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1 Introduction

The use of fractional orders differential and integral operators in mathematical

models has become increasingly widespread in recent years (see [11], [22] and

[26]). Several forms of fractional differential equations have been proposed in

standard models, and there has been significant interest in developing numerical

schemes for their solution (see [11], [14], [22] and [26]). However, much of the

work published to date has been concerned with linear single term equations and,

of these, equations of order less than unity have been most often investigated (see

[1] and [3]-[6]).

Let α ∈ (n, n + 1], αk ∈ (k − 1, k], k = 1, 2, ..., n and αo = 0.

Consider the initial value problem

Dαx(t) = f (t, x(t), Dα1x(t − r), Dα2x(t − 2r), ..., Dαnx(t − nr)), t ∈ I

Djx(t) = 0 for t ≤ 0, j = 0, 1, 2, ..., n.
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The existence of at least one solution of this initial value problem has been

proved (see [13]) where the function f (t, U) = f (t, u1(t), ..., un(t)) satisfies

Caratheodory conditions, i.e., t → f (t, U) is measurable for every U ∈ Rn+1

and U → f (t, U) is continuous for every t ∈ I . f (t, U) is nondecreasing for

all variables, and there exist a function a(t) ∈ L1 and constants bk ≥ 0, such

that

|f (t, U)| ≤ a(t) +
n∑

k=0

bk|uk(t)| for all (t, U) ∈ I × Rn+1.

In this paper we focus on providing a numerical solution to the nonlinear multi-

term fractional (arbitrary) orders differential equation (see [15]).

Dnx(t) = f (t, x(t), Dα1x(t), Dα2x(t), ..., Dαmx(t)), t > 0 (1.1)

subject to the initial values

Djx(0) = 0, j = 0, 1, 2, ..., n − 1, (1.2)

where αi are real numbers (i = 1, 2, ..., m), such that

0 < α1 < α2 < ... < αm < n

and n is any positive integer number.

A theorem proving the existence and uniqueness of the solution will be proved.

Applications for such equations arise, e.g., in various areas of mechanics [26],

the Bagley-Torvik equation [11] and the Basset equation [22].

Now we give the definition and some properties of the fractional order differ-

ential and integral operators.

Let L1 = L1[a, b] be the class of Lebesgue integrable functions on [a, b], a <

b < ∞.

Definition 1.1. Let f (t) ∈ L1, β ∈ R+. The fractional (arbitrary) order

integral of the function f (t) of order β is defined by (see [18], [21], [24] and [27])

Iβ
a f (t) =

∫ t

a

(t − s)β−1

�(β)
f (s) ds,

when a = 0 we can write Iβf (t) = I
β
o f (t) = f (t) ∗ φβ(t), where φβ(t) =

tβ−1

�(β)
for t > 0, φβ(t) = 0 for t ≤ 0 and φβ → δ(t) (the delta function) as β → 0

(see [16]).
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Definition 1.2. The fractional derivative Dα of order α ∈ (0, 1] of the abso-

lutely continuous function g(t) is defined as (see [2], [13], [18], [24] and [27])

Dα
a g(t) = I 1−α

a

d

dt
g(t), t ∈ [a, b].

2 Formulation of the problem

Definition 2.1. By a solution of the initial value problem (1.1) and (1.2) we

mean a function x(t) ∈ C(I) and all its derivative up to order (n − 1) are

vanishing at t = 0.

Now equation (1.1) can be written in the form

Dnx(t) = f (t, x0(t), x1(t), ..., xm(t)), t > 0, (2.1)

where

xi(t) = Dαix(t), i = 1, 2, ..., m (2.2)

and

x0(t) = x(t). (2.3)

From Eq. (2.2) we get

xi(t) = Iαi+1−αi xi+1(t), i = 0, 1, 2, ..., m − 1, α0 = 0 (2.4)

and

xm(t) = I n−αmf (t, x0(t), x1(t), ..., xm(t)). (2.5)

Lemma 2.1. The fractional order differential equation (2.1) can be trans-

formed to the system

X(t) = A(t)X(t) + B(t, X(t)), t > 0, (2.6)

where

X(t) = (x0(t), x1(t), ..., xm(t))′, (2.7)
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B(t, X(t)) = (0, 0, ..., I n−αmf (t, x0(t), x1(t), ..., xm(t)))′, (2.8)

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A1(t) 0 0 . . 0 0

0 0 A2(t) 0 . . . 0

. . . . . . . .

. . . . . . . .

0 0 . . . . 0 Am(t)

0 0 . . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(m+1)×(m+1)

(2.9)

and Ai+1(t)xi+1(t) = Iαi+1−αi xi+1(t), i = 0, 1, 2, ..., m − 1, α0 = 0 where (′)
denotes the transpose of the matrix.

Proof. Using the definition of the fractional derivative and equations (2.3),

(2.4) and (2.5), we can easily obtain the result.

Set I = [0, T ], say, T is a suitable positive number and Ď = I ×C∗(t) where

C∗(t) is the class of all continuous column vectors X(t) (defined by (2.7)) with

the norm

‖X(t)‖∗ =
m∑

i=0

‖xi(t)‖ =
m∑

i=0

max
t∈I

|xi(t)|, X(t) ∈ C∗(I ).

Definition 2.2. By a solution of the system (2.6), we mean a column vector

X(t) ∈ C∗(t) and X(0) = 0.

Assuming that the function f (t, x0(t), x1(t), ..., xm(t)) satisfies the Lipschitz

condition

|f (t, x0, x1, ..., xm) − f (t, y0, y1, ..., ym)| ≤ k

m∑
i=0

|xi(t) − yi(t)| (2.10)

for (t, x0, x1, ..., xm) and (t, y0, y1, ..., ym) ∈ Ď, k > 0.

Theorem 2.1. Let f (t, x0, x1, ..., xm) ∈ C(Ď) and satisfies the Lipschitz con-

dition (2.10). If

m∑
i=0

T αi+1−αi ≤ 1

(1 + n)(1 + k)
, (αm+1 = n),
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then Eq. (1.1) has one and only one solution x(t) ∈ C(I) that satisfies Dαix(t) ∈
C(I), i = 1, 2, ..., m.

Proof. If we write

FX(t) = A(t)X(t) + B(t, X(t)). (2.11)

Then for (t, x0, x1, ..., xm) and (t, y0, y1, ..., ym) ∈ Ď, we get

‖FX(t) − FY(t)‖∗ ≤ ‖A(t)(X(t) − Y (t))‖∗

+ ‖I n−αm(f (t, x0, x1, ..., xm) − f (t, y0, y1, ..., ym))‖. (2.12)

Since for t > 0 and i = 0, 1, 2, ..., m − 1

|Iαi+1−αi xi+1(t)| = | 1

�(αi+1 − αi)

∫ t

0
(t − u)αi+1−αi−1xi+1(u)du|

≤ ‖xi+1‖
�(αi+1 − αi + 1)

T αi+1−αi

further,
1

�(αi+1 − αi + 1)
< αi+1 − αi + 1 < αi+1 + 1 < n + 1 hence

|Iαi+1−αi xi+1(t)| ≤ (n + 1)T αi+1−αi‖xi+1‖, (2.13)

‖A(t)(X(t) − Y (t))‖∗ =
m−1∑
i=0

‖Ai+1(t)(xi+1(t) − yi+1(t))‖

=
m−1∑
i=0

‖Iαi+1−αi (xi+1(t) − yi+1(t))‖

=
m−1∑
i=0

max|Iαi+1−αi (xi+1(t) − yi+1(t))|

≤
m−1∑
i=0

(n + 1)T αi+1−αi‖xi+1 − yi+1‖

≤ (n + 1)‖X(t) − Y (t)‖∗
m−1∑
i=0

T αi+1−αi

≤ (n + 1)‖X(t) − Y (t)‖∗
m∑

i=0

T αi+1−αi

(2.14)
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since

‖I n−αm(f (t, x0, x1, ..., xm) − f (t, y0, y1, ..., ym))‖

≤ k(n + 1)‖X(t) − Y (t)||∗T n−αm

≤ k(n + 1)‖X(t) − Y (t)||∗
m∑

i=0

T αi+1−αi

(2.15)

then

‖FX(t) − FY(t)‖∗ ≤ (n + 1)(1 + k)

m∑
i=0

T αi+1−αi‖X − Y ||∗. (2.16)

Hence the map F : C∗(I ) −→ C∗(I ) is a contraction (and then, it has a fixed

point X = FX) providing

m∑
i=0

T αi+1−αi ≤ 1

(n + 1)(k + 1)
, (2.17)

and hence, there exists a unique column vector X(t) ∈ C∗(I ), which is the

solution of the system (2.6). Therefore, from (2.7) and the definition of C∗(I ),

we deduce that there exists one and only one solution x(t) ∈ C(I), and this

solution satisfies Dαix(t) ∈ C(I), i = 1, 2, ..., m.

3 Numerical methods and results

Numerical methods for the solution of linear fractional differential equations

involving only one fractional derivative are well established (see for example

[1], [3], [4] and [16]).

In [12] Luchko and Diethelm discussed a new algorithm for the numerical

solution of initial value problems for general linear multi-term differential equa-

tions of fractional order with constant coefficients and fractional derivatives in

the Caputo sense. Which is obtained by applying the convolution quadrature and

discretized operational calculus to the analytical solution of the problem given

in terms of the Mittag-Leffer type function (see [19]). That may require a large

amount of computational effort to calculate its weights.

In [14] Ford et al. showed how the numerical approximation of the solution of

a linear multi-term fractional differential equation can be calculated by reduction
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of the problem to a system of ordinary and fractional differential equations each

of order at most unity (see [3]).

In [20] Leszczynski and Ciesielski proposed an algorithm for the numerical

solution of arbitrary differential equations of fractional order. Which is obtained

by using the following decomposition of the differential equation into a system

of differential equation of integer order connected with inverse forms of Abel-

integral equations (see [23] and [25]). The algorithm is used for solution of the

linear and non-linear equations.

In [11] Diethelm and Ford considered the reformulation of the Bagley-Torvik

equation as a system of fractional differential equations of order 1/2.

In [15] El-Sayed et al. gave a numerical methods for solving a nonnlinear

multi-term fractional (arbitrary) orders differential equations.

An Adams-type predictor-corrector method has been introduced in [5] and [6]

and investigated further in [7]-[10]. In this paper we use anAdams-type predictor-

corrector method for the numerical solution of fractional integral equations. We

will apply the PECE (Predict, Evaluate, Correct, Evaluate) method in Eqs.

xi(t) = Iαi+1−αi xi+1(t), i = 0, 1, 2, ..., m − 1,

where

α0 = 0, x0(t) = x(t)

and

xm(t) = I n−αmf (t, x0(t), x1(t), ..., xm(t)).

4 Numerical examples

As an example that arises in application, we solve the Bagley-Torvik equation

which arises, for instance, in modelling the motion of a rigid plate immersed in

a Newtonian fluid. Examples 1-3 are The Bagley-Torvik equation.

Example 1.

aD2x(t) + bD3/2x(t) + cx(t) = f (t), t > 0, (4.1)
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where

f (t) =
{

8 for 0 ≤ t ≤ 1,

0 for t > 1

}

subject to

x(0) = x ′(0) = 0.

This problem was solved in [26] and [20]. The approximate solutions displayed

in Figs. 1 and 2 for step size h = 0.01.
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Figure 1 – a = b = c = 1.
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Figure 2 – a = 1, b = 0.5 and c = 0.5.
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Example 2. Consider a non-linear form of the fractional differential equation

D2x(t) + 0.5D3/2x(t) + 0.5x3(t) = f (t), t > 0, (4.2)

where

f (t) =
{

8 for 0 ≤ t ≤ 1,

0 for t > 1

}

subject to

x(0) = x ′(0) = 0.

This is a Bagley-Torvik equation where non-linear term x3(t) is introduced. This

problem was solved in [20]. Fig. 3. shows a behaviour of the numerical solution

for step size h = 0.01.
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Figure 3

Example 3.

aD2x(t) + bD3/2x(t) + cx(t) = f (t), 0 ≤ t ≤ 5, (4.3)

where

f (t) = c(t + 1)

subject to

x(0) = x ′(0) = 1.
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It is easily verified that the exact solution of this problem is

x(t) = t + 1.

This problem was solved in [11] and [12]. Set

y(t) = x(t) − t − 1,

then we have the following equation

aD2y(t) + bD3/2y(t) + cy(t) = 0 (4.4)

subject to

y(0) = y ′(0) = 0.

Now, we can apply our method in Eq. (4.4). We evaluate the maximal error

(m. e.) and the results are compared to results obtained by the methods of [11]

and [12].

For a = 1, b = 0.5 and c = 0.5 we found the following results (see Table 1).

Step size M. e. by our method E. at t=5 by Ref. [11]

0.5 0 −0.15131473519232

0.25 0 −0.04684102179946

0.125 0 −0.01602947553912

0.0625 0 −0.00562770408881

Table 1

For a = 1, b = 1 and c = 1 we found the following results (see Table 2).

Step size M. e. by our method E. at t=5 by Ref. [12] E. at t=5 by ref. [12]

0.5 0 0.3831 0.00741

0.25 0 0.0904 0.00630

0.125 0 0.0265 0.00196

0.0625 0 0.0084 0.00056

0.01325 0 0.0028 0.00016

Table 2
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Example 4. The equation

D2x(t) + Dαx(t) + x(t) = 0, 0 < α < 2 (4.5)

subject to

x(0) = 1, x ′(0) = 0.

This problem was solved in [14]. Set

y(t) = x(t) − 1,

then we have the following equation

D2y(t) + Dαy(t) + y(t) = −1 (4.6)

subject to

y(0) = y ′(0) = 0.

Now, we can apply our method in Eq. (4.6). We show the approximate solutions

in Figs. 4-8 for step size h = 0.01.
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Figure 4 – α = 0.5.

Example 5. Consider the linear fractional differential equation (4.7) which

arises, for instance, in the study of the generalised Basset force occuring when a

sphere sinks in a (relatively less dense) viscous fluid (see Mainardi [22]),

Dx(t) + aDαx(t) + x(t) = 1, 0 < α < 1 (4.7)
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Figure 5 – α = 1.
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Figure 6 – α = 1.25.
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Figure 7 – α = 1.5.
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Figure 8 – α = 1.75.

subject to

x(0) = 0.

Where a = βα, β = 9/(1+2λ) and λ = 0.5, 2, 10 and 100.Also this problem

was solved in [14]. Our calculated approximate solutions (with h = 0.1) to the

Basset equation are given in Figs. 9 and 10.
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Figure 9 – α = 0.25.

Example 6. Consider the nonlinear equation

aD2x(t) + bDα2x(t) + c(Dα1x(t))2 + e(x(t))3 = f (t),

0 < α1 ≤ 1, 1 < α2 < 2
(4.8)
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Figure 10 – α = 0.5.

and

f (t) = 2at + 2b

�(4 − α2)
t3−α2 + c

(
2

�(4 − α1)
t3−α1

)2

+ e

(
1

3
t3

)3

subject to

x(0) = x ′(0) = 0.

It is easily verified that the exact solution of this problem is

x(t) = 1

3
t3.

For a = 1, b = 1, c = 1, e = 1, α1 = 0.555 and α2 = 1.455 we found the

following results (see Table 3).

Step size Maximal error

0.1 0.009878278000

0.01 0.000250220300

0.001 0.000006325524

Table 3

For a = 1, b = 0.5, c = 0.5, e = 0.5, α1 = 0.276 and α2 = 1.999 we found

the following results (see Table 4).
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Step size Maximal error

0.1 0.024986180000

0.01 0.004967123000

0.001 0.000576168300

Table 4

Example 7. Consider the nonlinear equation

aD2x(t) + b(Dα2x(t))2 + cDα1x(t) + ex(t) = f (t),

0 < α1 ≤ 1, 1 < α2 < 2
(4.9)

and

f (t) = c

�(2 − α1)
t1−α1 + et

subject to

x(0) = 0, x ′(0) = 1.

It is easily verified that the exact solution of this problem is

x(t) = t.

Set

y(t) = x(t) − t,

then we have the following equation

aD2y(t) + b(Dα2y(t))2 + cDα1y(t) + ey(t) = 0 (4.10)

subject to

y(0) = y ′(0) = 0.

Now, we can apply our method in Eq. (4.10).

For a = 1, b = 1, c = 0.5, e = 0.5, α1 = 0.821 and α2 = 1.333 we found the

following results (see Table 5).

For a = 4, b = 3, c = 2, e = 1, α1 = 0.637 and α2 = 1.211 we found the

following results (see Table 6).
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Step size Maximal error

0.1 0

0.01 0

0.001 0

Table 5

Step size Maximal error

0.1 0

0.01 0

0.001 0

Table 6

Example 8. Consider the equation

aD2x(t) + bDx(t) + cDα2x(t) + eDα1x(t) + kx(t) = f (t),

0 < α1 < α2 < 1
(4.11)

and

f (t) = a + bt + c

�(3 − α2)
t2−α2 + e

�(3 − α1)
t2−α1 + k

(
1 + 1

2
t2

)

subject to

x(0) = 1, x ′(0) = 0.

It is easily verified that the exact solution of this problem is

x(t) = 1 + 1

2
t2.

Set

y(t) = x(t) − 1,

then we have the following equation

aD2y(t) + bDy(t) + cDα2y(t) + eDα1y(t) + ky(t) = g(t), (4.12)
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where

g(t) = a + bt + c

�(3 − α2)
t2−α2 + e

�(3 − α1)
t2−α1 + k

2
t2

subject to

y(0) = y ′(0) = 0.

Now, we can apply our method in Eq. (4.12).

For a = 1, b = 3, c = 2, e = 1, k = 5, α1 = 0.0159 and α2 = 0.1379 we

found the following results (see Table 7).

Step size Maximal error

0.1 0.051115750000

0.01 0.004546523000

0.001 0.000409626200

Table 7

For a = 0.2, b = 1, c = 1, e = 0.5, k = 2, α1 = 0.00196 and α2 = 0.07621

we found the following results (see Table 8).

Step size Maximal error

0.1 0.048089030000

0.01 0.004629374000

0.001 0.000437974900

Table 8

Example 9. Consider the equation

aD2x(t) + b(t)Dα2x(t) + c(t)Dx(t) + e(t)Dα1x(t) + k(t)x(t) = f (t),

0 < α1 < 1, 1 < α2 < 2
(4.13)

and

f (t) = −a − b(t)

�(3 − α2)
t2−α2 − c(t)t − e(t)

�(3 − α1)
t2−α1 + k(t)

(
2 − 1

2
t2

)

subject to

x(0) = 2, x ′(0) = 0.
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It is easily verified that the exact solution of this problem is

x(t) = 2 − 1

2
t2.

Set

y(t) = x(t) − 2,

then we have the following equation

aD2y(t) + b(t)Dα2y(t) + c(t)Dy(t) + e(t)Dα1y(t) + k(t)y(t) = g(t), (4.14)

where

g(t) = −a − b(t)

�(3 − α2)
t2−α2 − c(t)t − e(t)

�(3 − α1)
t2−α1 − k(t)

2
t2

subject to

y(0) = y ′(0) = 0.

Now, we can apply our method in Eq. (4.14).

For a = 1, b(t) = t1/2, c(t) = t1/3, e(t) = t1/4, k(t) = t1/5, α1 = 0.333 and

α2 = 1.234 we found the following results (see Table 9).

Step size Maximal error

0.1 0.023658990000

0.01 0.000986218500

0.001 0.000043988230

Table 9

For a = 3, b(t) = t, c(t) = t + 1, e(t) = t2, k(t) = (t + 1)2, α1 = 0.445 and

α2 = 1.178 we found the following results (see Table 10).

Step size Maximal error

0.1 0.024778840000

0.01 0.000796556500

0.001 0.000026790430

Table 10
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Example 10. Consider the equation

aD2x(t) + b(t)Dα2x(t) + c(t)Dx(t) + e(t)Dα1x(t) + k(t)x(t) = f (t),

0 < α1 < 1, 1 < α2 < 2
(4.15)

and

f (t) = c(t) + e(t)

�(2 − α1)
t1−α1 + k(t)t

subject to

x(0) = 0, x ′(0) = 1.

It is easily verified that the exact solution of this problem is

x(t) = t.

Set

y(t) = x(t) − t,

then we have the following equation

aD2y(t) + b(t)Dα2y(t) + c(t)Dy(t) + e(t)Dα1y(t) + k(t)y(t) = 0 (4.16)

subject to

y(0) = y ′(0) = 0.

Now, we can apply our method in Eq. (4.16).

For a = 2, b(t) = t, c(t) = t, e(t) = √
t, k(t) = √

t, α1 = 0.999 and

α2 = 1.222 we found the following results (see Table 11).

Step size Maximal error

0.1 0

0.01 0

0.001 0

Table 11

For a = 0.5, b(t) = t2/5, c(t) = t2−t, e(t) = t3−t2, k(t) = t+1, α1 = 0.123

and α2 = 1.888 we found the following results (see Table 12).
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Step size Maximal error

0.1 0

0.01 0

0.001 0

Table 12

5 Conclusion

In our method α1, α2, ..., αm take arbitrary values such that 0 < α1 < α2 < ... <

αm < n. On the other hand a specific conditions must be satisfied by αs (see [7],

[8] and [10]).

Examples 6-10 have been solved (see [7], [8] and [10]) by transforming the

given initial value problem into a system of equations, all of which must have the

same order and the dimension of the system is d = n/q (q = gcd(1, α1, α2, . . . ,

αm, n)) which in most cases is very large because the order of the system q is

small and it is obvious that this leads to much larger requirements concerning

computer memory and run time.

For instance in Example 6 the order of the system q = 0.005 and the dimension

of the system d = 400 and after approximations α1 = 0.55 and α2 = 1.45 the

order of the system becomes 0.05 and the dimension of the system becomes 40

further after approximations α1 = 0.5 and α2 = 1.5 the order of the system

becomes 0.5 and the dimension of the system becomes 4.

This produce two sources of errors one due to the approximations of αs to

reduce the dimension of the system and the other in the numerical solution of

the resulting system.
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