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Abstract. In this work we study the variational inequality problem in finite dimensional

spaces. The constraint set we consider has the structure of semi-infinite programming. Standard

convergence analysis for outer approximation methods includes boundedness of the constraint

set, or, alternatively, coerciveness of the data. Using recession tools, we are able to replace these

assumptions by the hypotheses of boundedness of the solution set and that the domain of the

operator contains the constraint set.
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1 Introduction

Let� ⊂ R
n be a nonempty closed and convex set. GivenT : R

n ⇒ R
n a maximal

monotone operator, we consider the classical variational inequality problem for

T and �, V IP (T , �), defined by: Find x∗ ∈ � such that there exists u∗ ∈ T (x∗)
with

〈u∗, x − x∗〉 ≥ 0, (1.1)
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for all x ∈ �. The set � will be called the feasible set for Problem (1.1). We

denote by S∗ the set of solutions of V IP (T , �).

In the particular case in which T is the subdifferential of f : R
n −→ R ∪

{∞}, where f is proper, convex and lower semicontinuous, (1.1) reduces to the

nonsmooth constrained optimization problem:

min
x∈�

f (x). (1.2)

This paper considers a feasible set � explicitly defined by:

� := {x ∈ R
n|g(x, y) ≤ 0 ∀ y ∈ Y }. (1.3)

We assume throughout this work that the set Y and function g : R
n × Y −→ R

satisfy the assumptions:

(G1) Y is a compact set contained in R
p;

(G2) g(·, y) is a proper, lower semicontinuous and convex function ∀y ∈ Y ;

(G3) g is continuous on R
n × Y .

There are several applications for which the feasible set has the form (1.3) (see,

e.g. [10, 4]). This kind of formulation was studied in Blankenship and Falk [3]

and in the context of reflexive Banach spaces in [9]. The methods studied in [3, 9]

can be cast in the family of ‘‘outer approximation methods’’. Various algorithms

of this kind have been proposed in the past 4 decades, being introduced by Cheney

and Goldstein [8] and Kelley [15] in the form of cutting plane algorithms. The

basic idea of these methods is to replace (1.2) by a sequence of problems (Pn)

in which the feasible sets �n contain the original set �. More specifically, an

outer approximation algorithm can be seen as a method that generates a sequence

{xn} which converges to a solution of the original problem without demanding

xn to belong to the original set �. The outer approximation methods considered

in [3, 9] were applied to solve the constrained optimization problem (1.2). In

these works, the convergence results are established under the hypothesis of

boundedness of the constraint set.

The aim of our work is to solve problem (1.1), with � given by (1.3). For doing

this, we extend the method proposed in [3] in two ways. First, we solve problem
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(1.1), which is, as stated before, a generalization of problem (1.2). Second, we

will allow � to be unbounded. The usual convergence result in this context is

optimality of all accumulation points of the iterates. For obtaining this result, we

will assume that the solution set is nonempty and bounded, and that the domain

of the operator contains the constraint set. In our analysis, we apply a technique

used by Auslender and Teboulle in [1], based on recession tools.

Our work is built around the following generic outer approximation scheme

for solving V IP (T , C).

Algorithm.

Step 0 (Initialization): Set k = 1 and take �1 ⊇ �

Step 1 (Iteration k): Given �k ⊇ � (k-th approximating problem){
Find xk ∈ �k such that ∃ uk ∈ T (xk) with

〈uk, x − xk〉 ≥ 0 ∀ x ∈ �k,

(i. e., xk solves V IP (T , �k)).

The paper is organized as follows. Section 2 contains some theoretical pre-

liminaries which are necessary for our analysis. In Section 3 we introduce the

algorithm and establish the convergence result.

2 Theoretical preliminaries

2.1 Maximal monotone operators

For an arbitrary point to set operator T : R
n ⇒ R

n, we recall the following

definitions:

Domain of T :

• D(T ) := {x ∈ R
n|T (x) �= ∅}

Graph of T :

• G(T ) := {(x, v) ∈ R
n × R

n|v ∈ T (x)}
Range of T :

• R(T ) := {v ∈ R
n|v ∈ T (x) for some x ∈ R

n}
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The operator T : R
n ⇒ R

n is monotone if

〈u − v, x − y〉 ≥ 0,

for all x, y ∈ R
n and for all u ∈ T (x), v ∈ T (y). A monotone operator T is

called maximal if for any other monotone operator such that T̃ (x) ⊇ T (x) for

all x ∈ R
n, it holds that T̃ = T .

From now on, T is a maximal monotone operator.

Our convergence theorems require two conditions on the operator T , namely

para- and pseudomotonicity, which we discuss next. The notion of paramono-

tonicity was introduced in [6] and further studied in [7, 13]. It is defined as

follows.

Definition 2.1. The operator T is paramonotone in � if it is monotone and

〈v − u, y − z〉 = 0 with y, z ∈ �, v ∈ T (y), u ∈ T (z) implies that u ∈
T (y), v ∈ T (z). The operator T is paramonotone if this property holds in the

whole space.

Proposition 2.2 (see [13, Proposition 4]) Assume that T is paramonotone and

x be a solution of the V IP (T , �). Let x∗ ∈ � be such that there exists an

element u∗ ∈ T (x∗) with 〈u∗, x∗ − x〉 ≤ 0. Then x∗ also solves V IP (T , �).

The remark below contains some examples of operators which are paramono-

tone.

Remark 2.3. If T is the subdifferential of a convex function f , then T is

paramonotone. Another condition which guarantees paramonotonicity of T :
R

n ⇒ R
n is when T is differentiable and the symmetrization of its Jacobian

matrix has the same rank as the Jacobian matrix itself. However, relevant op-

erators fail to satisfy this condition. More precisely, the saddle-point operator

T := (∂xL(x, y), −∂yL(x, y)), where L is the Lagrangian associated to a con-

strained convex optimization problem, is not paramonotone, except in trivial

instances. For more details on paramonotone operators see [13].

Next we recall the definition of pseudomonotonicity, which was taken from

[5] and should not be confused with other uses of the same word (see e.g., [14]).
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Definition 2.4. Let F : R
n ⇒ R

n be a multifunction such that D(F) is closed

and convex. F is said to be pseudomonotone if it satisfies the following condition:

If the sequence {(xk, uk)} ⊂ G(F), satisfies that:

(a) {xk} converges to x∗;

(b) lim supk〈uk, xk − x∗〉 ≤ 0.

Then for every w ∈ D(F) there exists an element u∗ ∈ F(x∗) such that

〈u∗, x∗ − w〉 ≤ lim inf
k

〈uk, xk − w〉.

Remark 2.5. If T is the subdifferential of a convex function f then T is pseu-

domonotone. The same is true is T is point-to-point and continuous. Hence,

if T is the gradient of a differentiable convex function, then T is both para-

and pseudomonotone. An example of a non-strictly monotone operator which is

both para- and pseudomonotone is the subdifferential of the function ϕ : R → R

defined by ϕ(t) = |t | for all t .

2.2 Level-boundedness and recession function of a point-to-set mapping

Recall that a function h : R
n → R ∪ {+∞} is said to be level-bounded [16]

when

lim inf‖x‖→+∞
h(x)

‖x‖ > 0. (2.1)

It is easy to see that the property above is equivalent to the boundedness of all

level sets of h. Given a nonempty closed and convex set C ⊂ R
n and a convex

lower semicontinuous function h : R
n → R∪{+∞}, denote by C∞ the recession

cone of C and by h∞ the recession function associated to h. When C = � is

nonempty and given by (1.3), it holds [16, Propositions 3.9 and 3.23] that

�∞ = {x | g∞(x, y) ≤ 0 ∀ y ∈ Y }. (2.2)

Assume now that T is maximal monotone and such that � ⊂ D(T ). Following

[1], the recession function associated to V IP (T , �) (see [1, Section 2]) is given
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by

f T,�
∞ (d) :=

{
supu∈T (�)〈u, d〉 d ∈ �∞,

+∞ c.c.,
(2.3)

where T (�) = {u | there exists x ∈ � such that u ∈ T (x)}.
When � ⊂ D(T ), it is established in [1, Section 2] that the solution set

(T + N�)−1(0) of V IP (T , �) is nonempty and compact if and only if

f T,�
∞ (d) > 0, ∀ d �= 0. (2.4)

The above equivalence is the key tool that will allow us to obtain convergence

results for the finite dimensional case, with the only assumption that � ⊂ D(T )

and the solution set of V IP (T , �) is nonempty and compact.

2.3 Assumptions

Throughout this work we consider the following assumptions:

(H0) � ⊂ D(T ) and the solution set of V IP (T , �) is nonempty and compact.

(H1) T is paramonotone and pseudomonotone with closed and convex domain.

As pointed out above, standard convergence analysis for outer approximation

methods includes boundedness of the constraint set, or, alternatively, coercive-

ness of the data. We mention now two important problems for which these

standard conditions do not hold, but instead (H0) and (H1) are satisfied. The

first example is the problem of projecting a point x0 ∈ R
n onto an unbounded

set �, where � := ∩y∈Y �y is an intersection of infinite closed and convex sets

�y := {x | g(x, y) ≤ 0} and g, Y are as in (G1) − (G3). The correspond-

ing maximal monotone operator is the subdifferential of the convex function

f (·) := (1/2)‖ · −x0‖2. It is easy to check that T x = ∂f (x) = x − x0, a para-

and pseudomonotone operator. The solution of this problem is the unique projec-

tion of x0 onto �. Another example is given by the linear programming problem,

when the constraint set is unbounded, but the solution set is bounded. The oper-

ator T is in this case constant, and hence trivially para- and pseudomonotone.
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3 Outer approximation algorithm

Now we can state formally the algorithm. For doing this, we need some notation:

• Y k is a finite subset of Y ;

• �k := {x ∈ R
n| g(x, y) ≤ 0 ∀ y ∈ Y k}.

• {εk}k is an exogenous nonnegative sequence converging to zero.

• Given �k, define the k-th approximating problem as:

(P k)

{
Find xk ∈ �k such that ∃ uk ∈ T (xk)

with 〈uk, x − xk〉 ≥ 0 ∀ x ∈ �k

• Given xk solution of (P k), define the k-th auxiliary problem as:

(Ak)

{
Find yk+1 ∈ Y such that

g(xk, yk+1) + εk ≥ g(xk, y) ∀ y ∈ Y.

Outer Approximation Scheme (OAS)

Step 0. Set k = 1. If there exists ȳ ∈ Y such that g(·, ȳ) is level-bounded, then

choose Y 1 ⊂ Y finite, nonempty and such that ȳ ∈ Y 1.

If g(·, y) is not level-bounded for any y ∈ Y , then choose any Y 1 ⊂ Y finite

and nonempty.

Iteration: For k = 1, 2....,

Step 1. Given �k, find xk solution of P k.

Step 2. For xk obtained in Step 1, solve Ak.

Step 3. (Check for solution and update if necessary)

If g(xk, yk+1) ≤ −εk stop. Otherwise, set

Y k+1 := Y k ∪ {yk+1}. (3.1)

Step 4. Set k := k + 1 and return to Step 1.
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Remark 3.1. As mentioned in the Introduction, the authors of [3] propose an

outer approximation algorithm for (1.2). The scheme above is an adaptation of

this algorithm to the variational inequality problem.

Remark 3.2. Note that

� ⊂ · · · ⊂ �k+1 ⊂ �k ⊂ · · · ⊂ �1, (3.2)

and �k is convex for all k. If there exists ȳ ∈ Y such that g(·, ȳ) is level-bounded,

then it is clear that �1 is bounded, and hence the whole sequence will be bounded.

Remark 3.3. If the solution yk+1 of the k-th auxiliary problem Ak obtained in

Step 2 satisfies

g(xk, yk+1) ≤ −εk,

then it holds that g(xk, y) ≤ 0 for all y ∈ Y , i.e., xk ∈ �. Thus,

〈uk, x − xk〉 ≥ 0 ∀ x ∈ �,

so that xk is a solution of problem (1.1). This justifies the stopping rule of Step 3.

Our first theoretical result establishes that boundedness of the sequence is

enough to obtain optimality of all accumulation points.

Lemma 3.4. Let the sequence {xk} be generated by (OAS). Suppose that (H1)

holds and that the solution set S∗ is nonempty. If {xk} is bounded, then any

accumulation point is a solution of the V IP (T , �).

Proof. If {xk} is bounded, we can choose a subsequence {xkj } of {xk} converg-

ing to x∗. We will prove first that x∗ ∈ �. Assume that the opposite is true, i.e.,

x∗ /∈ �. Thus, there is a point y∗ ∈ Y and a positive δ such that

g(x∗, y∗) > δ > 0. (3.3)

By extracting a subsequence of {xkj } if necessary, we may assume that the

sequence {ykj +1} has a limit ŷ by compacity of Y .
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For j large enough, by continuity of g in the first variable,

g(xkj , y∗) ≥ δ/2. (3.4)

Thus, by definition of ykj +1,

g(xkj , ykj +1) + εkj
≥ g(xkj , y∗) ≥ δ/2. (3.5)

Taking limits in (3.5), we get

g(x∗, ŷ) ≥ g(x∗, y∗) ≥ δ/2, (3.6)

where we are using the definition of {ykj +1}, {xkj } and the fact that {εk} converges

to zero. As xkj+1 ∈ �kj+1 , we have that g(xkj+1, y) ≤ 0 ∀ y ∈ Y kj+1 . Because

kj+1 ≥ (kj ) + 1, we have that Y kj+1 ⊃ Y (kj )+1, then

g(xkj+1, y(kj )+1) ≤ 0. (3.7)

Using the facts that limj xkj+1 = x∗ and limj y(kj )+1 = ŷ, and taking limit in

(3.7), we have that

g(x∗, ŷ) ≤ 0, (3.8)

which contradicts (3.6). Hence, x∗ ∈ �.

Next we prove that any accumulation point is a solution of V IP (T , �). Let x∗

be an accumulation point and take a subsequence {xkj } converging to x∗. Since

xkj solution of P kj , we know that

〈ukj , xkj − x〉 ≤ 0, ∀x ∈ �kj and ∀kj . (3.9)

Then by (3.2) we have that

〈ukj , xkj − x〉 ≤ 0 ∀x ∈ � and ∀kj . (3.10)

Since x∗ ∈ � it holds that

〈ukj , xkj − x∗〉 ≤ 0 ∀kj . (3.11)
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This implies that

lim sup
j

〈ukj , xkj − x∗〉 ≤ 0. (3.12)

Take x ∈ S∗. By pseudomonotonicity of T , we conclude that there exists

u∗ ∈ T (x∗) such that

lim inf
j

〈ukj , xkj − x〉 ≥ 〈u∗, x∗ − x〉. (3.13)

Since x ∈ �, (3.10) implies that

lim inf
j

〈ukj , xkj − x〉 ≤ 0. (3.14)

Combining the last two inequalities we have that

〈u∗, x∗ − x〉 ≤ 0. (3.15)

Finally, by paramonotonicity of T and Proposition 2.2 we conclude that x∗ is a

solution of the V IP (T , �). �

Now we are in conditions to present our convergence result, which establishes

optimality of all accumulation points of the sequence. As far as we know, this

result is new even for the optimization case.

Theorem 3.5. Assume that (H0) and (H1) hold. Let {xk} be the sequence gener-

ated by (OAS). Then any accumulation point of {xk} is a solution of V IP (T , �).

Proof. By Lemma 3.4, it is enough to establish boundedness of {xk}. If there

exists ȳ ∈ Y such that (2.1) holds for h := g(·, ȳ), then, by Step 0, �1 is bounded

and hence {xk} is also bounded. So we can assume that for all y ∈ Y

lim inf‖x‖→+∞
g(x, y)

‖x‖ ≤ 0. (3.16)

Suppose that {xk} is unbounded. This implies that there exists an infinite subset

of indices K for which the subsequence {xk}k∈K verifies

(i) ‖xk‖ → ∞ and
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(ii)
xk

‖xk‖ → d̄ �= 0.

Without loss of generality, we assume that the whole sequence verifies (i)-(ii)

above. Since by [2] for any function h we have

h∞(d) = inf

{
lim inf
n→∞

h(tn zn)

tn
| tn → ∞, zn → d

}
,

we get for every y ∈ Y

g∞(d̄, y) ≤ lim inf
k→∞

g(‖xk‖ xk

‖xk‖ , y)

‖xk‖ ≤ 0,

where the rightmost inequality holds by (3.16). Using now (2.2) we conclude

that d̄ ∈ �∞. Take uk ∈ T (xk) as in Step 1 and use monotonicity of T to get

〈u, x − xk〉 ≥ 〈uk, x − xk〉 ≥ 0 ∀ x ∈ �k ⊇ �, ∀u ∈ T (x).

In particular, for all x ∈ �, u ∈ T (x) we have that

〈u, xk〉 ≤ 〈u, x〉.
So, 〈

u,
xk

‖xk‖
〉

≤
〈
u,

x

‖xk‖
〉
,

and taking limits in the above expression we obtain 〈u, d̄〉 ≤ 0 for all u ∈ T (�).

By (2.3) we conclude that f T,�∞ (d̄) ≤ 0. This is in contradiction with our

hypothesis (H0), in view of (2.4) and the fact that d̄ �= 0. Hence the sequence

must be bounded and the proof is complete. �

Remark 3.6. We point out that convergence of the whole sequence requires

stronger hypotheses that those of the theorem above. It is clear that if S∗ is a

singleton, then the accumulation point is unique and convergence of the whole

sequence holds. Otherwise, (OAS) can generate a sequence with more than one

accumulation point. Indeed, assume x∗, y∗ ∈ S∗ are different and suppose that

Y = {y}. The sequence defined as

xk :=
{

x∗ if k is odd,

y∗ if k is even,

is admissible for (OAS), and it does not converge.
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4 Concluding remarks

In outer approximation schemes as the one we consider in this work, the com-

plexity of the subproblems increases at each step, and quickly we may face a

subproblem which, while having a finite number of constraints, it is as difficult

as the original problem. This motivates the quest for approximating procedures

for defining the subproblems. One of these approximating procedures replaces

the constraint g(x, yk+1) ≤ 0, which is added at iteration k to the finite set

of constraints, by its linear approximation. Another approach for avoiding the

increasing complexity of the subproblems is to device adaptative rules involv-

ing constraints-dropping schemes as the ones developed by Hogan [12] and

Gonzaga and Polak [11]. However, the convergence analysis required by these

approximating schemes seems to require a much more involved analysis, or extra

hypotheses on the data. We believe that approximating schemes of the kind just

mentioned are important within the study of outer approximation algorithms,

and we envisage to improve our current convergence results by incorporating

them into our future research.
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