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Abstract. Berkovitz’s notion of strategy and payoff for differential games is extended to study

two player zero-sum infinite dimensional differential games on the infinite horizon with discounted

payoff. After proving dynamic programming inequalities in this framework, we establish the

existence and characterization of value. We also construct a saddle point for the game.
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1 Introduction

In [1], Berkovitz has introduced a novel approach to differential games of fixed

duration. He has extended this framework to cover games of generalized pursuit-

evasion [2] and games of survival [3] in finite dimensional spaces. Motivated

by these developments we define strategies and payoff for infinite horizon dis-

counted problems whose state is governed by a controlled semi-linear evolution

equation in a Hilbert space. In this setup, we show the existence of value and

then characterize it as the unique viscosity solution of the associated Hamilton-

Jacobi-Isaacs (HJI for short) equation. To achieve this, we follow a dynamic

programming method and hence we differ from Berkovitz’s approach for finite

horizon problems [4]. We also establish the existence of a saddle point for the

game by constructing it in a feedback form.
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The rest of this paper is organized as follows. The description of the game and

some important preliminary results are given in Section 2. In Section 3, we deal

with dynamic programming and characterization of the value function. Section

4 contains the construction of saddle point equilibrium. We conclude the paper

with some remarks in Section 5.

2 Preliminaries

Let the compact metric spaces U and V be the control sets for players 1 and 2

respectively. For 0 ≤ s < t , let

U[s, t] = {u(·) | u(·) : [s, t] → U measurable},
V [s, t] = {v(·) | v(·) : [s, t] → V measurable}.

The setsU[s, t] andV [s, t] are called the control spaces on the time interval [s, t]
for players 1 and 2 respectively. The functions u(·) ∈ U[s, t] and v(·) ∈ V [s, t]
are referred to as the precise or usual controls (or simply ‘controls’) on the time

interval [s, t] for players 1 and 2 respectively. We denoteU[0,∞) andV [0,∞)

by U and V respectively.

Let E, a real Hilbert space, be the state space. Let x(t) ∈ E denote the state

at time t . The state x(·) with initial point x0 ∈ E is governed by the following

controlled semi-linear evolution equation:

ẋ(t)+ Ax(t) = f (x(t), u(t), v(t)) ; x(0) = x0, (2.1)

where f : E × U × V → E, u(·) ∈ U, v(·) ∈ V and −A : E ⊃ D(A) → E is

the generator of a contraction semigroup {S(t)} on E. We assume that

(A1) The function f is continuous and, for all x, y ∈ E and (u, v) ∈ U × V ,

‖f (x, u, v)− f (y, u, v)‖ ≤ K‖x − y‖.

Under the assumption (A1), for each u(·) ∈ U, v(·) ∈ V and x0 ∈ E, (2.1) has

a unique global mild solution (see e.g., Proposition 5.3, p. 66 in [10]) which is
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denoted by φ(·, x0, u(·), v(·)) and is referred to as the trajectory corresponding

to the pair of controls (u(·), v(·)) with initial point x0.

Following Warga [13], we now describe relaxed controls and relaxed trajecto-

ries. Let

Ũ[s, t] = {
µ(·) | µ(·) : [s, t] → P(U)measurable

}
,

Ṽ [s, t] = {
ν(·) | ν(·) : [s, t] → P(V )measurable

}
,

where P(U) and P(V ) are the spaces of probability measures on U and V

respectively with the topology of weak convergence. The sets Ũ[s, t] and Ṽ [s, t]
are called the relaxed control spaces on the time interval [s, t] for players 1 and

2 respectively. These relaxed control spaces, equipped with weak∗ topology, are

compact metric spaces. The relaxed control spaces Ũ[0,∞) and Ṽ [0,∞) are

denoted by Ũ and Ṽ respectively. Note that by identifying u(·) and v(·) by δu(·)
and δv(·) respectively, precise controls can be treated as relaxed controls.

Let f̂ : E × P(U)× P(V ) → E be defined by

f̂ (x, µ, ν) :=
∫
V

[ ∫
U

f (x, u, v) µ(du)

]
ν(dv).

For µ(·) ∈ Ũ and ν(·) ∈ Ṽ , the state equation in the relaxed control framework

is given by

ẋ(t)+ Ax(t) = f̂ (x(t), µ(t), ν(t)) ; x(0) = x0. (2.2)

Since f satisfies (A1), it follows that f̂ also satisfies (A1) with u ∈ U, v ∈
V replaced respectively by µ ∈ P(U), ν ∈ P(V ). Therefore for each x0 ∈
E, µ(·) ∈ Ũ and ν(·) ∈ Ṽ , the existence and uniqueness of a global mild

solution to (2.2) follows analogously. This solution is called a relaxed trajectory

and is denoted by ψ(·, x0, µ(·), ν(·)).
We now begin the description of the game by defining the strategies of players.

A strategy for player 1 is a sequence � = {�n} of partitions of [0,∞), with

‖�n‖ → 0, and a sequence � = {�n} of instructions described as follows:

Let �n = {0 = t0 < t1 < · · · }. The nth stage instruction �n is given by a

sequence {�n,j }∞j=1, where �n,1 ∈ U[t0, t1) and for j ≥ 2,

�n,j : U[t0, tj−1)×V [t0, tj−1) → U[tj−1, tj ).
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Similarly, a strategy for player 2 is a sequence �̄ = {�̄n} of partitions of [0,∞),

with ‖�̄n‖ → 0, and a sequence� = {�n} of instructions described as follows:

Let �̄n = {0 = s0 < s1 < · · · }. The nth stage instruction �n is given by a

sequence {�n,j }∞j=1, where �n,1 ∈ V [s0, s1) and for j ≥ 2,

�n,j : U[s0, sj−1)×V [s0, sj−1) → V [sj−1, sj ).

We suppress the dependence of the sequence of partitions on a strategy and, by

an abuse of notation, denote a strategy by � or �. In what follows � stands for

a strategy for player 1 and � stands for a strategy for player 2.

Note that a pair (�n,�n) of nth stage instructions uniquely determines a pair

(un(·), vn(·)) ∈ U×V as follows. Let �̂n = {0 = r0 < r1 < · · · } be the com-

mon refinement of�n and �̄n. The control functions un(·) and vn(·) are given by

the sequences (un,1(·), un,2(·), · · · ) and (vn,1(·), vn,2(·), · · · ) respecively, where

un,j (·) ∈ U[rj−1, rj ) and vn,j (·) ∈ V [rj−1, rj ). Let ujn(·), vjn(·) denote respec-

tively the restrictions of un(·), vn(·) to the interval [r0, rj ).
On [r0, r1), set un,1(·) = �n,1 and vn,1(·) = �n,1.

Let j ≥ 1. If rj = ti , then on [rj , rj+1)we takeun,j+1(·) = �n,i+1(u
j
n(·), vjn(·))

and vn,j+1(·) = �n,l+1(u
j ′
n (·), vj ′

n (·)), where l is the greatest integer such that

sl ≤ rj and sl = rj ′ .

If rj = sm, then on [rj , rj+1) take un,j+1(·) = �n,k+1(u
m′
n (·), vm′

n (·)) and

vn,j+1(·) = �n,m+1(u
j
n(·), vjn(·)), where k is the greatest integer such that tk ≤ rj

and tk = rm′ .

The pair (un(·), vn(·)) determined this way is called the nth stage outcome of

the pair (�,�) of strategies.

Let c : E × U × V → R be the running payoff function and let λ > 0 be the

discount factor. We assume that

(A2) The function c is bounded, continuous and, for all x, y ∈ E and (u, v) ∈
U × V

|c(x, u, v)− c(y, u, v)| ≤ K‖x − y‖.
Without any loss of generality, we take c to be nonnegative. For x0 ∈ E and

(u(·), v(·)) ∈ U×V , let φ0(·, x0, u(·), v(·)) denote the solution of

ẋ0(t) = e−λtc(φ(t, x0, u(·), v(·)), u(t), v(t)) ; x0(0) = 0. (2.3)
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Let φ̃(·, x0, u(·), v(·)) denote

[
φ0(·, x0, u(·), v(·))
φ(·, x0, u(·), v(·))

]
. The running cost ĉ in

the relaxed framework is defined by

ĉ(x, µ, ν) :=
∫
V

[
∫
U

c(x, u, v) µ(du)] ν(dv).

Note that ĉ satisfies (A2) with (u, v) ∈ U×V replaced by (µ, ν) ∈ P(U)×P(V ).
Now the relaxed trajectory ψ̃(·, x0, µ(·), ν(·)) is interpreted in an analogous way.

Let

Ẽ = R × E, f̃ (t, x, u, v) =
[
e−λtc(x, u, v)

f (x, u, v)

]
and S̃(t) =

[
IR

S(t)

]
.

The next result is helpful in defining the concept of motion in the game. To

achieve this, we make the following assumption.

(A3) The semigroup {S(t)} is compact.

Lemma 2.1. Assume (A1)-(A3). Let {(un(·), vn(·)} be the sequence of nth stage

outcomes corresponding to a pair (�,�) of strategies and {x0n}, a sequence con-

verging to x0. Then the sequence {φ̃(·, x0n, un(·), vn(·))} of nth stage trajectories

is relatively compact in C([0,∞); Ẽ).

Proof. Let φ̃n(·) = φ̃(·, x0n, un(·), vn(·)), hn(·) = f̃ (·, φ̃n(·), un(·), vn(·)),
ϕ̃n(·) = S̃(·)

[
0

x0n

]
, ϕ̃(·) = S̃(·)

[
0

x0

]
.

It is enough to show that for each T > 0, the sequence of nth stage trajectories,

when restricted to [0, T ], is relatively compact in C([0, T ]; Ẽ). Fix T > 0. Let

Q : L2([0, T ]; Ẽ) → C([0, T ]; Ẽ) be the operator defined by

Q(η(·))(t) =
∫ t

0
S̃(t − σ)η(σ ) dσ.

Then

φ̃n(·) = ϕ̃n(·)+Q(hn(·))(·).
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Since the sequence ϕ̃n(·) converges to ϕ̃(·) uniformly, it is sufficient to prove

the relative compactness of {Q(hn(·))(·)}. To achieve this we show that the

operator Q is compact. This will imply the desired result since, by (A1) and

(A2), {hn(·)} is bounded in L2([0, T ]; Ẽ). Let {ηk(·)} be a sequence in the unit

ball ofL2([0, T ]; Ẽ). We need to show that {Qηk(·)(·)} is relatively compact. By

Arzela-Ascoli theorem, the proof will be complete if we establish the pointwise

relative compactness and equicontinuity of the sequence {Qηk(·)(·)}.
Let t ∈ [0, T ]. We first prove the relative compactness of {Qηk(·)(t)}. This is

trivial if t = 0. So we assume that t > 0. Let ε > 0 be given. Since {ηk(·)} is

in the unit ball, there exists δ ∈ (0, t) such that for all k

‖
∫ t

t−δ
S̃(t − σ)ηk(σ ) dσ‖ < ε

2
.

Note that ∫ t−δ

0
S̃(t − σ)ηk(σ ) dσ = S̃(δ)yk ;

where

yk =
∫ t−δ

0
S̃(t − σ − δ)ηk(σ ) dσ.

Since S̃(δ) is compact and {yk} is bounded in Ẽ, there exist y1, . . . , ym ∈ Ẽ

such that {S̃(δ)yk}∞k=1 ⊂ ∪mi=1B(yi,
ε
2 ). Therefore {Q(ηk(·))(t)} ⊂ ∪mi=1B(yi, ε).

Thus we have established the relative compactness of {Q(ηk(·))(t)}.
Next we prove the equicontinuity of {Q(ηk(·))(·)}. Let t, s ∈ [0, T ] and s < t .

The case when s = 0 is trivial. Assume that 0 < s. Now for δ small enough,

Q(ηk(·))(t)−Q(ηk(·))(s) = I1 + I2 + I3 ;

where

I1 = ∫ s−δ
0

(
S̃(t − σ)− S̃(s − σ)

)
ηk(σ ) dσ,

I2 = ∫ s
s−δ

(
S̃(t − σ)− S̃(s − σ)

)
ηk(σ ) dσ,

I3 = ∫ t
s
S̃(t − σ)ηk(σ ) dσ.
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By Cauchy-Schwartz inequality, we get

‖I1‖ ≤ C
( ∫ s

δ
‖S̃(t − s + σ)− S̃(σ )‖2 dσ

) 1
2 ,

‖I2‖ ≤ Cδ
1
2 , ‖I3‖ ≤ C(t − s)

1
2 ;

where C is a constant independent of k. The map t �→ S̃(t) is continuous in the

uniform operator topology on (0,∞) because {S(t)} is a compact semigroup.

Thus from the above, we get the equicontinuity of {Q(ηk(·))(·)}. �

We now define the concept of motion. Let {x0n} be a sequence converging to

x0 and let {(un(·), vn(·))} be the sequence of nth stage outcomes corresponding

to the pair of strategies (�,�). By Lemma 2.1, the sequence of nth stage trajec-

tories {φ̃(·, x0n, un(·), vn(·))} is relatively compact inC([0,∞); Ẽ). We define a

motion to be the local uniform limit of a subsequence of a sequence of nth stage

trajectories.

A motion is denoted by φ̃[·, x0, �,�]. Let 
̃[·, x0, �,�] denote the set of all

motions corresponding to (�,�) which start from x0. A motion φ̃[·, x0, �,�]
can be written as [

φ0[·, x0, �,�]
φ[·, x0, �,�]

]
.

Let 
0[·, x0, �,�], 
[·, x0, �,�] respectively denote the set of all

φ0[·, x0, �,�], φ[·, x0, �,�]. The set of all φ̃[t, x0, �,�] where φ̃[·, x0, �,�]
runs over 
̃[·, x0, �,�] is denoted by 
̃[t, x0, �,�]. Similarly, the

sets 
0[t, x0, �,�] and 
[t, x0, �,�] are defined. Since c ≥ 0, for any

φ0[·] = φ0[·, x0, �,�], limt↑∞ φ0[t] exists and is denoted by φ0[∞, x0, �,�].
As above, 
0[∞, x0, �,�] is the set of all φ0[∞, x0, �,�]. If the initial point

x0
0 of the augmented component φ0(·) of the trajectory is not zero, then the

corresponding extended trajectory is denoted by

φ̃(·, x̃0, u(·), v(·)), where x̃0 =
[
x0

0

x0

]
.

By φ̃(·, t0, x̃0, u(·), v(·)), we mean the trajectory[
x0

0 + e−λt0φ0(·, x0, u(t0 + ·), v(t0 + ·))
φ(·, x0, u(t0 + ·), v(t0 + ·))

]
.
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Similarly, the relaxed trajectories ψ̃(·, x̃0, µ(·), ν(·)) and ψ̃(·, t0, x̃0, µ(·), ν(·))
are defined. To complete the description of the game, we need to define the

payoff. The payoff associated with the pair of strategies (�,�) is set valued and

is given by

P(x0, �,�) = 
0[∞, x0, �,�].
The player 1 tries to choose � so as to maximize all elements of P(x0, �,�)

and player 2 tries to choose � so as to minimize all elements of P(x0, �,�).

This gives rise to the upper and lower value functions which are respectively

given by

W+(x0) = inf
�

sup
�

P (x0, �,�),

W−(x0) = sup
�

inf
�
P (x0, �,�).

(If {Dα} is a collection of subsets of R, then supα Dα := sup ∪αDα and

infα Dα := inf ∪αDα.) Therefore the upper and lower value functions are real

valued functions. Clearly W+ ≥ W−. If W+ = W− = W , then we say that the

game has a value and W is referred to as the value function.

A pair of strategies (�∗,�∗) is said to constitute a saddle point for the game

starting from x0, if for all (�,�),

P(x0, �,�
∗) ≤ P(x0, �

∗,�∗) ≤ P(x0, �
∗,�).

(ByD1 ≤ D2 we mean r1 ≤ r2 for all (r1, r2) ∈ D1 ×D2.) Note that if (�∗,�∗)
is a saddle point, then P(x0, �

∗,�∗) is singleton and

W+(x0) = W−(x0) = P(x0, �
∗,�∗).

By a constant component strategy�c for player 1 corresponding to the sequence

{un(·)} of controls, we mean a strategy where, for each n, the player 1 chooses the

open loop control un(·) at the nth stage. If un(·) ≡ u(·) for all n, then this strategy

is referred to as a constant strategy corresponding to the open loop control u(·).
Constant component strategies and constant strategies for player 2 are defind in

a similar fashion.

In view of Lemma 2.1, the following result may be obtained by modifying the

arguments in [1]. Hence we omit the proof.
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Lemma 2.2. Assume (A1)-(A3).

(i) Let x0 ∈ E, �̄ be a constant strategy corresponding to ū(·) ∈ U and let

� be any strategy for player 2. Then for any motion φ̃[·, x0, �̄,�], there

exists a relaxed control ν(·) ∈ Ṽ such that

φ̃[·, x0, �̄,�] = ψ̃(·, x0, ū(·), ν(·)). (2.4)

Conversely, given any relaxed trajectory ψ̃(·, x0, ū(·), ν(·)), there exists a

motion φ̃[·, x0, �̄,�] such that (2.4) holds.

(ii) For any 0 < t < ∞ and constant strategy �̄, the set ∪�
̃[t, x0, �̄,�] is

compact.

Analogous results hold with �̄, � replaced respectively by �̄, �.

3 Dynamic programming and viscosity solution

Before proving the dynamic programming inequalities, we show the continuity

properties of W+ and W−. To this end, we first compare the trajectories with

different initial points.

Lemma 3.1. Assume (A1) and (A2). For any α ∈ (0, 1]∩
(

0,
λ

K

)
, there exists

Cα > 0 such that

|φ0(t, x0, u(·), v(·))− φ0(t, y0, u(·), v(·))| ≤ Cα‖x0 − y0‖α,

for all t > 0, x0, y0 ∈ E and (u(·), v(·)) ∈ U×V .

Proof. Let φ̃1(·) = φ̃(·, x0, u(·), v(·)) and φ̃2(·) = φ̃(·, y0, u(·), v(·)). Obvi-

ously,

φ1(t) = S(t)x0 +
∫ t

0
S(t − s)f (φ1(s), u(s), v(s)) ds,

φ2(t) = S(t)y0 +
∫ t

0
S(t − s)f (φ2(s), u(s), v(s)) ds.
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From this, it follows by using Gronwall inequality that

‖φ1(t)− φ2(t)‖ ≤ ‖x0 − y0‖eKt .
We have

φ0
1(t) =

∫ t

0
e−λsc(φ1(s), u(s), v(s)) ds,

φ0
2(t) =

∫ t

0
e−λsc(φ2(s), u(s), v(s)) ds.

Therefore for any α ∈ (0, 1] ∩
(

0,
λ

K

)
, we obtain

|φ0
1(t)− φ0

2(t)| ≤ K
∫ t

0 e
−λs(2‖c‖∞ ∨K)‖φ1(s)− φ2(s)‖α ds

≤ (2‖c‖∞ ∨K)
λ−Kα

‖x0 − y0‖α.
(3.1)

Henceforth we take α ∈ (0, 1] ∩
(

0,
λ

K

)
and Cα = 2‖c‖∞ ∨K

λ−Kα
. �

Lemma 3.2. Assume (A1)-(A3). Let x0, y0 ∈ E and (�,�) a pair of strategies.

Then for any motion φ̃[·, x0, �,�], there is a motion φ̃[·, y0, �,�] with the

property that

|φ0[∞, x0, �,�] − φ0[∞, y0, �,�]| ≤ Cα‖x0 − y0‖α.

Proof. Consider a motion φ̃[·, x0, �,�] and without any loss of generality

let it be the local uniform limit of a sequence {φ̃(·, x0n, un(·), vn(·))} of nth

stage trajectories. Let φ̃[·, y0, �,�] be the local uniform limit of a subsequence

{φ̃(·, y0, unk (·), vnk (·))} of the sequence {φ̃(·, y0, un(·), vn(·))} of nth stage tra-

jectories. From Lemma 3.1, it follows that for t > 0,

|φ0(t, x0nk , unk (·), vnk (·))− φ0(t, y0, unk (·), vnk (·))| ≤ Cα‖x0nk − y0‖α.
Letting k → ∞, we get

|φ0[t, x0, �,�] − φ0[t, y0, �,�]| ≤ Cα‖x0 − y0‖α.
The required result now follows by lettiong t ↑ ∞ in the above inequality. �
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Lemma 3.3. Assume (A1)-(A3). The upper and lower value functions are

bounded and Holder continuous on E with exponent α ∈ (0, 1] ∩
(

0,
λ

K

)
.

Proof. The boundedness of c gives the boundedness of W+ and W−. The

Holder continuity of W+ and W− follow immediately from Lemma 3.2. �

Having established the continuity of W+ and W−, we now prove dynamic

programming inequalities.

Lemma 3.4. Assume (A1)-(A3). For x0 ∈ E and 0 < t < ∞,

W−(x0) ≥ sup
u(·)

inf
ν(·)

[ψ0(t, x0, u(·), ν(·))

+ e−λtW−(ψ(t, x0, u(·), ν(·)))].
(3.2)

Proof. Take an arbitrary ū(·) ∈ U and keep it fixed. It is enough to show that

W−(x0) ≥ r1 := inf
ν(·)

[ψ0(t, x0, ū(·), ν(·))

+ e−λtW−(ψ(t, x0, ū(·), ν(·)))].
(3.3)

Let E0 = {x̃ : x̃ = ψ̃(t, x0, ū(·), ν(·)) for some ν(·) ∈ Ṽ } and ε > 0. For any

x̃ =
[
x0

x

]
∈ E0, x

0 + e−λtW−(x) ≥ r1.

Therefore for each x̃ ∈ E0, there exists a strategy �(x̃) such that for all �,

x0 + e−λtP (x, �(x̃),�) ≥ r1 − ε

2
.

Let δ(x̃) > 0 be such that whenever ‖x̃ − ỹ‖ < δ(x̃),

y0 + e−λtP (y, �(x̃),�) ≥ r1 − ε. (3.4)

Now E0 is compact (by Lemma 2.2 (ii)) and the collection {B(x̃, δ(x̃)) : x̃ ∈
E0} is an open cover for E0. Let x̃1, x̃2, . . . , x̃k ∈ E0 be such that E0 ⊂
∪ki=1B(x̃i, δ(x̃i)).
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In order to prove (3.3), it is sufficient to construct a strategy �̂ with the property

that for all � and all motions φ̃[·, x0, �̂,�],
φ0[∞, x0, �̂,�] ≥ r1 − ε. (3.5)

We first define �̂. Let �′(i) = {�′
i,n} be the sequence of partitions associated

with �(x̃i); i = 1, 2, · · · , k. Let �′
n be the refinement of �′

1,n,�
′
2,n, · · · ,�′

k,n.

Let�n be the partition of [0,∞) such that t is a partition point, [0, t] is partitioned

inton equal intervals and the interval [t,∞) is partitioned by the translation of�′
n

to the right by t . We take � = {�n} to be the sequence of partitions associated

with �̂ = {�̂n}. Let �n = {0 = τ0 < τ1 < · · · }.
We now define �̂n = (�̂n,1, �̂n,2, . . . ).

For i = 1, . . . , n, define �̂n,i to be the map which always selects ū(·) on

[τi−1, τi).

For i ≥ n + 1, we define �̂n,i as follows. Let u(·) ∈ U[τ0, τi−1), v(·) ∈
V [τ0, τi−1) and φ̃(·) = φ̃(·, x0, u(·), v(·)). If φ̃(t) /∈ ∪ki=1B(x̃i, δ(x̃i)), then we

define �̂n,i(u(·), v(·)) to be a fixed element u0 ∈ U .

Let φ̃(t) ∈ ∪ki=1B(x̃i, δ(x̃i)) and j the least integer such that φ̃(t) ∈
B(x̃j , δ(x̃j )). We then take �̂n,i to be �n(x̃j ) in the following sense.

Let �′
j,n = {0 = τi0 < τi1 < · · · }. Let un,i1(·) be the control that �n,1(x̃j )

selects on [τi0, τi1). For any i such thatn < i ≤ n+i1, the map �̂n,i selectsun,i1(·)
on [τi−1, τi). If un,i2(·) denotes the control that �n,2(x̃j ) selects on [τi1, τi2), then

for i with n + i1 < i ≤ n + i2, the map �̂n,i selects un,i2(·) on [τi−1, τi). Now

the definition of �̂ is complete.

It remains to prove (3.5). To this end, let � be any strategy for player 2,

φ̃[·, x0, �̂,�] a motion and {(un(·), vn(·))} the sequence of nth stage outcomes

corresponding to (�̂,�). Without any loss of generality, we assume that this

motion is the uniform limit of a sequence {φ̃(·, x0n, un(·), vn(·))} of nth stage

trajectories. Since un(·) = ū(·) on [τ0, τn] = [0, t], ỹ := φ̃[t, x0, �̂,�)] ∈
E0. Let j be the smallest integer such that ỹ ∈ B(x̃j , δ(x̃j )) and ỹn :=
φ̃(t, x0n, un(·), vn(·)). Since ỹn → ỹ, for n large enough, ỹn ∈ B(x̃j , δ(x̃j )).

Let �c = {�c
n} be the constant component strategy corresponding to {vn(·)}

with the associated sequence of partitions same as that of � restricted to [t,∞)

and translated back to [0,∞). Therefore for large n, the pair (un(·), vn(·)) is the

outcome of (�n(x̃j ),�c
n).
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Hence by (3.4), we obtain

φ0[∞, x0, �̂,�] = φ0[t, x0, �̂,�] + e−λtφ0[∞, φ[t], �(x̃j ),�c]
= y0 + e−λtφ0[∞, y, �(x̃j ),�

c]
≥ r1 − ε. �

By arguing analogously, we can prove the next result.

Lemma 3.5 Assume (A1)-(A3). For x0 ∈ E and 0 < t < ∞,

W+(x0) ≤ inf
v(·)

sup
µ(·)

[ψ0(t, x0, µ(·), v(·))

+ e−λtW+(ψ(t, x0, µ(·), v(·)))].
(3.6)

The strict inequality can hold in (3.2) and (3.6). The following example illus-

trates this fact for (3.6).

Example: E = R,U = V = [−1, 1],A = 0, f (x, u, v) = u+v, c(x, u, v) =
c(x), a bounded, nonnegative and Lipschitz continuous function.

Note that W(x) = c(x), since H+(x, p) = H−(x, p) = −c(x). Furthermore

take c such that c(x) = |x| on [−2, 2]. Let x0 = 0. For 0 < t < 1, we get

inf
v(·)

sup
µ(·)

[ψ0(t, 0, µ(·), v(·))+ e−λtW+(ψ(t, 0, µ(·), v(·)))]

≥ inf
v(·)

sup
u(·)

[φ0(t, 0, u(·), v(·))+ e−λtc(φ(t, 0, u(·), v(·)))]

≥ inf
v(·)

sup
u(·)

e−λtc(φ(t, 0, u(·), v(·)))

= e−λt inf
v(·)

sup
u(·)

|φ(t, 0, u(·), v(·))|

= e−λt t

> 0 = c(0) = W+(0). �

Using dynamic programming inequalities, we next show that the upper (resp.

lower) value function is a viscosity sub- (resp. super) solution of the HJI lower
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(resp. upper) equation. The HJI lower and upper equations are, respectively, the

following:

λW+(x)+ 〈Ax,DW+(x)〉 +H−(x,DW+(x)) = 0 in E, (3.7)

λW−(x)+ 〈Ax,DW−(x)〉 +H+(x,DW−(x)) = 0 in E, (3.8)

where for x, p ∈ E,

H−(x, p) = max
v∈V min

u∈U [〈−p, f (x, u, v)〉 − c(x, u, v)],

H+(x, p) = min
u∈U max

v∈V [〈−p, f (x, u, v)〉 − c(x, u, v)].

We take the definition of viscosity solution given by Crandall and Lions in [5]

and [6]. We first recall their definition of viscosity solution. To this end, let

S0 := {� ∈ C1(E) | � is weakly sequentially lower semi-continuous and

A∗D� ∈ C(E)}
G0 := {g ∈ C1(E) | g(x) = ρ(‖x‖) for some ρ ∈ C1(R) with ρ ′ ≥ 0}.

Definition 3.6. An upper (resp. lower) semi-continuous function W : E → R

is called a viscosity sub-(reps. super) solution of (3.7) (resp. (3.8)) if whenever

W −� − g (� ∈ S0, g ∈ G0) has a local maximum (resp. minimum) at x ∈ E,

we have

λW(x)+ 〈A∗D�(x), x〉 +H−(x,D�(x)+Dg(x)) ≤ 0.

(resp. λW(x)− 〈A∗D�(x), x〉 +H+(x,−D�(x)−Dg(x)) ≥ 0.)

If W ∈ C(E) is both a viscosity subsolution and a viscosity supersolution of

an equation, then we call it a viscosity solution.

Lemma 3.7. Assume (A1)-(A3). The upper value function W+ is a viscosity

subsolution of (3.7) and the lower value functionW− is a viscosity supersolution

of (3.8).

Proof. We prove that W+ is a viscosity subsolution of (3.7). The other part can

be proved in a similar fashion. Let� ∈ S0, g ∈ G0 and let x0 be a local maximum
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ofW+ −�−g. Without any loss of generality we assume thatW+(x0) = �(x0)

and g(x0) = 0.

We need to show that

λW+(x0)+ 〈A∗D�(x0), x0〉 +H−(x0,D�(x0)+Dg(x0)) ≤ 0.

Fix an arbitrary v̄ ∈ V . It is enough to show that

λW+(x0) + 〈A∗D�(x0), x0〉 + min
u

[〈−D�(x0)

− Dg(x0), f (x0, u, v̄)〉 − c(x0, u, v̄)] ≤ 0.
(3.9)

Let ε > 0. By Lemma 3.5, for each t > 0, there exists µt(·) ∈ Ũ such that

W+(x0)− εt ≤ ψ0(t, x0, µt(·), v̄)+ e−λtW+(ψ(t, x0, µt(·), v̄)).

We denote ψ̃(·, x0, µt(·), v̄) by ψ̃t (·) =
[
ψ0
t (·)
ψt(·)

]
.

Hence for small enough t ,

W+(x0)− εt ≤ ψ0
t (t)+ e−λt [�(ψt(t))+ g(ψt(t))].

This implies that for t small enough,

−ε ≤ 1

t
ψ0
t (t)+ e−λt

�(ψt(t))−�(x0)

t

+ e−λt
g(ψt(t))

t
+ e−λt − 1

t
W+(x0).

(3.10)

It can be shown that (see e.g., Lemmas 3.3, 3.4 in pp. 240-241, [10]) for t small

enough,

1

t
ψ0
t (t) = 1

t

∫ t

0
c(x0, µt(s), v̄) ds + o(1), (3.11)

�(ψt(t))−�(x0)

t
= eλt

[
1

t

∫ t

0
〈D�(x0), f (x0, µt(s), v̄) ds

− 〈A∗D�(x0), x0〉
]

+ o(1),

(3.12)
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g(ψt(t))

t
≤ eλt

1

t

∫ t

0
〈Dg(x0), f (x0, µt(s), v̄)〉 ds + o(1). (3.13)

Combining (3.10), (3.11), (3.12), (3.13) and letting t → 0, we get

λW+(x0)+ 〈A∗D�(x0), x0〉
+ min

u
[〈−D�(x0), f (x0, µt(s), v̄)〉 − c(x0, µt(s), v̄)] ≤ ε.

Since ε is arbitrary, we get the required inequality (3.9). �

We next show the existence of value and characterize it as the unique viscosity

solution of the associated HJI equation. To achieve this we make the following

assumption.

(A0) There exists a positive symmetric linear operator B : E → E and a

constant c0 such that R(B) ⊂ D(A∗) and (A∗ + c0I )B ≥ I .

Let |x|2B = 〈Bx, x〉 and F , the class of all bounded functions W : E → R

with the property that for all x, y ∈ E, |W(x)−W(y)| ≤ w(|x − y|B) for some

modulus w. We shall prove the characterization in this class F . Note that the

class F is contained in the class of bounded uniformly continuous functions.

We also require the so called Isaacs min-max condition. By ‘local game’

at (x̃, p̃) ∈ Ẽ × Ẽ, we mean the zero-sum static game, in which player 1 is

the minimizer and player 2 the maximizer, with payoff x0 + 〈−p, f (x, u, v)〉 −
p0c(x, u, v). The Isaacs condition is that for each (x̃, p̃) ∈ Ẽ× Ẽ, the associated

local game has a saddle point. In other words, we assume that

(A4) For all (x̃, p̃) ∈ Ẽ × Ẽ,

max
v∈V min

u∈U [〈−p, f (x, u, v)〉 − p0c(x, u, v)]
= min

u∈U max
v∈V [〈−p, f (x, u, v)〉 − p0c(x, u, v)].

Remark 3.8. In (A4) it is enough to take p0 = ±1. For proving the existence

of value, we only need (A4) with p0 = +1. But in the next Section we want

p0 = ±1.
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Theorem 3.9. Assume (A0)-(A4). The differential game has a value and this

value function is the unique viscosity solution of (3.7) (or (3.8)) in the class F .

Proof. We first show that W+ and W− belong to F . Boundedness of W+ and

W− has been proved in Lemma 3.3.

Let x0, y0, u(·), v(·), φ1(·), φ2(·), φ0
1(·), φ0

2(·) be as in Lemma 3.1. Let ε > 0.

Since c is bounded, there exists T = T (ε) large enough such that

|φ0
1(∞)− φ0

2(∞)| ≤ ε

2
+

∫ T

0
K‖φ1(s)− φ2(s)‖ ds

≤ ε

2
+KT

1
2

( ∫ T

0
‖φ1(s)− φ2(s)‖2 ds

) 1
2

(by Cauchy-Schwartz inequality).

It can be shown that (see e.g., Lemma 2.5, p. 233 in [10])

∫ T

0
‖φ1(s)− φ2(s)‖2 ds ≤ C2|x0 − y0|2B,

for some constant C. Therefore, we obtain

|φ0
1(∞)− φ0

2(∞)| ≤ ε

2
+KT

1
2C|x0 − y0|B.

This implies that we can choose δ = δ(ε) > 0 such that |φ0
1(∞)− φ0

2(∞)| < ε

whenever |x0 − y0|B < δ. Hence there is a modulus w with the property that

|φ0
1(∞) − φ0

2(∞)| ≤ w(|x0 − y0|B). Now we can mimic the arguments in

Lemmas 3.2 and 3.3 to get the fact that the upper and lower value functions are

in the class F .

Under (A4), both (3.7) and (3.8) coincide. ThereforeW+ andW− are respec-

tively sub- and super solutions of this equation (HJI equation). Now, we have

the comparison result for the HJI equation in the class F (see [6] and Chapter

6 in [10]). Therefore W+ ≤ W−. But we always have W+ ≥ W−. Hence

W+ = W−. The uniqueness follows from the same comparison result. �
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4 Saddle point

Under the Isaacs condition (A4), we prove the existence of a saddle point for

the game. To achieve this we use only the dynamic programming inequalities in

Section 3. We don’t use the fact that the game has a value.

Fix an arbitrary x0 ∈ E. Let r0 = W−(x0) and r0 = W+(x0). Consider the

sets

C(r0) = {
(t, x̃) | t, x0 ≥ 0 and x0 + e−λtW−(x) ≤ r0

}
,

C(r0) = {
(t, x̃) | t, x0 ≥ 0 and x0 + e−λtW+(x) ≥ r0

}
.

Clearly (0,

[
0

x0

]
) ∈ C(r0)∩C(r0) and, by the continuity ofW+ andW−, the

sets C(r0) and C(r0) are closed.

The next two results are very crucial in constructing the optimal strategies.

These results follow respectively from Lemmas 3.4 and 3.5.

Lemma 4.1. Assume (A1)-(A3). Let (t, x̃) ∈ C(r0) and δ > 0. Then for

any u(·) ∈ U[t, t + δ], there exists ν(·) ∈ Ṽ [t, t + δ] such that (t + δ, ψ̃(t +
δ, t, x̃, u(·), ν(·))) ∈ C(r0).

Proof. Suppose that the result is not true. Then there exist (t, x̃) ∈ C(r0),

δ > 0 and u(·) ∈ U[t, t + δ] such that for all ν(·) ∈ Ṽ [t, t + δ], (t + δ, ψ̃(t +
δ, t, x̃, u(·), ν(·))) /∈ C(r0).

That is,

ψ0(t + δ, t, x̃, u(·), ν(·))+ e−λ(t+δ)W−(ψ(t + δ, t, x̃, u(·), ν(·))) > r0.

This together with Lemma 2.2 (ii) implies that

x0 + e−λt inf
ν(·)

[ψ0(δ, x, u(t + ·), ν(t + ·))
+e−λδW−(ψ(δ, x, u(t + ·), ν(t + ·)))] > r0.

Applying Lemma 3.4, we obtain

x0 + e−λtW−(x) > r0.

This contradicts the fact that (t, x̃) ∈ C(r0). �
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In an analogous manner, by using Lemmas 2.2 (ii) and 3.5, we can establish

the next result.

Lemma 4.2. Assume (A1)-(A3). Let (t, x̃) ∈ C(r0) and δ > 0. Then for

any v(·) ∈ V [t, t + δ], there exists µ(·) ∈ Ũ[t, t + δ] such that (t + δ, ψ̃(t +
δ, t, x̃, µ(·), v(·))) ∈ C(r0).

We now define extremal strategies and, using Lemmas 4.1 and 4.2, show that

they constitute a saddle point. Any sequence F = {Fn}, Fn : [0,∞)× [0,∞)×
E → U , defines a strategy � = �(F) for player 1 in the following way. We

take the nth stage partition �n = {0 = t0 < t1 < · · · } to be the one which

divides [0,∞) into subintervals of length 1
n
. �n,1 ≡ Fn(0,

[
0

x0

]
). Let j ≥ 2,

(u(·), v(·)) ∈ U[t0, tj−1) × V [t0, tj−1), and φ̃(·) = φ̃(·, x0, u(·), v(·)). We

define �n,j (u(·), v(·)) = Fn(tj−1, φ̃(tj−1)).

For any sequenceG = {Gn}, whereGn : [0,∞)×[0,∞)×E → V , a strategy

� = �(G) for player 2 is defined in an analogous manner. The strategies

�(F) and �(G) are referred to as feedback strategies associated with F and G

respectively. The optimal strategies �e and �e which we define now are of this

feedback form. That is, �e = �(Fe) and �e = �(Ge). We define the sequence

Ge = {Gen} and the definition of Fe = {Fen} is similar.

Let (t, x̃) ∈ [0,∞)×[0,∞)×E. If (t, x̃) ∈ C(r0), then we defineGen(t, x̃) to

be a fixed element v0 ∈ V . Let (t, x̃) /∈ C(r0). LetCt(r0) = {x̃ : (t, x̃) ∈ C(r0)}
and ỹ ∈ Ct(r0) be such that ‖x̃ − ỹ‖ ≤ 2

1
2n dist

Ẽ
(x̃, Ct(r0)). We then define

Gen(t, x̃) to be v∗, where (u∗, v∗) is a saddle point for the local game at (x̃, x̃−ỹ).
The next result compares trajectories governed by two special pairs controls.

The proof may be obtained by modifying the proof of the analogous finite di-

mensional result in [9].

Lemma 4.3. Assume (A1)-(A4). Let x̃, ỹ belong to a bounded subset M of

[0,∞) × E, τ ∈ [0, T ), µ(·) ∈ Ũ[τ, T ] and ν(·) ∈ Ṽ [τ, T ]. Let (u∗, v∗) be

a saddle point for the local game at (x̃, x̃ − ỹ). Let x̃(·) = ψ̃(·, τ, x̃, µ(·), v∗),
ỹ(·) = ψ̃(·, τ, ỹ, u∗, ν(·)), p̃(·) = x̃(·) − ỹ(·). Then there exists a modulus ρ̂
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and β > 0, depending only on M and T , such that for 0 ≤ δ ≤ T − τ ,

‖p̃(τ + δ)‖2 ≤ ‖p̃(τ )‖2(1 + βδ)+ ρ̂(δ)δ.

Using Lemmas 4.1, 4.2 and 4.3, we try to establish the optimality of (�e,�e).

Lemma 4.4. Assume (A1)-(A4). Let � be any strategy for player 1 and let

φ̃[·] = φ̃[·, x0, �,�e] be a motion corresponding to (�,�e). Then for all t > 0,

(t, φ̃[t]) ∈ C(r0).

Proof. Let ε(t) = dist((t, φ̃[t]), C(r0)). Without any loss of generality, let φ̃[·]
be the local uniform limit of the sequence {φ̃(·, xon, un(·), vn(·))} of nth stage tra-

jectories. Let φ̃n(·) = φ̃(·, xon, un(·), vn(·)) and εn(t) = dist((t, φ̃n(t)), C(r0)).

Clearly for each t , εn(t) → ε(t) as n → ∞. Therefore it suffices to show that

for all t > 0, limn→∞ εn(t) = 0. Fix t > 0 and an integer N > t . We now

estimate εn(t).

Let �̄n = {0 = τn,0 < τn,1 < · · · < τn,Nn = N < · · · } be the nth stage

partition associated with�e. Let t ∈ (τn,j , τn,j+1], 0 ≤ j ≤ Nn−1. Choose ỹ ∈
Cτn,j (r0) such that ‖φ̃n(τn,j )− ỹ‖ ≤ 2

1
2n εn(τn,j ). Let (u∗, v∗) be a saddle point

for the local game at (φ̃n(τn,j ), φ̃n(τn,j )− ỹ). Now by Lemma 4.1, there exists

ν(·) ∈ Ṽ [τn,j , t] such that the relaxed trajectory ψ̃(·) = ψ̃(·, τn,j , ỹ, u∗, ν(·))
has the property that (t, ψ̃(t)) ∈ C(r0). Therefore

εn(t) ≤ ‖φ̃(t, τn,j , φ̃n(τn,j ), un(·), v∗)− ψ̃(t)‖.
Applying Lemma 4.3, we get

ε2
n(t) ≤ 2

1
n ε2
n(τn,j )

(
1 + β

n

)
+ ρ̂

(
1

n

)
1

n
.

Therefore

ε2
n(t) ≤ 2Nε2

n(0)

(
1 + β

n

)Nn
+ ρ̂

(
1

n

)
1

n

2N(1 + β

n
)Nn − 1

2
1
n (1 + β

n
)− 1

≤ 2Nε2
n(0)e

βN + ρ̂

(
1

n

)
2NeβN − 1

β
.

Letting n → ∞, we get the desired result. �
Similarly, we can prove the next result.
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Lemma 4.5. Assume (A1)-(A4). Let � be any strategy for player 2 and let

φ̃[·] = φ̃[·, x0, �e,�] be a motion corresponding to (�e,�). Then for all t > 0,

(t, φ̃[t]) ∈ C(r0).

Now we can show that the pair of strategies (�e,�e) constitute a saddle point

equilibrium for the game.

Theorem 4.6. Assume (A1)-(A4). The pair (�e,�e) is a saddle point for the

game with initial point x0.

Proof. From Lemmas 4.4 and 4.5, it follows that for any (�,�) and motions

φ̃[·, x0, �,�e], φ̃[·, x0, �e,�], we have

φ0[t, x0, �,�e] + e−λtW−(φ[t, x0, �,�e]) ≤ W−(x0),

φ0[t, x0, �e,�] + e−λtW+(φ[t, x0, �e,�]) ≥ W+(x0).

This holds for all t > 0. Letting t ↑ ∞, we get

φ0[∞, x0, �,�e] ≤ W−(x0),

φ0[∞, x0, �e,�] ≥ W+(x0).

Hence we obtain

P(x0, �,�e) ≤ W−(x0) ≤ W+(x0) ≤ P(x0, �e,�).

The required result now follows. �

5 Conclusions

We have extended the Berkovitz’s framework to study infinite horizon discounted

problems. In this setup, following a dynamic programming approach, we have

shown that the two player zero-sum infinite dimensional differential game on the

infinite horizon with discounted payoff has a value. This value function is then

characterized as the unique viscosity solution of the associated HJI equation.

This has been achieved by using the notion of viscosity solution proposed by

Crandall-Lions in [5] and [6]. By using our dynamic programming inequalities
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and mimicking the arguments in [8], without using (A0), we can also characterize

the value function in the class of bounded uniformly continuous functions by

taking the definition of viscosity solution as in [7] which is a refinement of

Tataru’s notion (see [11] and [12]). In the Elliott-Kalton framework, this has

been established by Kocan et. al. [8] under more general assumptions on A.
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