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1 Introduction

In this work the constrained least-squares Toeplitz matrix is analyzed. Let us

begin considering the general constrained least squares matrix problem


min
∥∥AX − B

∥∥
F
2

s.t

X ∈ P,

(1)

whereA, B ∈ R
m×n, with m > n andP ⊂ R

n×n has a particular pattern.

Throughout this paper
∥∥A∥∥

F
2 denotes the Frobenius norm ofA ∈ R

m×n defined

as

#537/01.
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2 FINDING THE CLOSEST TOEPLITZ MATRIX

∥∥A∥∥
F
2 = trace(AT A) =

m∑
i=1

n∑
j=1

a2
ij .

In the last two decades an extensive research activity has been done on this

kind of problems which arise in many areas. For instance, in statistics, the

problem of finding the nearest symmetric positive definite patterned matrix to a

sample covariance matrix is a classical example, [11]. The symmetric positive

semidefinite case has analyzed by Higham [9].

In the investigation of elastic structures, the determination of the strain matrix

which relates forcesfi and displacementdi according toXfi = di is stated as

(1). The orthogonal case has been studied by Schonemann [13] and the Higham

[8] and the symmetric case by Higham [10]. These problems are known in

the literature as the orthogonal and symmetric Procrustes problems respectively.

WhenP is the subspace of persymmetric matrices (that is, it is symmetric about

the NE-SW diagonal) the resulting problem has been studied by Eberle [4, 5].

Now in this work we are interested in solving the constrained least squares

Toeplitz matrix problem 


min
∥∥AX − B

∥∥
F
2

s.t

X ∈ T ,

(2)

whereT ⊂ R
n×n is the subspace of Toeplitz matrices.

Let us recall that a matrixT = (tij ) ∈ R
n×n is said to be a Toeplitz matrix if it

is constant along its diagonals, i.e there exist scalars ,r−n+1, · · · , r0, · · · , rn−1,

such thattij = rj−i , for all i, j :

T =




r0 r1 r2 r3 · · · rn−2 rn−1

r−1 r0 r1 r2 r3 · · · rn−2

r−2 r−1 r0 r1 r2 · · · rn−3

: : : : : · · · :
: : : : : · · · :

r−(n−3) r−(n−4) · · · r−1 r0 r1 r2

r−(n−2) r−(n−3) · · · · · · · · · r0 r1

r−(n−1) r−(n−2) · · · · · · · · · r−1 r0




.
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The rest of the paper is organized as follows. In section 2, the general Toeplitz

problem is studied. The special cases of triangular and symmetric Toeplitz

problems are analyzed in section 3 and 4 respectively. The numerical results are

presented in section 5 and our conclusions and final remarks in section 6.

2 The general problem

In this section the feasibility set,T , of problem (2) is characterized.

Given the matricesA, B ∈ R
m×n, the subspaceT can be represented by

T =

X ∈ R

n×n : X =
(n−1)∑

p=−(n−1)

αpGp,


 ,

whereαp ∈ R andGp ∈ R
n×n are matrices defined as follows

(Gp)ij =
{

1 if j = i + p

0 otherwise.
(3)

We must observe that the matricesGp are characterized by the following fact:

for each entryij , there exists an unique indexp, −(n − 1) ≤ p ≤ (n − 1), such

that(Gp)ij = 1. Clearly they form a basis for the subspaceT .

2.1 The transformed problem

We will transform the problem (2) in a simpler one. To do this transformation

let A be the matrix have the following singular value decomposition

A = P

[
�

0

]
QT ,

where P ∈ R
m×m and Q ∈ R

n×n, are orthogonal matrices and� =
diag(σ1, · · · , σn), σ1 ≥ · · · ≥ σn ≥ 0.

Since the Frobenius norm remains invariant under orthogonal transformations

Comp. Appl. Math., Vol. 22, N. 1, 2003



4 FINDING THE CLOSEST TOEPLITZ MATRIX

it is obtained

∥∥AX − B
∥∥
F
2 =

∥∥∥∥P
[
�

0

]
QT X − B

∥∥∥∥
F

2 =
∥∥∥∥P T

(
P

[
�

0

]
QT X − B

)∥∥∥∥
F

2

=
∥∥∥∥
[
�

0

]
QT X − P T B

∥∥∥∥
F

2 =
∥∥∥∥
[
�

0

]
QT X − C

∥∥∥∥
F

2

=
∥∥∥∥(�QT )X − C1

∥∥∥∥
F

2 + ∥∥C2

∥∥
F
2 =

∥∥∥∥T − C1

∥∥∥∥
F

2 + ∥∥C2

∥∥
F
2

with

T = �QT X ∈ R
n×n,

C =
[

C1

C2

]
= P T B,

C1 ∈ R
n×n.

then the problem 2 is equivalent to


min
∥∥T − C1

∥∥
F
2

s.t

T ∈ T ′,
(4)

whereT ′ is the following subspace:

T ′ =

T ∈ R

n×n : T = �QT

(n−1)∑
l=−(n−1)

αlGl


 .

2.2 Characterization of the solution on T ′

We introduce the notationPU(A) meaning the projection of the matrixA on the

setU. The following theorem characterizes the projection on the subspace of

matricesT ′.

Comp. Appl. Math., Vol. 22, N. 1, 2003



MARIA GABRIELA EBERLE and MARIA CRISTINA MACIEL 5

Theorem 2.1. If C1 ∈ R
n×n, then the unique solution of the problem (4) is

PT ′(C1) = �QT

(n−1)∑
l=−(n−1)

α�
lGl, α�

l =

n∑
i=1

n∑
j>l

(C1)ijQ(j−l)i

n∑
i=1

n∑
j>l

(Q(j−l)i)
2σi

2

,

for all −(n − 1) ≤ l ≤ (n − 1).

Proof. The objective functionf : R
2n−1 → R is given by

f (α) = f (α−(n−1), · · · , α0, · · · , α(n−1))

= 1

2

∥∥T − C1

∥∥
F
2 = 1

2
||�QT X − C1

∥∥
F
2

= 1

2

∥∥�QT

(n−1)∑
l=−(n−1)

αlGl − C1

∥∥
F
2

= 1

2

n∑
i,j=1




�QT

(n−1)∑
l=−(n−1)

αlGl




ij

− (C1)ij




2

.

Sincef is twice continuously differentiable, we compute
∂f

∂αp

(α) for all p

such that−(n − 1) ≤ p ≤ (n − 1)

∂f

∂αp

= ∂

∂αp


1

2

n∑
i,j=1




�QT

(n−1)∑
l=−(n−1)

αlGl




ij

− (C1)ij




2


=

 n∑

i,j=1


�QT

(n−1)∑
l=−(n−1)

αlGl




ij

− (C1)ij




∂

∂αp




�QT

(n−1)∑
l=−(n−1)

αlGl




ij


 .

(5)
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6 FINDING THE CLOSEST TOEPLITZ MATRIX

The factor in the right hand side of (5) can be written as

∂

∂αp




�QT

(n−1)∑
l=−(n−1)

αlGl




ij


 = ∂

∂αp


 n∑

k=1

(�QT )ik


 (n−1)∑

l=−(n−1)

αlGl




kj




=
n∑

k=1

(�QT )ik

∂

∂αp




 (n−1)∑

l=−(n−1)

αlGl




kj




=
n∑

k=1

(�QT )ik(Gp)kj = (
�QT Gp

)
ij

,

and (5) becomes in

∂f

∂αp

=

 n∑

i,j=1


�QT

(n−1)∑
l=−(n−1)

αlGl




ij

− (C1)ij


(

�QT Gp

)
ij

. (6)

Having in mind that 
�QT

(n−1)∑
l=−(n−1)

αlGl




ij

is the inner product between theith row of (�QT ) and thej th column of∑(n−1)

l=−(n−1) αlGl, we obtain


�QT

(n−1)∑
l=−(n−1)

αlGl




ij

= σi

(j−1)∑
k=(j−n)

Q(j−k)iαk.

Similarly, the element
(
�QT Gp

)
ij

, is the inner product between theith row of

�QT and the columnj of Gp. Then:

(
�QT Gp

)
ij

= σiQ(j−p)i .

Because of the sparse structure ofGp the entries(Gp)
ij

= 1 if j > p.

If p > 0, then(Gp)
ij

= 1 for all j such thatp + 1 ≤ j ≤ n.

Comp. Appl. Math., Vol. 22, N. 1, 2003
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If p ≤ 0, then(Gp)
ij

= 1 for all j such that 1≤ j ≤ (n + p).

Therefore (6) can be written as
 n∑

i=1

n∑
j>p


�QT

(n−1)∑
l=−(n−1)

αlGl




ij


(

�QT Gp

)
ij

=
n∑

i=1

n∑
j>p


σi

(j−1)∑
k=(j−n)

Q(j−k)iαk


 (σiQ(j−p)i),

=
n∑

j>p

(j−1)∑
k=(j−n)

αk

n∑
i=1

(
Q(j−k)iQ(j−p)i

)
σ 2

i .

Defining
n∑

i=1

(
Q(j−k)iQ(j−p)i

)
σ 2

i = vT θ,

with

vT = (Q(j−k)1Q(j−p)1, Q(j−k)2Q(j−p)2, · · · , Q(j−k)nQ(j−p)n),

θ = (σ 2
1 , σ 2

2 , · · · , σ 2
n )T ,

we have that the sum of all the components ofv is the inner product between two

columns of the orthogonal matrixQ and then it is zero whenk �= p. Therefore

for k �= p we have:

0 =
(

n∑
i=1

vi

)
σ 2

n ≤ vT θ =
n∑

i=1

viσ
2
i ≤

(
n∑

i=1

vi

)
σ 2

1 = 0,

thenvT θ = 0 for all k �= p and

n∑
j>p

(j−1)∑
k=(j−n)

αk

n∑
i=1

(
Q(j−k)iQ(j−p)i

)
σ 2

i =
n∑

j=1

(j−1)∑
k=(j−n)

αkv
T θ

=
n∑

j>p

αp

n∑
i=1

(
Q(j−p)i

)2
σ 2

i .
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8 FINDING THE CLOSEST TOEPLITZ MATRIX

Then (6) becomes

∂f

∂αp

=
n∑

i,j=1


�QT

(n−1)∑
l=−(n−1)

αlGl




ij

(
�QT Gp

)
ij

− (C1)ij

(
�QT Gp

)
ij

= αp

n∑
j>p

n∑
i=1

(
Q(j−p)i

)2
σ 2

i −
n∑

j>p

n∑
i=1

(C1)ijQ(j−p)i,

for all p = 1, · · · , n. Therefore, from the first order necessary condition

∂f

∂αp

= 0, p = 1, · · · , n,

we obtain

α�
p =

n∑
i=1

n∑
j>p

(C1)ijQ(j−p)i

n∑
i=1

n∑
j>p

(
Q(j−p)i

)2
σ 2

i

. (7)

We observe that the denominator of (7) is non zero, because if it were zero for

anyi, j , it would be

Q(j−p)iσi = 0, �QT = 0 and P

[
�

0

]
QT = A = 0.

Now, we need to verify thatα�
p is a minimizer off . We compute

∂2f

∂αp
2
(α�) =

n∑
j=1

n∑
i=1

(
Q(j−p)iσi

)2
> 0, ∀ i, j,

and

∂2f

∂αpαq

= 0, if p �= q.

It implies that the Hessian matrix∇2f (α�
p) is positive define and thereforeα�

p is

the minimizer off . �

Comp. Appl. Math., Vol. 22, N. 1, 2003
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3 The triangular Toeplitz problem

In this section we consider the case when the feasibility is the subspace of trian-

gular Toeplitz matrices. We begin considering the upper triangular case.

3.1 The upper triangular Toeplitz problem

Let the minimization problem be


min
∥∥AX − B

∥∥
F
2

s.t

X ∈ Tu,

(8)

whereA, B ∈ R
m×n andTu is the subspace of upper triangularToeplitz matrices.

If X ∈ Tu, then

X =




α1 α2 α3 · · · · · · · · · αn

0 α1 α2 · · · · · · · · · αn−1

0 0 α1 α2 · · · · · · αn−2

: · · · · · · · · · :
: · · · · · · · · · :
0 · · · α1 α2

0 0 · · · · · · · · · · · · α1




.

The subspaceTu, can be written as:

Tu =

X ∈ R

n×n : X =
n∑

p=1

αpGp,




whereαp ∈ R and the matricesGp ∈ R
n×n are defined for all 1≤ i, j, p ≤ n

as follow

(Gp)ij =
{

1 if j = i + p − 1

0 otherwise.
(9)

We remark that the matricesGp are characterized by the property that for each

entryij , there exists an uniquep, 1 ≤ p ≤ n such that(Gp)ij = 1.

Comp. Appl. Math., Vol. 22, N. 1, 2003



10 FINDING THE CLOSEST TOEPLITZ MATRIX

The set
{
G1, G2, · · · , Gn

}
, is a basis for the subspace of the upper triangular

Toeplitz matrices ofRn×n. Similarly to the general Toeplitz case, the singular

value decomposition is used in order to obtain a solution of an equivalent problem


min
∥∥T − C1

∥∥
F
2

s.t

T ∈ Tu
′,

(10)

with

A = P

[
�

0

]
QT ,

P ∈ R
m×m y Q ∈ R

n×n, are orthogonal matrices,� = diag(σ1, · · · , σn) with

σ1 ≥ · · · ≥ σn ≥ 0, and the subspace

Tu
′ =

{
T ∈ R

n×n : T = �QT

n∑
l=1

αlGl

}
.

3.1.1 Characterization of the solution on Tu
′

The following theorem, similar to Theorem 2.1 for the dense case characterizes

the projection onTu
′.

Theorem 3.1. Let be C1 ∈ R
n×n, then the unique solution of the problem


min

∥∥T − C1

∥∥
F
2

s.t

T ∈ Tu
′

(11)

is given by

PT ′(C1) = �QT

n∑
l=1

α�
lGl, α�

l =

n∑
i=1

n∑
j≥l

(C1)ijQ(j−l+1)i

n∑
i=1

n∑
j≥l

(Q(j−l+1)i)
2σi

2

,

for all 1 ≤ l ≤ n.

Comp. Appl. Math., Vol. 22, N. 1, 2003
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Proof. Similar to the proof of theorem 2.1 having in mind that the first derivative

is

∂f

∂αp

(α) =

 n∑

i,j=1

(
�QT

n∑
l=1

(αlGl)

)
ij

− (C1)ij


(

�QT Gp

)
ij

.

The element
(
�QT (

∑n
l=1(αlGl)

)
ij

is the inner product between theith row of

(�QT ) and thej th column of
∑n

l=1(αlGl), then it results

(
�QT

n∑
l=1

(αlGl)

)
ij

= σi

j∑
k=1

Q(j−k+1)iαk.

Analogously, the element
(
�QT Gp

)
ij

, is the inner between the rowi of �QT

and the columnj of Gp, then

(
�QT Gp

)
ij

=
{

σiQ(j−p+1)i si j ≥ p

0 si j < p.
�

3.2 The lower triangular Toeplitz problem

Let us consider the problem


min
∥∥AX − B

∥∥
F
2

s.t

X ∈ Tl,

(12)

whereA, B ∈ R
m×n andTl is the subspace of the lower triangular Toeplitz

matrices. IfX ∈ Tl, then

X =




β1 0 0 · · · · · · · · · 0

β2 β1 0 · · · · · · · · · 0

β3 β2 β1 0 · · · · · · 0

: · · · · · · · · · :
: · · · · · · · · · :
βn−1 · · · β1 0

βn βn−1 · · · · · · β3 β2 β1




,

Comp. Appl. Math., Vol. 22, N. 1, 2003



12 FINDING THE CLOSEST TOEPLITZ MATRIX

The subspaceTl, can be expressed as

Tl =

X ∈ R

n×n : X =
n∑

p=1

βpGp,




whereβp ∈ R and the matricesGp ∈ R
n×n are defined as

(Gp)ij =
{

1 if j = i − p + 1

0 otherwise.
(13)

for all 1 ≤ i, j, p ≤ n. The set
{
G1, G2, · · · , Gn

}
, is a basis for the subspace

Tl. Again, applying the singular value decomposition ofA the problem can be

transformed in 


min
∥∥T − C1

∥∥
F
2

s.t

T ∈ Tl
′,

(14)

with

A = P

[
�

0

]
QT ,

where P ∈ R
m×m y Q ∈ R

n×n, are the orthogonal matrices,� =
diag(σ1, · · · , σn), σ1 ≥ · · · ≥ σn ≥ 0, and the subspace

Tl
′ =

{
T ∈ R

n×n : T = �QT

n∑
l=1

αlGl

}
.

As in the general and upper triangular Toeplitz cases the projection is character-

ized onTl
′.

Theorem 3.2. If C1 ∈ R
n×n, then the unique solution of the problem


min
∥∥T − C1

∥∥
F
2

s.t

T ∈ Tl
′

(15)

Comp. Appl. Math., Vol. 22, N. 1, 2003
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is given by

PT ′(C1) = �QT

n∑
l=1

β�
lGl, β�

l =

n∑
i=1

∑
j<l

(C1)ijQ(j+l−1)i

n∑
i=1

∑
j<l

(Q(j+l−1)i)
2σi

2

,

for all 1 ≤ l ≤ n.

Proof. Similar to the proof of Teorema 2.1. �

4 The symmetric Toeplitz problem

This section is concerned with the problem


min
∥∥AX − B

∥∥
F
2

s.t

X ∈ T ∩ S,
(16)

whereA, B ∈ R
m×n, T is the subspace of the Toeplitz matrices andS is the

subspace of the symmetric matrices ofR
n×n. Clearly, the solution is a matrix

which is symmetric not only with respect to the main diagonal but also to the

SW-NE diagonal. Since the feasibility region is the intersection of two subspace

and because we know how to solve the persymmetric Procrustes problem [5] and

the general Toeplitz problem, see section 2, we develop an algorithm based on

the alternating projection method [3, 1, 6, 7]. Therefore the solution of (16) is

obtained projecting alternating on the subspacesT y S.

Given the problem 


min
∥∥AX − B

∥∥
F
2

s.t

X ∈ S,
(17)

according with Escalante and Raydán [7] it can be transformed, via the singular

Comp. Appl. Math., Vol. 22, N. 1, 2003



14 FINDING THE CLOSEST TOEPLITZ MATRIX

value decomposition ofA in the following equivalent problem


min
∥∥Z − C1

∥∥
F
2

s.t

Z ∈ S′,
(18)

where

Z = �Y , Y = QT XQ,

C =
[

C1

C2

]
= P T BQ,

C1 ∈ R
n×n.

and the feasibility region

S′ = {
Z ∈ R

n×n : Z = �Y, Y = Y T
}
.

Hence if the solution of the last problem is

PS′(C1) = �Y� = �(QT X�Q),

whereY� is obtained by the methods proposed by Higham for the symmetric

case [10], the solution of the first problem is

X� = Q�−1PS′(C1)Q
T .

On the other hand, we know how to solve the general Toeplitz problem, see

section 2. Combining both results, to solve the problem 16 is equivalent to solve


min
∥∥Z − C1

∥∥
F
2

s.t

Z ∈ T ′′ ∩ S′.
(19)

where

T ′′ =

Z ∈ R

n×n : Z = �QT

(n−1)∑
l=−(n−1)

αlGlQ


 .
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Remark. The setT ′′, comes from the fact that the symmetric and Toeplitz

problems have the same objective function.

The alternating projection algorithm for the symmetric Toeplitz case (19) is as

follows:

Algorithm 4.1. Given A, B ∈ R
m×n. X0 = C1 ∈ R

n×n, where C1 is obtained

via the singular value decomposition of A, for i = 0, 1, 2, . . . , until convergence

repeat

Xi = PS′(Xi)

Xi+1 = PT ′′(Xi).

The algorithm terminates when two consecutive projection on the same sub-

space are close enough. The convergence is guaranteed by the general theory

established by von Neumann [12] for the alternating projection algorithm.

5 Numerical experience

In this section we show some examples. The algorithms have been implemented

in Fortran, by using FORTRAN POWER STATION (1993) in an environment PC

with a processor Pentium(R2) Intelmmx(TM) Technology, 31.0 MB de RAM.

and 32 bits of virtual memory. The LINPACK librarydsvdc subroutine have

been used to obtain the singular value decomposition.

Example 5.1. The general problem (2) has been solved with the following

matrices

A =




1 1 2 −2 2 1

0 2 −1 −2 −3 2

0 2 1 −1 2 2

1 −1 −1 1 −1 −1

2 2 −1 2 0 1

3 −1 1 0 0 1

0 −1 1 0 0 1

1 −1 −2 0 −1 0

0 1 1 1 1 1

0 −1 0 −1 1 −1




, B =




1 0 1 0 1 1

1 1 2 −1 0 1

−1 1 1 1 0 1

1 1 1 1 −1 1

−1 1 2 −1 2 2

1 1 2 0 −1 1

1 2 −1 −1 1 1

1 1 1 0 1 1

−1 1 1 1 1 1

0 1 0 1 −1 0




.
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The solutionX� is


−3.49× 10−2 9.34× 10−3 1.37× 10−2 1.34× 10−2 1.68× 10−2 1.66× 10−2

−5.43× 10−2 −3.49× 10−2 9.34× 10−3 1.37× 10−2 1.34× 10−2 1.68× 10−2

−7.2 × 10−3 −5.43× 10−2 −3.49× 10−2 9.34× 10−3 1.37× 10−2 1.34× 10−2

1.46× 10−2 −7.2 × 10−3 −5.43× 10−2 −3.49× 10−2 9.34× 10−3 1.37× 10−2

8.75× 10−4 1.46× 10−2 −7.2 × 10−3 −5.43× 10−2 −3.49× 10−2 9.34× 10−3

−2.268× 10−2 8.75× 10−4 1.46× 10−2 −7.2 × 10−3 −5.43× 10−2 −3.49× 10−2


 .

We project on the setsTu y Tl.

a) The projection onTu is


−3.53× 10−2 8.49× 10−3 2.03× 10−2 1.15× 10−2 4.34× 10−2 0

0 −3.53× 10−2 8.49× 10−3 2.03× 10−2 1.15× 10−2 4.34× 10−2

0 0 −3.53× 10−2 8.49× 10−3 2.03× 10−2 1.15× 10−2

0 0 0 −3.53× 10−2 8.49× 10−3 2.03× 10−2

0 0 0 0 −3.53× 10−2 8.49× 10−3

0 0 0 0 0 −3.53× 10−2


 .

b) The projection onTl is


−4.06× 10−2 0 0 0 0 0

−2.97× 10−2 −4.06× 10−2 0 0 0 0

−1.79× 10−2 −2.97× 10−2 −4.06× 10−2 0 0 0

6.02× 10−2 −1.79× 10−2 −2.97× 10−2 −4.06× 10−2 0 0

−1.78× 10−3 6.02× 10−2 −1.79× 10−2 −2.97× 10−2 −4.06× 10−2 0

−2.27× 10−2 −1.78× 10−3 6.02× 10−2 −1.79× 10−2 −2.97× 10−2 −4.06× 10−2


 .

Example 5.2. We illustrate the behavior of the algorithm 4.1 for the symmetric

case carrying out the following example

A =




0 1 3 −1

−1 0 0 1

2 0 0 0

1 −1 0 0


 , B =




3 −1 −1 3

0 1 0 0

2 2 2 2

0 1 1 0


 .

The solution is

X� =




1.729× 10−8 2.325× 10−9 3.810× 10−9 2.598× 10−7

2.325× 10−9 1.729× 10−8 2.325× 10−9 4.041× 10−9

3.810× 10−9 2.325× 10−9 1.729× 10−8 2.657× 10−9

2.598× 10−7 4.041× 10−9 2.657× 10−9 3.458× 10−8




The algorithm terminates when two consecutive projections on the subspace of

the Toeplitz matrices is less or equal to a fixed tolerance. We setε = 10−6 for

this experiment.
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6 Concluding remarks

We have studied the Procrustes Toeplitz problem, analyzing the general, the

triangular and the symmetric cases. In the last case an algorithm based on the

alternating projection method is proposed. We illustrate our results with some

examples.

The Toeplitz systemsT x = b whereT ∈ R
n×n is a Toeplitz matrix, are

present in many disciplines (signal and image processing, times series analyzes,

queuing networks, partial differential equations problems and control problems).

When these systems are solved via preconditioned conjugate gradient methods,

the search of adequate preconditioners is the main issue. Among the possible

preconditioners for a Toeplitz matrix, Chan proposes the preconditionerc(T )

defined to be the minimizer of
∥∥C − T

∥∥
F
2. Therefore a possible direction of

future work is the application of the results obtained to answer questions related

to Toeplitz systems. The reader interested in this subject can review the survey

of Chan and Ng [2] and the references therein.
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