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Abstract. We propose a discrete approximation scheme to a class of Linear Quadratic Con-

tinuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that

optimal solutions of the discrete problems provide a sequence of bounded variation functions

which converges almost everywhere to the unique optimal solution. Furthermore, the method

of discretization allows us to derive a number of interesting results based on finite dimensional

optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong

duality. A number of examples are provided to illustrate the theory.
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1 Introduction

We propose a discretization scheme to compute approximate solutions of linear-

quadratic continuous time problems (LQCTP) of the form

Minimize
∫ T

0

[
(1/2)x ′(t)Q(t)x(t) + a′(t)x(t)

]
dt

Subject to B(t)x(t) −
∫ t

0
K(t, s)x(s) ds − c(t) ≤ 0

x(t) ≥ 0.
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82 STRICT CONVEX CONTINUOUS TIME PROBLEMS AND DUALITY

The matrix Q associated with the integral cost consists of time-varying contin-

uous functions as entries and the rest of the parameters of the problem a, c, B

and K are functions of bounded variation; x(t) is the decision variable.

The method of discretization consists of taking a sequence of partitions of the

interval [0, T ] in equidistant intervals such that in each interval of a particular

partition we apply the trapezoidal rule in the cost and in the constraints of the

original problem. For each discretization we get a finite dimensional quadratic

programming problem. We are able to prove that any sequence of continuous

solutions obtained from the optimal solutions of the discretized problems con-

verges almost everywhere to the optimal solution of the original continuous time

problem. We point out that this convergence is independent of particular inte-

gration rule adopted. What may differ is the order of convergence which will be

discussed elsewhere.

We illustrate the power of our discretization method to approximately solve

linear-quadratic continuous time problems with a series of examples. In these ex-

amples we are capable of actually finding analytical solutions, where the discrete

optimal solutions play a major role in showing how the solutions should look

like. The confirmation of optimality is made by using the Karush-Kuhn-Tucker

conditions of optimality provided in Section 6.

The method of solving (LQCTP) presented here is an extension of the purely

linear cases studied by Buie and Abrham [3] and Pullan [10] to linear-quadratic

problems.

The theoretical approach to prove convergence of a subsequence of contin-

uous approximate solutions to an optimal solution of the LQCTP enables us

to also derive some duality results for LQCTP. The finite dimensional pair of

problems obtained in our discretization scheme are convex and concave, respec-

tively. Then, there is no duality gap between them [4]. Due to weak duality,

Theorem 5.1 below, the value of the maximization problem (D) is at most equal

to the value of the minimization problem (LQCTP). We show that the gap closes

up when we refine the partition of [0, T ]. In the limit we have optimality (strong

duality).

As it is well known, finite dimensional quadratic problems have duals with only

dual variables. This is made possible via primal variable elimination of the dual.
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A direct approach of eliminating the primal variables of the dual in a continuous

time version is now more complicated. However, due to the approximation

scheme and duality relationships between the finite dimensional problems, we

can, as explained above, provide a duality theory for the linear-quadratic problem.

A duality theory for purely linear continuous time problems was first inves-

tigated in [11]. After that, duality theory has been extended in a number of

directions, see, for instance, [12, 5, 6, 1, 2]. Pullan [10] considers a special class

of linear problems, called separated continuous linear programs, proposes a dis-

cretization method to solve problems in this class and derives a strong duality

result. Philpot [9] considers a linear continuous time problem modelling shortest

path problems in graphs, where edge distances can vary with time. Under some

regularity on the edge distances he also establishes strong duality.

It seems that continuous time problems with quadratic integral cost and linear

(integral) operator in the constraints in the present form of this paper has not

been considered elsewhere in the literature.

We now fix the notation used in this paper. The space of matrices with k rows

and l columns is denoted by R
k×l . We will use the following definitions for norm

of vectors, matrices and variation of the functions. Let x = (x1, · · · , xk)
′ be a

vector, A = (aij ) be a matrix and

||x|| =
k∑

i=1

|xi | and ||A|| =
k∑

i=1

l∑
j=1

|aij |

denote the norms of x and A, respectively. Let abs(x) mean (|x1|, . . . , |x2|). Let

f : [0, T ] → R be a given function. The number

V [0, T , f (t)] = sup
0=t0<···<tn=T

n∑
i=0

|f (ti) − f (ti−1)|

finite or infinite is called the variation of the function f on the interval [0, T ]. We

say that f is a function of bounded variation on [0, T ], if V [0, T , f (t)] < +∞.

Matrix functions A(·) : [0, T ] → R
k×l are of bounded variation if each entry

of the matrix is a function of bounded variation. We denote the space of matrix

functions of bounded variation by BV ([0, T ]; R
k×l).

We finish this section by summarizing the organization of the paper. Section 2

is devoted to recalling the LQCTP and introducing its discretization. In Section 3
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the dual problem and its discretization are introduced. Some facts about duality

for finite dimensional quadratic problems are gathered in Proposition 3.1 below.

The standing hypothesis and results of convergence are the subject of Section 4.

Results of duality are presented in Section 5 and the Karush-Kuhn-Tucker con-

ditions of optimality in Section 6. Numerical examples are discussed Section 7.

Finally, in Section 8, some comments and final considerations are made.

2 The linear-quadratic problem and its discretization

We start recalling the LQCTP from the introduction.

Minimize
∫ T

0

[
(1/2)x ′(t)Q(t)x(t) + a′(t)x(t)

]
dt

Subject to B(t)x(t) −
∫ t

0
K(t, s)x(s) ds − c(t) ≤ 0 (1)

x(t) ≥ 0.

Here a(t) : [0, T ] → R
N , B(t) : [0, T ] → R

m×N and c(t) : [0, T ] → R
m

are functions of bounded variation which are supposed to be continuous on the

right on the interval [0, T ) and Q : [0, T ] → R
N×N is a continuous function.

K : [0, T ] × [0, T ] → R
m×N is a constant matrix and x(·) : [0, T ] → R

N is a

choice variable. Precise assumptions will be made clear in Section 4. We point

out that right continuous bounded variation functions can jump on right endpoint

T of the interval [0, T ], but cannot jump at the left point of it.

We now introduce the discretization for LQCTP. Let πn := {tni } be a partition of

the interval [0, T ] in ln sub-intervals, in which tni := i(T /ln), for i = 1, 2, . . . , ln.

Let A : [0, T ] → R
k×l and α : [0, T ] → R

k be given functions, which are matrix

valued and vector valued, respectively. We use the notation An
i := A(tni ) and

αni := α(tni ) for i = 1, 2, . . . , ln unless stated differently. The resulting discrete

quadratic problem is given by

Minimize (T /ln)

[
(1/2)x ′

nQnxn + a′
nxn

]
Subject to Gnxn ≤ cn,

xn ≥ 0,
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where

a′
n = (a′

n0 : a′
n1 : · · · : a′

nln
) with an0 = (1/2)a(0), anln = (1/2)a(T ),

ani = a(tni ) for i = 1, 2, · · · , ln − 1,

c′
n = (c′

n0 : c′
n1 : · · · : c′

nln
) with cn0 = (1/2)c(0), cnln = (1/2)c(T ),

cni = c(tni ) for i = 1, 2, · · · , ln − 1,

Qn =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2Qn

0 0 0 · · · 0

0 Qn
1 0 · · · 0

...
. . .

...

0 · · · 0 Qn
ln−1 0

0 · · · 0 0 1
2Qn

ln

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Gn =

⎛
⎜⎜⎜⎜⎜⎝

1
2 Bn

0 0 0 0 · · · 0
0 Bn

1 0 0 · · · 0
0 0 Bn

2 0 · · · 0
.
.
.

. . .
.
.
.

0 0 · · · 0 Bn
ln−1 0

0 0 · · · 0 0 1
2 Bn

ln

⎞
⎟⎟⎟⎟⎟⎠− T

ln

⎛
⎜⎜⎜⎜⎜⎝

1
4 K 0 0 0 . . . 0
1
2 K 1

2 K 0 0 . . . 0
1
2 K K 1

2 K 0 . . . 0
.
.
.

. . .
.
.
.

1
2 K K · · · K 1

2 K 0
1
4 K 1

2 K · · · 1
2 K 1

2 K 1
4 K

⎞
⎟⎟⎟⎟⎟⎠

where Qn
0 = Q(0), Qn

ln
= Q(T ) and Qn

i = Q(tni ), i = 1, 2, · · · , ln − 1;

Bn
0 = B(0), Bn

ln
= B(T ) and Bn

i = B(tni ), i = 1, 2, · · · , ln − 1.

3 The dual problem, its discretization and basic results

The dual of (LQCTP) is defined by

Maximize
∫ T

0

[
− (1/2)w′(t)G(t)Q−1(t)G′(t)w(t) − c′(t)w(t)

−a′(t)Q−1(t)G′(t)w(t) + µ′(t)Q−1(t)G′(t)w(t)

+µ′(t)Q−1(t)a(t) − (1/2)µ′(t)Q−1(t)µ(t)

−(1/2)a′(t)Q−1(t)a(t)

]
dt

Subject to w(t) ≥ 0 and µ(t) ≥ 0,
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where G′(t)x(t) := B ′(t)x(t) − ∫ T

t
K(s, t)x(s)ds and G(t)x(t) := B(t)x(t) −∫ T

t
K(t, s)x(s)ds. Here the dual variables w, µ : [0, T ] → IRn are functions

of bounded variation. We now write the dual problem in a simplified form

Maximize
∫ T

0

[
− (1/2)θ ′(t)M(t)θ(t) + N ′(t)θ(t) + R(t)

]
dt

Subject to θ(t) ≥ 0

where,

M(t) =
(

G(t)Q−1(t)G′(t) −G(t)Q−1(t)

−Q−1(t)G′(t) Q−1(t)

)
,

N(t) =
(

−c(t) − G(t)Q−1(t)a(t)

Q−1(t)a(t)

)
,

R(t) = − (1/2)a′(t)Q−1(t)a(t)θ(t) =
(

w(t)

µ(t)

)
.

Analogously, we introduce the discretization of the dual problem

Maximize (T /ln)
{− (1/2)w′

nGnQ
−1
n G′

nwn + w′
n

(− cn− GnQ
−1
n an

)
µ′

nQ
−1
n G′

nwn+µ′
nQ

−1
n an−(1/2)µ′

nQ
−1
n µ−(1/2)a′

nQ
−1
n an

}
Subject to wn ≥ 0 and µn ≥ 0.

Again, Gn, Qn, cn and an are the same as in the primal discrete problem,

µn := (µ(tn0 ) : . . . , µ(tnln)) and wn := (w(tn0 ) : . . . : w(tnln)). The discrete dual

can also be written in a simplified form

Maximize − (1/2)θ ′
nMnθn + N ′

nθn + Rn

Subject to θn ≥ 0,

where

Mn =
(

GnQ
−1
n G′

n −GnQ
−1
n

−Q−1
n G′

n Q−1
n

)
Nn =

(
−cn − GnQ

−1
n an

Q−1
n an

)
,

Rn = −(1/2)a′
nQ

−1
n an θn =

(
wn

µn

)
.
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For a fixed n, the pair of finite dimensional problems (Pn) and (Dn) form the

usual pair of primal-dual problems in the classical theory of optimization chapter

for quadratic problems.

We state some basic facts related to this pair of primal-dual problems that will

be needed in the sequel.

Proposition 3.1. See, for instance, [8].

a. Let xn and (wn, µn) be (Pn) and (Dn) feasible, respectively. If the (primal)

cost of xn coincides with the (dual) cost of (wn, µn), then xn and (wn, µn)

are (Pn) and (Dn) optimal, respectively.

b. Let xn be (Pn) optimal. If there exists (wn, µn) ≥ 0 such that

(a) Qnxn + a′
n + w

′
n(Gnxn − cn) − µn = 0;

(b) w
′
n(Gnxn − cn) − µ

′
nxn = 0,

then (wn, µn) is (Dn) optimal. Conversely, if (wn, µn) is (Dn) optimal

then (a) and (b) are satisfied at (xn, wn, µn).

4 Hypothesis and convergence results

We now introduce some definitions and hypothesis which will be used throughout

the remainder of this paper. Given α ∈ R, let

Sα =
{
x ∈ BV ([0, T ]; IRN) : x(·) satisfies (1) and

∫ T

0
[(1/2)x ′(t)Q(t)x(t) + a′(t)x(t)] dt ≤ α

}

and

Wα =
{
θ ∈ BV ([0, T ]; IRm+N) : θ ≥ 0 and

∫ T

0
[−(1/2)θ ′(t)M(t)θ(t) + N ′(t)θ(t) + R(t)] dt ≤ α

}

be the α-sub-level sets of the primal and dual problems, respectively.
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We assume that

(H1) a(t), c(t) and B(t) are matrix functions of bounded variation, Q(t) is a

continuous positive definite matrix function and K is a constant matrix;

(H2) For every positive integer n, there exist feasible solutions to problems (Pn)

and (Dn);

(H3) There exists α ≥ 0 such that
∫ T

0

[
(1/2)x ′(t)Q(t)x(t) + a′(t)x(t)

]
dt ≤ α,

∀ x satisfying (1).

We observe that (H1) implies that LQCTP is a convex programming problem

whose cost is strictly convex. In that case the optimal solution is unique (apart

from a zero-measure set). This observation has an important implication in the

convergence of the approximate solutions since all subsequences will converge

to the same unique optimal solution (a.e.). In fact, this procedure ensures the

convergence of any sequence obtained via discretization to the optimal solution.

We can only guarantee that a perturbation of the discrete Primal quadratic

problem, which takes into account the error generated by the rule of integration,

is feasible. But, to keep the arguments of the proof easier to understand and

also to parallel some results in reference [1], which is the basis of our work,

we assume hypothesis (H2), without loss of generality. Actually our hypothesis

(H2) corresponds to an algebraic condition imposed in [1] to ensure feasibility.

Note that in hypothesis (H1), except for Q(·) that is supposed to be continuos,

all functions are of bounded variation. The continuity of Q(·) is essential to guar-

antee the boundedness of the sub-level sets of the cost functional of LQCT P .

This boundedness is central in the convergence proof which, in turn, is based on

compactness arguments over sub-level sets of the cost functional of the problem.

The proof of the expected boundedness is in Lemma 4.1; soon after Lemma 4.1,

we show why the continuity of Q(·) cannot be relaxed. It will be clear in the

proofs that if we assume the sets of feasible solutions of (LQCTP) and (D) are

bounded we get convergence of a subsequence, even when Q(·) is of bounded

variation. So, the continuity of Q(·) is a trade off to increase the generality of

the method.

We say that πn+1 is a refinement of πn if πn ⊂ πn+1. Hereafter, we consider

only sequences of partitions {πn} in which πn+1 is a refinement of πn.
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We introduce some notation needed in the sequel. Given α ∈ R, let

Sn,α = {
x ∈ IRn : Gnx ≤ cn, x ≥ 0; (T /2ln)x

′Qnx + b′
nx ≤ α

}
.

Let xn and θn be the primal and dual optimal solutions of the discrete problems,

respectively. We define their continuous extensions xn(t) and θn(t) to the whole

interval [0, T ], by

xn(t) := [(t − tni )/(ln)](xn,i+1 − xn,i) + xn,i for tni ≤ t ≤ tni+1,

i = 0, 1 · · · , ln − 1; (2)

θn(t) := [(t − tni )/(ln)](θn,i+1 − θn,i) + θn,i for tni ≤ t ≤ tni+1,

i = 0, 1 · · · , ln − 1.
(3)

It is easy to verify that the extension θn(t) obtained from the discrete dual optimal

solution is a dual feasible solution (not necessarily optimal). However, xn(t) is

not necessarily primal feasible.

Our next step is to state and prove two technical lemmas needed for the main

results of this section.

Lemma 4.1. Let α ∈ R be given. Suppose hypothesis (H1)-(H3) are valid.

Then Sα is a bounded set. Furthermore, Snα is uniformly bounded for n ∈ N.

Proof. The matrix Q(t) ∈ IRN×N is symmetric positive definite for all t ∈
[0, T ], then there exist λmin(t) > 0 the minimum eigenvalue of Q(t) such that

x ′(t)Q(t)x(t) ≥ λmin(t)‖x(t)‖2, for all t ∈ [0, T ].

Definite the function λmin : [0, T ] → IR, such that

λmin(t) = min {eigenvalue of Q(t)} .

Since all entry functions of Q(t) are continuous, λmin is a continuous function.

Therefore, using the fact that [0, T ] is compact, there exist λ̄ > 0 such that

x(t)′Q(t)x(t) ≥ λ̄‖x(t)‖ ∀ t ∈ [0, T ].
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It follows from the definition of Sα that

α ≥
∫ T

0

(
1/2x ′(t)Q(t)x(t) + a′(t)x(t)

)
dt

≥
∫ T

0

(
1/2λ̄‖x ′(t)‖2 + a′(t)x(t)

)
dt

≥
∫ T

0
λ̄/2‖x(t) + a(t)/λ̄‖2 −

∫ T

0
‖a(t)‖2/2λ̄dt.

Since a(t) ∈ BV ([0, T ], IRN) then there exists L ≥ 0 such that L ≥ ‖a(t)‖2

and

R = 2α/λ̄ + T L2/λ̄2 ≥
∫ T

0
‖x(t) + a(t)/λ̄‖2dt (4)

Using again that a(t) ∈ BV ([0, T ]; IRN), it follows from (4) that Sα is bounded.

It is now easy to see that the set Snα is also bounded uniformly for n ∈ N. �

Example 4.1. This example shows that the continuity of Q(·) to ensure the

boundedness of the sub-level sets cannot be dropped out. Let

Q(t) =
{

1 if t = 0

t if t > 0

and B(t) = √
t , K = 1 and c(t) = 1 + (1/2)t1/2. Clearly Q(t) is of bounded

variation and so are B(·) and c(·). Observe that the set

S1 :=
{
x ∈BV ([0, T ]; IRN);

∫ 1

0
x ′(t)Q(t)x(t) dt ≤ 1

}

contains the unbounded sequence {xn} given by

xn(t) =
{

0 if 0 ≤ t < 1/n

1/
√

t if 1/n ≤ t ≤ 1.

Indeed,

1 ≥
∫ 1

0
tx2

n(t) dt =
∫ 1

1/n

dt = 1 − 1/n ∀n.
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Moreover, a simple calculation shows that

B(t)xn(t) −
∫ t

0
xn(s) ds ≤ c(t) ∀n,

proving the feasibility of xn for all n. Therefore, the sub-level set S1 of this

example is unbounded, showing that the continuity of Q(·) cannot be left out.

Lemma 4.2. Let (xn(t)) and (θn(t)) be the sequences generated from the opti-

mal solutions xn and θn of Pn e Dn, respectively. Then, there exist subsequences

(xnk
(t)) of (xn(t)) and (θnk

(t)) of (θn(t)) which converge almost everywhere in

[0, T ] to functions of bounded variation x̃(t) and θ̃ (t), respectively.

Proof. The proof follows immediately from Lemma 4.1 and Helly’s Theorem

([7], Theorem 1.4.5). �

We point out that the sequence of discretized problems (Pn) and related dual

(Dn) are arbitrary. This implies that if we replace the sequences of problems

(Pn) and (Dn) to subsequences (Pn
′ ) and related dual (Dn

′ ) in Lemma 4.2, and

consider their respective sequences of optimal solutions {xn
′ } and {wn

′ } we can

also extract convergent subsequences. The importance of this feature will be

made clear in Remark 5.3.

We are now in position to state the main results of this section, which are

Theorems 4.3 and 4.4. below. Theorem 4.3. states that the sequences of costs

generated from sequences of continuous extensions of discrete optimal solutions

converges to the costs of their limits, while Theorem 4.4 states that the adjusted

costs of the discrete problems converge to the costs of the limits of sequences of

the continuous extensions of the discrete optimal solutions. The proofs of both

theorems are based on ideas taken from Buie and Abrham [1].

Theorem 4.3. Let (xnk
(t)) and (θnk

(t)) be the subsequences obtained according

to Lemma 4.2 and let x̃(t), θ̃ (t) be their limits. Then

a) lim
nk→∞

∫ T

0

[
(1/2)x ′

nk
(t)Q(t)xnk

(t) + a′(t)xnk
(t)
]
dt

= ∫ T

0

[
(1/2)x̃ ′(t)Q(t)x̃(t) + a′(t)x̃(t)

]
dt;
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b) lim
nk→∞

∫ T

0

[−(1/2)θ ′
nk

(t)M(t)θnk
(t) + N ′(t)θnk

(t) + R(t)
]
dt

= ∫ T

0

[−(1/2)θ̃ ′(t)M(t)θ̃(t) + N ′(t)θ̃ (t) + R(t)
]
dt;

c) x̃(t) and θ̃ (t) are feasible for (LQCTP) and (D), respectively.

Proof. a) and b) follows from Helly’s Theorem and Lebesgue dominated con-

vergence theorem ([7], Theorem 6.2.10).

To prove part c), we first observe that θ̃ (t) ≥ 0, since θnk
(t) → θ̃ (t) almost

everywhere in [0, T ] and θnk
(t) ≥ 0 almost everywhere in [0, T ], ∀k ∈ N. The

feasibility of x̃(t) will follow if we prove that ε(t) ≤ 0, where ε(t) := lim εk(t)

almost everywhere in [0, T ] and

εk(t) := B(t)xnk
(t) −

t∫
0

K(t, s)xnk
(s) ds − c(t)

and

ε(t) := B(t)x(t) −
t∫

1

K(t, s)x(s) ds − c(t).

Let πk be a partition of [0, T ] and let πk+1 be its refinement. Set π := ∪∞
k=1πk.

Under hypothesis (H1), εk(·) is continuous almost everywhere in [0, T ] which

implies ε(·) is also continuous almost everywhere in [0, T ]. It follows, then, that

0 ≥ ε(t) := lim εk(t), ∀t ∈ π . It is also easy to see that π = ∪∞
k=1πk is dense in

[0, T ]. Let t̃ ∈ [0, T ] be point of continuity of ε(·) and {tj } ⊂ π be a sequence

such that tj −→ t̃ . This implies that ε(t̃) ≤ 0 (ε(t̃) = limj ε(tj ) ≤ 0). �

Theorem 4.4. Let (xnk
(t)) and (θnk

(t)) be subsequences obtained according to

Lemma 4.2 and x̃(t), θ̃ (t) their limits. Then

a) (T /lni
)[(1/2)x ′

nk
Qnk

xnk
+ a′

nk
xnk

]
→ ∫ T

0 [(1/2)x̃ ′(t)Q(t)x̃(t) + a′(t)x̃(t)]dt, when i → ∞.

b) (T /lnk
)[−(1/2)θ ′

nk
Mnk

θnk
+ N ′

nk
θnk

+ θnk
]

→ ∫ T

0 [(1/2)θ̃ ′(t)M(t)θ̃(t) + N ′(t)θ̃ (t) + R(t)]dt, when i → ∞.
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Proof. a) For this proof we will introduce some additional notation

x̃nk0 = (1/2)x̃(0), x̃nklnk
= (1/2)x̃(T ) and x̃nki = x̃(t

nk

i ),

i = 1, 2, · · · lnk
− 1; x̃ ′

nk
= (x̃ ′

nk0 : x̃ ′
nk1 : · · · : x̃ ′

nklnk
);

x̃nk
(t) = (t − t

nk

i /lnk
)(x̃nk,i+1 − x̃nki) + x̃nki , for t

nk

i ≤ t ≤ t
nk

i+1,

i = 0, 1, · · · , lnk
− 1; (observe that lim

nk→∞ x̃nk
(t) = x̃(t) a.e. ).

a′
nk

= (a′
nk0 : a′

nk1 : · · · : a′
nklnk

) with ank0 = a(0), anklnk
= a(T ) and

ankj = a(tnj ) for j = 1, 2 · · · , lnk
− 1;

Qnk
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q
nk

0 0 0 0 · · · 0

0 Q
nk

1 0 0 · · · 0

0 0 Q
nk

2 0 · · · 0
...

. . .
...

0 · · · 0 0 Q
nk

lnk
−1 0

0 · · · 0 0 0 Q
nk

lnk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the trapezoidal approximation in∫ T

0

[
(1/2)x̃ ′Q(t)x̃ + a′(t)x̃(t)

]
dt

and using above notation we see that∫ T

0

[
(1/2)x̃ ′Q(t)x̃ + a′(t)x̃(t)

]
dt

= lim
nk→∞(T /lnk

)
[
(1/2) x̃ ′

nk
Qnk

x̃nk
+ a′

nk
x̃nk

]
.

It needs to be shown that

lim
nk→∞(T /lnk

)
[
(1/2)(x̃ ′

nk
Qnk

x̃nk
− x ′

nk
Qnk

xnk
) + a′

nk
( ˜xnk

− xnk
)
] = 0.

We have∣∣(T /lnk
)a′

nk
(x̃nk

− xnk
)
∣∣ ≤ (T /lnk

) abs (a′
nk

) abs (x̃nk
− xnk

)

and∣∣(T /2lnk
)(x̃ ′

nk
Qnk

x̃nk
− x ′

nk
Qnk

xnk
)
∣∣ ≤ (T /2lnk

)‖x̃ ′
nk

‖ ‖Qnk
‖‖(x̃nk

− xnk
)‖

+ (T /2lnk
)‖x̃ ′

nk
− x ′

nk
‖ ‖Qnk

‖ ‖xnk
‖.
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Since a(t) is bounded, there exists a constant λ > 0 such that abs ank
≤ λ E

for any nk, where E is the vector with lnk
components equal 1. We also have,

because of the uniform bound on of ‖Qnk
‖, x̃nk

and xnk
, that there exist constants

α and β such that abs (x̃ ′
nk

Qnk
) ≤ αE e abs (Qnk

xnk
) ≤ βE, for any nk. Hence,∣∣∣∣ Tlnk

a′
nk

(x̃nk
− xnk

)

∣∣∣∣ ≤ (T /lnk
) abs (a′

nk
) abs (x̃nk

− xnk
)

= λ

∫ T

0
E abs (x̃nk

(t) − xnk
(t)) dt

and∥∥ (T /2lnk
)(x̃ ′

nk
Qnk

x̃nk
− x ′

nk
Qnk

xnk
)
∥∥

≤ αE(T /2lnk
) abs (x̃nk

− xnk
) + βE(T /2lnk

) abs (x̃nk
− xnk

)

= α

∫ T

0
E abs (x̃nk

(t) − xnk
(t)) dt + β

∫ T

0
E abs (x̃nk

(t) − xnk
(t)) dt.

It follows from Lebesgue’s dominated convergence theorem that

λ

∫ T

0
E abs (x̃nk

(t) − xnk
(t)) dt −→ 0 for nk → ∞;

α

∫ T

0
E abs (x̃nk

(t) − xnk
(t)) dt −→ 0, for nk −→ ∞;

and

β

∫ T

0
E abs (x̃nk

(t) − xnk
(t)) dt −→ 0, for nk −→ ∞.

Therefore,

lim
nk→∞

T

lnk

[
(1/2)

(
x̃ ′

nk
Qnk

x̃nk
− x ′

nk
Qnk

xnk

)+ a′
nk

( ˜xnk
− xnk

)] = 0.

b) The proof of this part is similar to the proof of part (a). �

5 Duality

In this section we discuss duality for LQCTP. It is a feature of our approach that

the continuous dual problem contains no primal variable. Further, it is not of a
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maxmin type. We show here that problem (D), as defined in Section 3, is in fact a

dual of (LQCTP). The proof will follow from approximations of the continuous

time pair of optimization problems by a finite dimensional ones whose duality

theory is already known. Taking the limits we get the desired weak (Theorem

5.1) and strong (Theorem 5.2) duality results.

Theorem 5.1 [Weak Duality]. If x(t) and θ(t) are feasible solutions for

Primal (LQCTP) and Dual (D) problems, respectively, then∫ T

0

[
(1/2)x ′(t)Q(t)x(t) + a′(t)x(t)

]
dt

≤
∫ T

0

[−(1/2)θ ′(t)M(t)θ(t) + N ′(t)θ(t) + R(t)
]
dt.

Proof. Let x(t) ∈ BV ([0, T ]; IRN) and θ(t) ∈ BV ([0, T ]; IRm+N) be feasible

solutions of LQCT P and D, respectively. Let πn be a partition of the interval

[0, T ] and {xn}, {θn} be the values of x(t) and θ(t) in the points of the partition

πn. It is easy to see that {xn}, {θn} are feasible solutions of (Pn) and (Dn),

respectively. Now, consider their continuous extensions xn(t) and θn(t) to the

whole interval, as given by (2) and (3).

Because of Helly’s convergence theorem [7], there exists x̃(t), θ̃ (t) such

that, xnk
(t) → x̃(t), θnk

(t) → θ̃ (t), where xnk
(t), θnk

(t) are subsequences of

xn(t), θn(t), respectively.

We now show that x̃(t) = x(t) and θ̃ (t) = θ(t) almost everywhere in [0, T ].
Let S := {t ∈ [0, T ] : xnk

(t) → x̃(t)}. S is dense in [0, T ]. We also know that

the set π := ∪∞
n=1πn is dense in [0, T ]. Let s ∈ π ∩S. Then s ∈ πn0 for some n0.

This implies that xnk
(s) = xn0(s) = x(s) for all nk ≥ n0. But xnk

(s) → x̃(s).

So, x(s) = x̃(s). Since s ∈ π ∩ S is arbitrary it follows that x̃(s) = x(s)

almost everywhere in [0, T ]. Analogously, we prove that θ̃ (t) = θ(t) almost

everywhere in [0, T ].
By Theorem 4.2, it is known that

(T /lnk
)
[
(1/2)x ′

nk
Qnk

xnk
+ a′

nk
xnk

]
→
∫ T

0

[
(1/2)x ′(t)Q(t)x(t) + a′(t)x(t)

]
dt, for k → ∞
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and

(T /lnk
)
[−(1/2)θ ′

nk
Qnk

θnk
+ N ′

nk
θnk

+ Rnk

]
→
∫ T

0

[−(1/2)θ ′(t)Q(t)θ(t) + N ′(t)θ(t) + R(t)
]
dt, for k → ∞.

Since

(T /lnk
)
[
(1/2)x ′

nk
Qnk

xnk
+ a′

nk
xnk

]
≤ (T /lnk

)
[−(1/2)θ ′

nk
Qnk

θnk
+ N ′

nk
θnk

+ Rnk

]
, ∀ i;

by [4] and taking the limit as k → ∞, we obtain∫ T

0

[
(1/2)x ′(t)Q(t)x(t) + a′(t)x(t)

]
dt

≤
∫ T

0

[−(1/2)θ ′(t)M(t)θ(t) + N ′(t)θ(t) + R(t)
]
dt.

�

We now state the result that provides the optimality of the algorithm of dis-

cretization.

Theorem 5.2 [Strong Duality]. Let x(t) ∈ BV ([0, T ]; IRN) and θ(t) ∈
BV ([0, T ]; IRm+N) be feasible solutions of LQCT P and D, respectively, such

that ∫ T

0
[(1/2)x ′(t)Q(t)x(t)+a′(t)x(t)]dt

=
∫ T

0
[−(1/2)θ ′(t)M(t)θ(t) + N ′(t)θ(t) + R(t)]dt.

Then, x(t) and θ(t) are primal and dual optimal solutions, respectively.

Proof. It is immediate from Theorem 5.1. �

Remark 5.3. Under hypothesis (H1) the optima of the primal and the dual prob-

lems (LQCTP) and (D) are uniquely achieved (except on zero-measure set) at

x(t) and θ(t), respectively. This observation implies that the sequences (them-

selves) {xn(t)} and {θn(t)} generated by the optimal solutions of the discrete

problems (Pn) and (Dn) converge to x(t) and θ(t), almost everywhere.
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To verify the second affirmation of Remark 5.3, take any subsequences {xn
′ (t)}

and {θn
′ (t)} of {xn(t)} and {θn(t)}, respectively. By Lemma 4.2 and Theorems 4.2

and 5.2 there exist further subsequences {x
n

′
k
(t)} and {θ

n
′
k
(t)} that converge to the

unique optimal solutions of (LQCTP) and (D), respectively. So, all subsequences

have further subsequences that converge to the same limits. Therefore, the se-

quences (themselves) {xn(t)} and {θn(t)} converge to x(t) and θ(t), respectively

as required.

Remark 5.3 will be taken into consideration in the next section.

6 Karush-Kuhn-Tucker conditions (KKT)

The KKT conditions play no role in the convergence analysis of the approxi-

mating scheme we propose in this work. However, it is crucial in the process

of obtaining analytical optimal solutions to compare the numerical experiments

with.

On the other hand, the convergence set up provides the means from which it is

possible to establish the KKT optimality conditions. Let us now state and prove

them.

Proposition 6.1. Suppose hypotheses (H1)-(H3) are in force. Let x(t) be a

function of bounded variation which minimizes LQCTP. Then there exists w, λ :
[0, T ] → R

n, functions of bounded variation such that

1. w(t), λ(t) ≥ 0 a.e. t ∈ [0, T ];
2.

∫ T

0

[
Q(t)x(t) + a′ + B ′(t)w(t) − ∫ t

0 K(s, t)w(s)ds − λ(t)
]
dt = 0;

3. w
′
(t)
[
B(t)x(t) − ∫ t

0 K(t, s)x(s) − c(t)
] = 0 a.e. t ∈ [0, T ];

4. x
′
(t)λ(t) = 0 a.e. t ∈ [0, T ].

Proof. Let x(t) minimize LQCTP and consider the discretized problem (Pn).

Let xn be the optimal solution of (Pn). By Proposition 3.1 there exist

wn, λn : [0, T ] → IRn,
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such that

θn, λn ≥ 0;
T

ln

[
Qnxn + a

′
n

]
G

′
nwn − λn = 0; (5)

w
′
n

(
Gnxn − cn

) = 0; (6)

λ
′
nxn = 0. (7)

Moreover, θn(t) := (wn, λn) is the optimal solution of the discrete dual (Dn).

Let xn(t) and θn(t) be defined as in (2) and (3), respectively. As it was pointed

out previously, θn(t) is a continuous time dual feasible solution, but xn(t) may

not be. Nonetheless, because of Lemma 4.2, Theorems 4.4 and 5.2 we have that

xn(t) → x(t) and θn(t) → θ(t), where x(t) and θ(t) are the unique solutions

the continuous time primal and dual problems, respectively (except for a zero-

measure set).

We are now in position to prove the KKT conditions for LQCTP. First, asser-

tion 1. is satisfied, since θ(t) is dual feasible. To prove assertions 2., 3. and 4.

consider

εn :=
∫ T

0

[
Q(t)xn(t) + a′ + B ′(t)wn(t)

−
∫ t

0
K(s, t)wn(s)ds − λn(t)

]
dt; (8)

en(t) := wn(t)
[
B(t)xn(t) −

∫ t

0
K(t, s)xn(s) − c(t)

]
a.e. t ∈ [0, T ]; (9)

ρn(t) := xn(t)λn(t) a.e. t ∈ [0, T ]. (10)

Since θn(t) → θ(t) and xn(t) → x(t) almost everywhere, the right sides of (8),

(9) and (10) converge to the left sides of 2., 3. and 4. (The first convergence relies

on the Lebesgue dominated convergence theorem). The proof will be complete if

we prove that whenever πn+1 is a refinement of πn, for every n, we have εn → 0,

en(t) → 0 and ρn(t) → 0, as n → ∞.

The proofs that ρn(t) and en(t) converge to zero almost everywhere follow

from (6) and (7) by making use of arguments similar to those of the proof of

Theorem 4.3 (c).
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To prove that εn goes to zero as n → ∞ we use (5) and arguments similar to

the proof of Theorem 4.4 (a) and (b).

7 Examples

In this section we provide a series of examples to show that our approach is

reasonable to solve difficult problems in the LQCTP class. To make sure our

approach gives a good approximate solution, we selected some examples, where

the analytical optimal solutions can be obtained, with the help of Proposition

6.1, and compare the numerical solutions with the analytical ones.

We solved analytically a family of problems with varying parameters. Optimal-

ity of candidates was checked via KKT conditions. Then we solved numerically

the same family of problems, making use of the proposed scheme of approx-

imation and verified that the numerical solutions approximated very well the

analytical true solutions of the problems in consideration.

In order to calculate the numerical solutions to make sure our theory works

in practice, we solved the discretized quadratic problems with the commercial

packaged CPLEX 4.0. in a 700MHz PC-pentium III, with 128MB of RAM.

A comparison between the analytical solutions and the numerical ones, which

were obtained for partitions of 1600 points of the interval, gave an approximation

no greater than 10−6, using the L1-norm.

For easy of understanding and visual comparisons, we plotted the graphs of

the analytical and the numerical solutions in the same place, see Figures 1-5.

For each particular example, we chose to plot only a sample of points of the

numerical solution because, had we chosen to plot the numerical solution along

aside with analytical solution, using a great quantity of points, the two curves

would have merged.

It is also worth noting that in each figure, the drawing on the left is for x1, the

first component of the optimal solution, while the drawing on the right is for x2.

The five examples we explore here are, in fact, a family of problems parame-

terized by (α, β)′, that we introduce now.

Minimize

T∫
0

[
1

2
x ′(t)

(
2 1

1 2

)
x(t) − (6, 6) x(t)

]
dt
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Subject to

(
1 0

0 1

)
x(t) −

t∫
0

(
2 0

0 2

)
x(t)dt ≤

(
α

β

)

x1(t), x2(t) ≥ 0.

By using Proposition 6.1, we calculate the analytical solutions, for each case

below. Observe that we make changes on the values of the parameters α and β in

each example. In the first four examples the analytical solutions are continuous

functions. In Example 7.5 the optimal solution contains discontinuous functions,

see Figure 5. It can be observed in Figures 1, 2, 3, 4 and 5 that the graphs of the

numerical and the analytical solutions are visually the same.

Example 7.1. If α ≥ 2 and β ≥ 2, then x1(t) = 2 and x2(t) = 2 are optimal

solutions.

Figure 1

Example 7.2. If we make 2α + β ≤ 6 with α > β, 0 < β < 2; the following

analytical solution has been obtained:

x1(t) =

⎧⎪⎨
⎪⎩

α exp(2t), 0 ≤ t ≤ (1/2) ln(6/(2α + β)),

3 − (β/2) exp(2t), (1/2) ln(6/(2α + β)) ≤ t ≤ (1/2) ln(2/β),

2, (1/2) ln(2/β) ≤ t ≤ 1;

x2(t) =
{

β exp(2t), 0 ≤ t ≤ (1/2) ln(2/β),

2, (1/2) ln(2/β) ≤ t ≤ 1.
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Figure 2

Example 7.3. If 2α + β > 6 with α > β, 0 < β < 2, the following analytical

solution has been obtained:

x1(t) =
{

3 − (β/2) exp(2t), 0 ≤ t ≤ (1/2) ln(6/β),

2, ln(6/β) ≤ t ≤ 1.

x2(t) =
{

β exp(2t), 0 ≤ t ≤ (1/2) ln(2/β)

2, (1/2) ln(2/β) ≤ t ≤ 1.

Figure 3
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Example 7.4. If α ≥ 2 and β = 0.0; the following analytical solution has been

obtained:

x1(t) =
{

α exp(2t) if 0 ≤ t ≤ 0.5 ln(3/α),

3 if 0.5 ln(3/α) ≤ t ≤ 1.

and x2(t) ≡ 0.

Figure 4

Example 7.5. In this example take function c(t) to be the vector (α, β)′, where

α =
{

α0 if 0 ≤ t ≤ t0,

α1 if t0 ≤ t ≤ t1,
and β =

{
β0 if 0 ≤ t ≤ t0,

β1 if t0 ≤ t ≤ t1.

Now, consider the following numbers

t1 = 0.5 ln(6/(2α0 + β0)), t2 = 0.5 ln(6/(2ᾱ + β̄)) + t0,

t3 = 0.5 ln(6/(ᾱ + 2β̄)) + t0, t4 = 0.5 ln(2/(β̄)) + t0,

t5 = 0.5 ln(2/ᾱ) + t0,

where

ᾱ = α1 + 2

t0∫
0

x1(t)dt and β̄ = β1 + 2

t0∫
0

x2(t)dt.

Comp. Appl. Math., Vol. 23, N. 1, 2004



R. ANDREANI, P. S. GONÇALVES and G. N. SILVA 103

Taking α ≥ β, 2α0 + β̄ ≤ 6, t0 ≤ t2, t3 ≥ t4, 2ᾱ + β̄ ≤ 6, the following

analytical solution has been obtained:

x1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α0 exp(2t), 0 ≤ t ≤ t0,

ᾱ exp(2(t − t0)), t0 ≤ t ≤ t2,

3 − (β/2) exp(2t), t2 ≤ t ≤ t4,

2, t4 ≤ t ≤ 1.

x2(t) =
{

β exp(2t), 0 ≤ t ≤ t4,

2, t4 ≤ t ≤ 1.

The values for which this example works are α0 = 1, α1 = 0.5, β0 = β1 = 0.5,

and t0 = 0.25.

Figure 5

8 Final consideration

In this work we consider a general class of LQCTP and proposed a computa-

tional scheme that is able to provide, via interpolation, a nearby continuous time

optimal solution. We show through examples that in a number of cases it is

possible to actually find an analytical optimal solution of the problem. We also

established weak and strong duality results for this class of problems in which

the dual problems contain only dual variables as opposed to minmax formu-

lation of duality. For the purpose of checking the optimality of candidates of

analytical solutions we provided the so called Karush-Kuhn-Tucker conditions
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of optimality. The proof of these conditions relies on finite dimensional Karush-

Kuhn-Tucker conditions and the analysis of convergence of continuous solutions

obtained from the optimal solution of the discrete approximating problems. In

our set of examples it becomes clear that the proposed approximating scheme

for linear quadratic continuous time problems works well.

However, some questions remain unanswered. 1) Is it possible to relax the

positive definiteness of Q in the quadratic integral cost? 2) Is it possible to

generalize the method employed here to address general nonlinear continuous

time convex problems?
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