —(cwy (5)
i j=1 I=—(n—1) i
3 (n—=1)
— | [ =0" G
da, Q Z a

ij
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6 FINDING THE CLOSEST TOEPLITZ MATRIX

The factor in the right hand side of (5) can be written as

9 (n—1) 9 n (n—1)
— ||z X «G = — (D E0Nu| D «G
p k=1

o
I=—(n—1) ij p I=—(n—1) K

(n=1

;(ZQT)M% Z ;G

I=—(n—-1)

kj
= Y (E0Nu(Gyy = (207G,),;,
k=1
and (5) becomes in
af n (n—1)
W: Z ZQT Z OllGl _(Cl)ij (ZQTGP),'./' (6)
p i,j=1 I=—(n—-1)

ij
Having in mind that

(n=1)

20" ) G
I=—(n—1) i

is the inner product between th& row of (X Q”) and thej"" column of

1, Gy, we obtain

(n—1) (-b

Q" Z aG | =o; Z O (k)i %-

I=—(n—1) ij k=(j—n)

Similarly, the elemenfx QTGp)l.j, is the inner product between t#fé row of
£ Q" and the columry of G,. Then:

(ZQ'G,),; =01 Q(-pi-
Because of the sparse structure®f the entries(Gp)ij =1if j > p.

If p >0, then(Gp)ij =1forall jsuchthatp +1 < j <n.
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If p <0, then(Gp)ij =1forall j suchthatl< j < (n + p).

Therefore (6) can be written as

(n—=1)

T
yy (o ¥ wa |@ea,
i=1 j>p I=—(n-1) ij

(-
—ZZ o] Z Q(/ k)ik (GIQ(j p)t)
i=1l j>p k=(j—n)
n (-1
=> > akz QG-1i Qy—pi) 07
Jj>p k=(j—n) i=1
Defining
n
2 T
Z(Qu—k)iQ(j—p)i)Ui =00,
i=1
with
T __
v =(Q(-01QG-m1, Qii—02Q-p2: s Q= Q(i—pin)s
9 = (01?7 027 ctt b 02)T7

we have that the sum of all the components o the inner product between two
columns of the orthogonal matri@ and then it is zero wheh # p. Therefore
for k # p we have:

n n n
2 T 2 2
0=<E vl-)onfv 9=E v,-oif(g vl-)ol=0,
i=1 i=1 i=1

thenv’6 = 0 for allk # p and

n o U=D no (-1
> 2 O‘kZ Qy-0iQi-pi)ol = Y, Y, av'd
j>p k=(j—n) i=1 j=1k=(j—n)
= Z“pZ(Qu—p)z) o;
j>p i=1
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8 FINDING THE CLOSEST TOEPLITZ MATRIX

Then (6) becomes

8f n (n—1)
o = 2 [T X wGi]| (307G,), - (Cvy (307G)),
®p i,j=1 I=—(n-1) i
= %ZZ Qi) o] _ZZ(Cl)UQ(] pis
j>p i=1 j>p i=1
forall p =1, .-, n. Therefore, from the first order necessary condition
0
_f:O, p:l’...’n’
da
we obtain
ZZ(Cl)UQ(] p)i
N i=1 j>
oy = 2 U]
2{:2{: Q- pﬁ Uf
i=1 j>p

We observe that the denominator of (7) is nhon zero, because if it were zero for
anyi, j, it would be

by
Qj-pioi =0, »0"=0 and P[O}QT:A:O.

Now, we need to verify that}, is a minimizer off. We compute

P) ( )_ZZ Q(] p)zaz > s Vi, j’
ap?

j=1i=1

and

3% f

dapay

=0, if p#£g.

It implies that the Hessian matrsz(oz;) is positive define and therefoss; is
the minimizer off. O
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3 Thetriangular Toeplitz problem

In this section we consider the case when the feasibility is the subspace of trian-
gular Toeplitz matrices. We begin considering the upper triangular case.

3.1 Theupper triangular Toeplitz problem

Let the minimization problem be

min  |AX - B|2
5.t (8)
X eT,,

whereA, B € R™*" and7 isthe subspace of upper triangular Toeplitz matrices.
If X € T,, then

_Oll Oy O3 ++r cee e Oy ]
0 o1 y—1
0 0 a1 ay - - 0o
X =
0 e ag
0 0 v i eei e

The subspacé,, can be written as:

T,={XeR"™: X=> a,G,
p=1
wherea, € R and the matrice§/, € R"*" are defined forall i< i, j,p <n
as follow

1 if j=i+p-1

Gplij = .
(Gl 0 otherwise

(9)

We remark that the matrices, are characterized by the property that for each
entryij, there exists an unique, 1 < p < n such thai(G,);; = 1.
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10 FINDING THE CLOSEST TOEPLITZ MATRIX

The set{Gl, Gy, -+, G, } is a basis for the subspace of the upper triangular
Toeplitz matrices ofR"*". Similarly to the general Toeplitz case, the singular
value decomposition is used in order to obtain a solution of an equivalent problem

min

s.t

with

|7 — a2
(10)
T eT,,

— D2 T
v=e]or

P e R™™y Q e R"™", are orthogonal matrice = diag(o, --- , 0,) With
o1 > --+- >0, > 0, and the subspace

7 - {TeRm ;

T = EQTiqul}.

=1

3.1.1 Characterization of the solution on T,/

The following theorem, similar to Theorem 2.1 for the dense case characterizes

the projection orr,".

Theorem 3.1. Let be C; € R™”, then the unique solution of the problem

min

s.t

isgiven by

Pr(C) =30" ) a"Gi,
=1

foralll <[ <n.
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Proof. Similarto the proof of theorem 2.1 having in mind that the first derivative
is
V=3 p) ry G C x0'G
@@= (20"} @Gn] -y | (207G,
P i,j=1 =1 ij
The elemen(x QT(Zle(ozlGl))j is the inner product between tié row of

i

(2 Q7) and thej"" column of}_)_, (o, G)), then it results
n j
(2 o’ Z(asz)) =o0; Z O (j—k+1)i Ok
=1 ij k=1

Analogously, the elemer{ QTG,,)U., is the inner between the roinof £ Q7
and the columry of G, then

(EQTG ) = 0;Q(j—ptni SI j=p .
Pi =] o si j<p.

3.2 Thelower triangular Toeplitz problem

Let us consider the problem

min  |AX — B|2
5.t (12)
XeT,

whereA, B € R™ and7, is the subspace of the lower triangular Toeplitz
matrices. IfX € 7, then

B O 0 -« ... ... 0
B B O 0
Bs Bo B O o - 0
= - .
Bu-1 o P 0O
| Be Bur 0 0 Bz B2 Pr
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12 FINDING THE CLOSEST TOEPLITZ MATRIX
The subspac# , can be expressed as
n
_ nxn . _
Ti={XeR™ : X=) B,G,,
p=1

whereg, € R and the matrice& , € R"*" are defined as

1 if j=i—-p+1
G)ii = ) 13
(Gl [ 0 otherwise (13)
foralll<i,j, p <n. The set{Gl, Gy, -+, Gn}, is a basis for the subspace

T, . Again, applying the singular value decompositiondothe problem can be
transformed in

min |7 - i
5.t (14)
TeT',

— D2 T
=)o

where P € R™"™ vy Q € R"", are the orthogonal matricess =
diag(oy, -+ ,0,),01 > --- >0, > 0, and the subspace

with

T = {TER”X” : T=ZQTZalGl}.

=1

As in the general and upper triangular Toeplitz cases the projection is character-
ized onT;’ .
Theorem 3.2. If C1 € R™", then the unique solution of the problem

min |7 - a2
s.t (15)
TeT'
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is given by

Z Z(Cl)ij OQ(j+i-vi
i=1 j<I

Pr(C)=%0Q" ) B4Gi, B =

= — ,
=1 Z Z (Q(j+1-1i)°0i°

i=1 j<I

foralll <[ <n.

Proof. Similar to the proof of Teorema 2.1. d

4 Thesymmetric Toeplitz problem

This section is concerned with the problem

min  |AX — B|2
5.t (16)
XeTns,

whereA, B € R™", T is the subspace of the Toeplitz matrices anid the
subspace of the symmetric matricedR¥f<". Clearly, the solution is a matrix
which is symmetric not only with respect to the main diagonal but also to the
SW-NE diagonal. Since the feasibility region is the intersection of two subspace
and because we know how to solve the persymmetric Procrustes problem [5] and
the general Toeplitz problem, see section 2, we develop an algorithm based on
the alternating projection method [3, 1, 6, 7]. Therefore the solution of (16) is
obtained projecting alternating on the subspafEess.

Given the problem

min |AX — BH%
s.t (17)
X eSS,

according with Escalante and Raydan [7] it can be transformed, via the singular

Comp. Appl. Math., Vol. 22, N. 1, 2003



14 FINDING THE CLOSEST TOEPLITZ MATRIX

value decomposition of in the following equivalent problem

min [z 2
s.t (18)
ZeS,

where

Z=XY,Y=07X0,

| G| _ o
C_[C }_P BO,

2

C1 € R™",
and the feasibility region
S={zZeR™ :Z=3xy,Y=Y"}.
Hence if the solution of the last problem is
Py(C1) = Y, = (0" X, 0),

whereY, is obtained by the methods proposed by Higham for the symmetric
case [10], the solution of the first problem is

X, = Q¥ Py (C1)O".

On the other hand, we know how to solve the general Toeplitz problem, see
section 2. Combining both results, to solve the problem 16 is equivalent to solve

min [z -2
s.t (19)
ZeT'"NnS.
where
(n—1)
T'={ZeR™ : Zz=30" > G
I=—(n—1)

Comp. Appl. Math., Vol. 22, N. 1, 2003
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Remark. The setT”, comes from the fact that the symmetric and Toeplitz
problems have the same objective function.

The alternating projection algorithm for the symmetric Toeplitz case (19) is as
follows:

Algorithm 4.1. Given A, B € R™*", X = C1 € R"*", where C; is obtained
viathe singular value decompositionof A, fori =0, 1, 2, .. ., until convergence
repeat

Xi = Py (X))
Xiy1 = P (X)).
The algorithm terminates when two consecutive projection on the same sub-

space are close enough. The convergence is guaranteed by the general theory
established by von Neumann [12] for the alternating projection algorithm.

5 Numerical experience

In this section we show some examples. The algorithms have been implemented
in Fortran, by using FORTRAN POWER STATION (1993) in an environment PC
with a processor Pentium(R2) Intelmmx(TM) Technology, 31.0 MB de RAM.
and 32 bits of virtual memory. The LINPACK libraysvdc subroutine have
been used to obtain the singular value decomposition.

Example 5.1. The general problem (2) has been solved with the following
matrices

1 1 2 -2 2 1 10 1 0 11
0 2 -1 -2 -3 2 11 2 -1 01
0 2 1-1 2 2 11 1 1 01
1 -1 -1 1 -1 -1 11 1 1-11
4|2 2-1 2 0 1| . | -11 2-1 22
3 -1 1 0 0 1| 11 2 0-11
0 -1 1 0 0 1 12 -1 -1 11
1 -1 -2 0 -1 0 11 1 0 11
o 1 1 1 1 1 11 1 1 11
0 -1 0 -1 1 -1 | . 01 0 1 -1 0|

Comp. Appl. Math., Vol. 22, N. 1, 2003



16 FINDING THE CLOSEST TOEPLITZ MATRIX

The solutionX, is

—349x 1072 934x 103 137x 1072 134x 1072 1.68x 102 1.66x 102
—543x 1072 -349x 1072  934x 1073 1.37 x 1072 1.34x 1072 1.68 x 10~2

—72x1073  -543x1072 -349x1072  934x10~3 1.37x 1072 1.34x 1072
1.46 x 102 —72x1073  _543x1072 —349x1072  934x 103 1.37x 1072
8.75x 10~4 146x 1072  —72x10"3  -543x1072 -349x10°2  934x 103
—2268x 1072  875x 1074 146x 1072  —72x10"3  -543x1072 —3.49x 102

We project on the set, y 7, .

a) The projection o7, is

—353x1072  849x 1073  203x 1072  115x 1072  434x 1072 0
0 —353x1072  849x 103  203x1072  115x 1072  434x 102
0 0 -353x1072  849x 10~3 203x 1072 115x 1072
0 0 0 -353x1072  849x 10~3 203 x 10~2
0 0 0 0 -353x 1072  849x 1073
0 0 0 0 0 ~353x 1072

b) The projection or7; is

—4.06x 1072 0 0 0 0 0
—297x 1072  —406x 102 0 0 0 0
—179% 1072  —297x 1072 —4.06x 102 0 0 0
6.02x 1072  —179x 1072 —297x 1072 —406x 102 0 0
—178x1073  602x1072  -179x1072 —297x1072 —406x 102 0
—227x1072  —178x1073  602x 1072  -179x 1072 —297x 1072 —4.06x 1072

Example5.2. We illustrate the behavior of the algorithm 4.1 for the symmetric
case carrying out the following example

0 1 3 -1 3 -1 -1 3
-1 00 1 0 1 00
A == , B =
2 00 O 2 2 22
1 -10 O 0O 1 10

The solution is

1.729x 108 2325x 10° 3.810x 10° 2.598x 10/
2.325x 1079 1.729x 108 2.325x 10°° 4.041x 10°°
3.810x 10°° 2.325x 10°° 1.729x 108 2.657x 10°°
2598x 107 4.041x 10°° 2.657x 10°° 3.458x 1078

The algorithm terminates when two consecutive projections on the subspace of
the Toeplitz matrices is less or equal to a fixed tolerance. We sefl0~° for
this experiment.
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6 Concluding remarks

We have studied the Procrustes Toeplitz problem, analyzing the general, the
triangular and the symmetric cases. In the last case an algorithm based on the
alternating projection method is proposed. We illustrate our results with some
examples.

The Toeplitz system@x = b whereT € R"*" is a Toeplitz matrix, are
present in many disciplines (signal and image processing, times series analyzes,
gueuing networks, partial differential equations problems and control problems).
When these systems are solved via preconditioned conjugate gradient methods,
the search of adequate preconditioners is the main issue. Among the possible
preconditioners for a Toeplitz matrix, Chan proposes the preconditigqfi®r
defined to be the minimizer dfC — T'||2. Therefore a possible direction of
future work is the application of the results obtained to answer questions related
to Toeplitz systems. The reader interested in this subject can review the survey
of Chan and Ng [2] and the references therein.
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