
Computational and Applied Mathematics
Vol. 22, N. 2, pp. 279–292, 2003
Copyright © 2003 SBMAC

Fuzzy Ostrowski type inequalities

GEORGE A. ANASTASSIOU

Department of Mathematical Sciences

University of Memphis, Memphis, TN 38152 U.S.A.

E-mail: ganastss@memphis.edu

Abstract. We present optimal upper bounds for the deviation of a fuzzy continuous function

from its fuzzy average over [a, b] ⊂ R, error is measured in the D-fuzzy metric. The established

fuzzy Ostrowski type inequalities are sharp, in fact attained by simple fuzzy real number valued

functions. These inequalities are given for fuzzy Hölder and fuzzy differentiable functions and

these facts are reflected in their right-hand sides.
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0 Introduction

Ostrowski inequality (see [8]) has as follows

∣∣∣∣ 1

b − a

∫ b

a

f (y)dy − f (x)

∣∣∣∣ ≤
(

1

4
+
(
x − a+b

2

)2

(b − a)2

)
(b − a)‖f ′‖∞, (∗)

where f ∈ C1([a, b]), x ∈ [a, b]. Inequality (∗) is sharp, see [1].

Since 1938 when A. Ostrowski proved his famous inequality, see [8], many

people have been working about and around it, in many different directions and

with a lot of applications in Numerical Analysis and Probability, etc.

One of the most notable works extending Ostrowski’s inequality is the work

of A.M. Fink, see [6]. The author in [1] continued that tradition.

This current article is mainly motivated by [1], [6], [8], [11] and extends

Ostrowski type inequalities into the fuzzy setting, as fuzzyness is a natural reality
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280 FUZZY OSTROWSKI TYPE INEQUALITIES

genuine feature different than randomness and determinism. To the best of our

knowledge this is the first attempt of such extension into the fuzzy environment,

hoping to find wide continuations and lots of applications.

1 Background

We start with

Definition 1 (see [10]). Let µ : R → [0, 1] with the following properties:

(i) is normal, i.e., ∃x0 ∈ R; µ(x0) = 1.

(ii) µ(λx + (1−λ)y) ≥ min{µ(x), µ(y)}, ∀x, y ∈ R, ∀λ ∈ [0, 1] (µ is called

a convex fuzzy subset).

(iii) µ is upper semicontinuous on R, i.e., ∀x0 ∈ R and ∀ε > 0, ∃ neighborhood

V (x0): µ(x) ≤ µ(x0) + ε, ∀x ∈ V (x0).

(iv) The set supp(µ) is compact in R (where supp(µ) := {x ∈ R; µ(x) > 0}).

We call µ a fuzzy real number. Denote the set of all µ with RF .

E.g., X{x0} ∈ RF , for any x0 ∈ R, where X{x0} is the characteristic function at

x0.

For 0 < r ≤ 1 and µ ∈ RF define [µ]r := {x ∈ R: µ(x) ≥ r} and

[µ]0 := {x ∈ R : µ(x) > 0}.
Then it is well known that for each r ∈ [0, 1], [µ]r is a closed and bounded

interval of R. For u, v ∈ RF and λ ∈ R, we define uniquely the sum u ⊕ v and

the product λ  u by

[u ⊕ v]r = [u]r + [v]r , [λ  u]r = λ[u]r , ∀r ∈ [0, 1],
where [u]r +[v]r means the usual addition of two intervals (as subsets of R) and

λ[u]r means the usual product between a scalar and a subset of R (see, e.g., [10]).

Notice 1u = u and it holds u⊕v = v ⊕u, λu = uλ. If 0 ≤ r1 ≤ r2 ≤ 1

then [u]r2 ⊆ [u]r1 . Actually [u]r = [u(r)
− , u

(r)
+ ], where u

(r)
− ≤ u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R,

∀r ∈ [0, 1].
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Define

D : RF × RF → R+ ∪ {0}
by

D(u, v) := sup
r∈[0,1]

max{|u(r)
− − v

(r)
− |, |u(r)

+ − v
(r)
+ |},

where [v]r = [v(r)
− , v

(r)
+ ]; u, v ∈ RF . We have that D is a metric on RF . Then

(RF , D) is a complete metric space, see [10], with the properties

D(u ⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ RF ,

D(k  u, k  v) = |k|D(u, v), ∀u, v ∈ RF , ∀k ∈ R,

D(u ⊕ v, w ⊕ e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈ RF .

We need

Lemma 1 (Lemma 2.2 of [5]). For any a, b ∈ R : a, b ≥ 0 and any u ∈ RF
we have

D(a  u, b  u) ≤ |a − b| · D(u, õ),

where õ ∈ RF is defined by õ := X{0}.
We also need

Definition 2 (see [10]). Let x, y ∈ RF . If there exists a z ∈ RF such that

x = y + z, then we call z the H -difference of x and y, denoted by z := x − y.

Definition 3 (Definition 3.3 of [10]). Let T := [x0, x0 +β] ⊂ R, with β > 0. A

function f : T → RF is H -differentiable at x ∈ T if there exists a f ′(x) ∈ RF
such that the limits (with respect to metric D)

lim
h→0+

f (x + h) − f (x)

h
, lim

h→0+
f (x) − f (x − h)

h

exist and are equal to f ′(x). We call f ′ the derivative or H -derivative of f at x.

If f is H -differentiable at any x ∈ T , we call f differentiable or H -differentiable

and it has H -derivative over T the function f ′.
The last definition was given first by M. Puri and D. Ralescu [9].
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We use a particular case of the Fuzzy Henstock integral (δ(x) = δ
2 ) introduced

in [10], Definition 2.1.

That is,

Definition 4 (Definition 13.14 of [7], p. 644). Let f : [a, b] → RF . We say that

f is Fuzzy-Riemann integrable to I ∈ RF if for any ε > 0, there exists δ > 0

such that for any division P = {[u, v]; ξ} of [a, b] with the norms �(P ) < δ,

we have

D

(∑
P

∗(v − u)  f (ξ), I

)
< ε,

where
∑∗ denotes the fuzzy summation. We choose to write

I := (FR)

∫ b

a

f (x)dx.

We also call an f as above (FR)-integrable.

Corollary 1 (Corollary 13.2 of [7]). If f ∈ C([a, b], RF) then f is (FR)

integrable on [a, b].
We also need

Lemma 2 (Lemma 1 of [2]). If f, g : [a, b] ⊆ R → RF are fuzzy continuous

(with respect to metric D), then the function F : [a, b] → R+ ∪ {0} defined by

F(x) := D(f (x), g(x)) is continuous on [a, b], and

D

(
(FR)

∫ b

a

f (u)du, (FR)

∫ b

a

g(u)du

)
≤
∫ b

a

D(f (x), g(x))dx.

We mention

Lemma 3 (Lemma 3 of [2]). Let f : [a, b] ⊆ R → RF be fuzzy continuous.

Then

(FR)

∫ x

a

f (t)dt is a fuzzy continuous function in x ∈ [a, b].

We use the Fuzzy Taylor formula.
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Theorem 1 (Theorem 1 of [2]). Let T := [x0, x0 + β] ⊂ R, with β > 0.

We assume that f (i) : T → RF are H -differentiable for all i = 0, 1, . . . , n −
1, for any x ∈ T . (I.e., there exist in RF the H -differences f (i)(x + h) −
f (i)(x), f (i)(x) − f (i)(x − h), i = 0, 1, . . . , n − 1 for all small h : 0 < h < β.

Furthermore there exist f (i+1)(x) ∈ RF such that the limits in D-distance exist

and

f (i+1)(x) = lim
h→0+

f (i)(x + h) − f (i)(x)

h
= lim

h→0+
f (i)(x) − f (i)(x − h)

h
,

for all i = 0, 1, . . . , n− 1.) Also we assume that f (n), is fuzzy continuous on T .

Then for s ≥ a, s, a ∈ T we obtain

f (s) = f (a) ⊕ f ′(a)  (s − a) ⊕ f ′′(a)  (s − a)2

2!
⊕ · · · ⊕ f (n−1)(a)  (s − a)n−1

(n − 1)! ⊕ Rn(a, s),

where

Rn(a, s) := (FR)

∫ s

a

(∫ s1

a

· · ·
(∫ sn−1

a

f (n)(sn)dsn

)
dsn−1

)
· · ·
)

ds1.

Here Rn(a, s) is fuzzy continuous on T as a function of s.

We use

Proposition 1 (Proposition 1 of [4]). Let F(t) := tn  u, t ≥ 0, n ∈ N, and

u ∈ RF be fixed. Then (the H -derivative)

F ′(t) = ntn−1  u.

In particular when n = 1 then F ′(t) = u.

We mention

Proposition 2 (Proposition 6 of [4]). Let I be an open interval of R and let

f : I → RF be H -fuzzy differentiable, c ∈ R. Then

(c  f )′ exists and (c  f )′ = c  f ′(x).

We use the ‘‘Fuzzy Mean Value Theorem’’.
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Theorem 2 (Theorem 1 of [4]). Let f : [a, b] → RF be a fuzzy differentiable

function on [a, b] with H -fuzzy derivative f ′ which is assumed to be fuzzy con-

tinuous. Then

D(f (d), f (c)) ≤ (d − c) sup
t∈[c,d]

D(f ′(t), õ),

for any c, d ∈ [a, b] with d ≥ c.

We finally need the ‘‘Univariate Fuzzy Chain Rule’’.

Theorem 3 (Theorem 2 of [4]). Let I be a closed interval in R. Here g : I →
ζ := g(I) ⊆ R is differentiable, and f : ζ → RF is H -fuzzy differentiable.

Assume that g is strictly increasing. Then (f ◦ g)′(x) exists and

(f ◦ g)′(x) = f ′(g(x))  g′(x), ∀x ∈ I.

2 Results

We give the following

Theorem 4. Let f ∈ C([a, b], RF), the space of fuzzy continuous functions,

x ∈ [a, b] be fixed. We assume that f fulfills the Hölder condition

D(f (y), f (z)) ≤ Lf · |y − z|α, 0 < α ≤ 1, ∀y, z ∈ [a, b],
for some Lf > 0. Then

D

(
1

b − a
 (FR)

∫ b

a

f (y)dy, f (x)

)

≤ Lf

(
(x − a)α+1 + (b − x)α+1

(α + 1)(b − a)

)
.

(1)

Proof. We have that

D

(
1

b − a
 (FR)

∫ b

a

f (y)dy, f (x)

)

= D

(
1

b − a
 (FR)

∫ b

a

f (y)dy,
1

b − a
 (FR)

∫ b

a

f (x)dy

)
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= 1

b − a
D

(∫ b

a

f (y)dy,

∫ b

a

f (x)dy

)

(by Lemma 2)≤ 1

b − a

∫ b

a

D(f (y), f (x))dy

≤ Lf

b − a

∫ b

a

|y − x|αdy =
(

Lf

b − a

)(
(x − a)α+1 + (b − x)α+1

α + 1

)
. �

Optimality of (1) comes next.

Proposition 3. Inequality (1) is sharp, in fact, attained by f ∗(y) := |y−x|αu,

0 < α ≤ 1, with u ∈ RF fixed. Here x, y ∈ [a, b].

Proof. Clearly f ∗ ∈ C([a, b], RF): for letting yn → y, yn ∈ [a, b], then

D(f ∗(yn), f
∗(y)) = D(|yn − x|α  u, |y − x|α  u)

(by Lemma 1)≤ ||yn − x|α − |y − x|α| D(u, õ) → 0, as n → +∞.

Furthermore

D(f ∗(y), f ∗(z)) = D(|y − x|α  u, |z − x|α  u)

(by Lemma 1)≤ ||y − x|α − |z − x|α| D(u, õ)

≤ ||y − x| − |z − x||α D(u, õ) ≤ |y − z|αD(u, õ).

That is, for Lf ∗ := D(u, õ) we get

D(f ∗(y), f ∗(z)) ≤ Lf ∗ |y − z|α, 0 < α ≤ 1, any y, z ∈ [a, b].

So that f ∗ is a Hölder function.
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Finally we have

D

(
1

b − a
 (FR)

∫ b

a

f ∗(y)dy, f ∗(x)

)

= D

(
1

b − a
 (FR)

∫ b

a

(|y − x|α  u)dy, õ

)

= 1

b − a
· D

(
(FR)

∫ b

a

(|y − x|α  u)dy, õ

)

= 1

b − a
D

((∫ b

a

|y − x|αdy

)
 u, õ

)

= 1

b − a
D

((
(x − a)α+1 + (b − x)α+1

α + 1

)
 u, õ

)

= Lf ∗

b − a

(
(x − a)α+1 + (b − x)α+1

α + 1

)
.

�

Next comes the basic Ostrowski type fuzzy result in

Theorem 5. let f ∈ C1([a, b], RF), the space of one time continuously differ-

entiable functions in the fuzzy sense. Then for x ∈ [a, b],

D

(
1

b − a
 (FR)

∫ b

a

f (y)dy, f (x)

)

≤
(

sup
t∈[a,b]

D(f ′(t), õ)

)(
(x − a)2 + (b − x)2

2(b − a)

)
.

(2)

Inequality (2) is sharp at x = a, in fact attained by f ∗(y) := (y −a)(b−a)u,

u ∈ RF being fixed.

Proof. We observe that

D

(
1

b − a
 (FR)

∫ b

a

f (y)dy, f (x)

)

= D

(
1

b − a
 (FR)

∫ b

a

f (y)dy,
1

b − a
 (FR)

∫ b

a

f (x)dy

)
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= 1

b − a
D

(
(FR)

∫ b

a

f (y)dy, (FR)

∫ b

a

f (x)dy

)
(by Lemma 2)≤ 1

b − a

∫ b

a

D(f (y), f (x))dy

(by Theorem 2)≤ 1

b − a

∫ b

a

|y − x|
(

sup
t∈[a,b]

D(f ′(t), õ)

)
dy

=

(
sup

t∈[a,b]
D(f ′(t), õ)

)
b − a

(
(x − a)2 + (b − x)2

2

)
,

proving (2).

By Propositions 1, 2 and Theorem 3 we get that f ∗′(y) = (b − a)  u. We

have that

L.H.S.(2) = D

(
1

b − a
 (FR)

∫ b

a

((y − a)(b − a)  u)dy, õ

)

= D

(
(FR)

∫ b

a

((y − a)  u)dy, õ

)

= D

((∫ b

a

(y − a)dy

)
 u, õ

)

= D

(
(b − a)2

2
 u, õ

)
= (b − a)2

2
D(u, õ).

And

R.H.S.(2) = sup
t∈[a,b]

D((b − a)  u, õ)
(b − a)

2
= (b − a)2

2
D(u, õ).

That is equality in (2) is attained. �
We conclude with the following Ostrowski type inequality fuzzy generalization

in

Theorem 6. Let f ∈ Cn+1([a, b], RF), n ∈ N, the space of (n + 1) times

continuously differentiable functions on [a, b] in the fuzzy sense. Call

M :=
n∑

i=1

(b − a)i

(i + 1)! D(f (i)(a), õ).
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Then

D

(
1

b − a
 (FR)

∫ b

a

f (x)dx, f (a)

)

≤
[
M +

(
sup

t∈[a,b]
D(f (n+1)(t), õ)

)
(b − a)n+1

(n + 2)!
]

.

(3)

If f (i)(a) = õ, i = 1, . . . , n. Then

D

(
1

b − a
 (FR)

∫ b

a

f (x)dx, f (a)

)

≤
(

sup
t∈[a,b]

D(f (n+1)(t), õ)

)
(b − a)n+1

(n + 2)! .

(4)

Inequalities (3) and (4) are sharp, in fact attained by

f ∗(x) := (b − a)(x − a)n+1  u, u ∈ RF being fixed.

Corollary 2. Let f ∈ C2([a, b], RF). Then

D

(
1

b − a
 (FR)

∫ b

a

f (x)dx, f (a)

)

≤
[
(b − a)

2
D(f ′(a), õ) +

(
sup

t∈[a,b]
D(f ′′(t), õ)

)
(b − a)2

6

]
.

(5)

When f ′(a) = õ, then

D

(
1

b − a
 (FR)

∫ b

a

f (x)dx, f (a)

)

≤
(

sup
t∈[a,b]

D(f ′′(t), õ)

)
(b − a)2

6
.

(6)

Proof of Theorem 6. Let x ∈ [a, b], then by Theorem 1 we get

f (x) =
n−1∑∗

i=1

f (i)(a)  (x − a)i

i! ⊕Rn(a, x),
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where

Rn(a, x) := (FR)

∫ x

a

(∫ x1

a

· · ·
(∫ xn−1

a

f (n)(xn)dxn

)
dxn−1

)
· · ·
)

dx1

(here we need x ≥ a). We observe that

D

(
1

b − a
 (FR)

∫ b

a

f (x)dx, f (a)

)

= 1

b − a
D

(
(FR)

∫ b

a

f (x)dx, (FR)

∫ b

a

f (a)dx

)

= 1

b − a
D


(FR)

∫ b

a


 n−1∑∗

i=0

f (i)(a)  (x − a)i

i! ⊕Rn(a, x)


 dx,

(FR)

∫ b

a

f (a)dx

)

= 1

b − a
· D


(FR)

∫ b

a


 n−1∑∗

i=1

f (i)(a)  (x − a)i

i! ⊕Rn(a, x)


 dx, õ




= 1

b − a
D

(
(FR)

∫ b

a

(
n∑∗

i=1

f (i)(a)  (x − a)i

i! ⊕Rn(a, x)

)
dx,

(FR)

∫ b

a

f (n)(a)  (x − a)n

n! dx

)

= 1

b − a
D

(
n∑∗

i=1

(FR)

∫ b

a

f (i)(a)  (x − a)i

i! dx

⊕ (FR)

∫ b

a

Rn(a, x)dx, (FR)

∫ b

a

f (n)(a)  (x − a)n

n! dx

)

= 1

b − a
D

(
n∑∗

i=1

f (i)(a)  (b − a)i+1

(i + 1)! ⊕ (FR)

∫ b

a

Rn(a, x)dx,

(FR)

∫ b

a

f (n)(a)  (x − a)n

n! dx

)

≤ 1

b − a

[
n∑

i=1

(b − a)i+1

(i + 1)! D(f (i)(a), õ)

+ D

(
(FR)

∫ b

a

Rn(a, x)dx, (FR)

∫ b

a

f (n)(a)  (x − a)n

n! dx

)]
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= M + 1

b − a
D

(
(FR)

∫ b

a

Rn(a, x)dx, (FR)

∫ b

a

f (n)(a)  (x − a)n

n! dx

)

= M + 1

b − a
D

(
(FR)

∫ b

a

(∫ x

a

(∫ x1

a

· · ·

· · ·
(∫ xn−1

a

f (n)(xn)dxn

)
dxn−1

)
· · ·
)

dx1

)
dx,

(FR)

∫ b

a

(∫ x

a

(∫ x1

a

· · ·
(∫ xn−1

a

f (n)(a)dxn

)
dxn−1

)
· · ·
)

dx1

)
dx

)]

(by Lemmas 2, 3)≤ M + 1

b − a

[∫ b

a

(∫ x

a

(∫ x1

a

· · ·
(∫ xn−1

a

D(f (n)(xn),

f (n)(a)

)
dxn

)
dxn−1

)
· · ·
)

dx1

)
dx

]

(by Theorem 2)≤ M + 1

b − a

[∫ b

a

(∫ x

a

(∫ x1

a

· · ·
(∫ xn−1

a

(xn − a)

·
(

sup
t∈[a,b]

D(f (n+1)(t), õ)

)
dxn

)
dxn−1

)
· · ·
)

dx1

)
dx

]

= M +

(
sup

t∈[a,b]
D(f (n+1)(t), õ)

)
b − a

(b − a)n+2

(n + 2)!

= M +
(

sup
t∈[a,b]

D(f (n+1)(t), õ)

)
(b − a)n+1

(n + 2)! .

We have established inequalities (3) and (4).

Consider g(x) := c(x −a)	 u, x ∈ [a, b], c > 0, 	 ∈ Z+, u ∈ RF fixed. We

prove that g is fuzzy continuous. Let xn ∈ [a, b] such that xn → x as n → +∞.

Then

D(g(xn), g(x)) = D(c(xn − a)	  u, c(x − a)	  u)

≤ c|(xn − a)	 − (x − a)	|D(u, õ) → 0.

Hence by the last argument, Propositions 1, 2 and Theorem 3 we obtain that

f ∗ ∈ Cn+1([a, b], RF).

We see that

f ∗(i)(a) = õ, for i = 1, . . . , n.
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That is M = 0. Furthermore it holds

f ∗(n+1)(x) = (b − a)(n + 1)!  u.

Finally, we notice that

L.H.S. ((3), (4)) = D

(
1

b − a
 (FR)

∫ b

a

((b − a)(x − a)n+1  u)dx, õ

)

= D

(
u 

∫ b

a

(x − a)n+1dx, õ

)
= D

(
u  (b − a)n+2

n + 2
, õ

)

= (b − a)n+2

n + 2
D(u, õ).

Also we find

R.H.S. ((3), (4)) = (b − a)(n + 1)!D(u, õ)
(b − a)n+1

(n + 2)! = (b − a)n+2

n + 2
D(u, õ).

Proving (3) and (4) sharp, in fact attained inequalities. �
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