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Abstract. This paper investigates the physics of two-phase, immiscible flow in stratified

porous media. A review of previous studies reveals the major role played by the interaction of

heterogeneity and viscous forces in the development of large-scale flow regimes. The stabilizing

effects of gravity for flow in vertically layered porous media is introduced in a first order theoretical

model and illustrated with the results of Monte Carlo simulations.
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1 Introduction

The study of macroscopic field-scale aspects of two-phase, immiscible flow

in heterogeneous porous media is a challenging issue, with applications to

petroleum engineering and hydrogeology. Although several approaches have

been proposed for the coarsening of two-phase flow parameters from highly de-

tailed geological models to scales appropriate for flow simulations (Kyte and
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Berry, 1975, Barker and Thibeau, 1992, Durlofsky, 1997), the physical mecha-

nisms governing the development of large-scale patterns in such flows have only

been partially investigated (Lenormand, 1996 and 1997).

Over the past decade, stochastic analyses based on perturbation expansions

have been conducted for the investigation of (mean) large-scale behavior of

two-phase flow in heterogeneous media (Langlo and Espedal, 1994, Dagan and

Cvetkovic, 1996, Zhang, Li and Tchelepi, 1999). Such analyses hinge on the as-

sumption that the effects of the nonlinear viscous coupling between the saturation

and pressure fields can be neglected. Under this assumption, the velocity field

and, consequently, its covariance function are stationary (time independent), and

classical techniques from linear (tracer) flow theories apply. As a result, these

approaches predict a continuous growth of the large-scale mixing zone during

displacement, at rates similar to those observed in linear flow. The nonlinearities

in the flow equations influence only the mean speed of the front, and do not affect

the flow regime.

However, linear stability analyses of two-phase flow in homogeneous media

show that the nonlinear viscous coupling clearly impacts the evolution of the

saturation map when the front is perturbed: depending on the frontal mobil-

ity ratio, the nonlinear coupling induces a “crossflow” that either stabilizes or

destabilizes the flow process (Saffman and Taylor 1958, King and Dunayevsky,

1989). In a heterogeneous medium, permeability variations cause velocity fluc-

tuations which perturb the saturation front and interact with the resulting viscous

crossflow during displacement. This interaction is likely to produce distinct

flow regimes (Lenormand, 1996, Furtado and Pereira, 2002), depending on the

relative strength of heterogeneity and viscous crossflow.

In this paper we investigate the interaction between viscous coupling effects

and heterogeneity for two-phase flow in stratified porous media. This investiga-

tion employs both detailed Monte Carlo simulations and a first order stochastic

model. The effects of gravity are introduced in our study, with the gravity ac-

celeration assumed to be parallel to the direction of the layers. We view this

simplification as a first step in the investigation of the stabilizing role played by

gravity in the evolution of the saturation front.
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2 Formulation of the problem

We consider the incompressible flow of a two-phase fluid (oil and water) in

a two-dimensional vertical cross-section of a stratified porous medium. The

(stratified) absolute permeability field K has a known geostatistics. The distinct

layers are assumed to have the same relative permeability functions, kri(S), and

the same constant porosity φ. We neglect the effects of capillarity. The medium

is originally saturated with oil. Water is injected at a constant rate Q, uniformly

along the inlet face x = 0, and fluid is produced at constant pressure at the outlet

face x = LX. “No-flow” conditions are imposed at the other two faces, y = 0

and y = LY . The effects of gravity are neglected for the moment, but will be

included later.

The total filtration velocity ui(x, y, t) for each phase i is given by the two-phase

extension of Darcy’s law:

ui = −Kkri(S)

µi

∇p

where p(x, y, t) is the pressure, S(x, y, t) is the saturation of water, and µi is

the viscosity of phase i. Combining Darcy’s law with the conservation laws for

the phases leads to the well known pressure and saturation equations:

∇ · (Kλ(S)∇p) = 0 , (1)

∂S

∂t
+ ∇ (f (S)u) = 0 . (2)

(The constant porosity has been scaled out by a change of the time variable.)

Here λ(S) is the total mobility and f (S) is the water fractional flow function.

These parameters are given as:

λ(S) = krw(S)

µw

+ kro(S)

µo

, f (S) = krw/µw

λ(S)
.

For K constant (homogeneous medium), solutions of the pressure-saturation

equations typically display a Buckley-Leverett saturation profile: a saturation

shock at S = Sf traveling at speed v = u0f
′(Sf ) leading a rarefaction zone

where each saturation plane travels at a constant speed v = u0f
′(S). The value
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of Sf depends on the fractional flow function f (S) and u0 is the speed of the

bulk flow, determined by the imposed boundary conditions.

The stability of this saturation front with respect to small perturbations depends

on the frontal mobility ratio:

Mf = λ(Sf )

λ(0)
.

This dependence has been derived by several linear stability analyses. Suppose

that in a homogeneous medium the front position x(Sf , y, t) is perturbed slightly

around its mean position u0f
′(Sf )t :

x(Sf , y, t) = u0f
′(Sf )t + 1

2π

+∞∫
−∞

δxα(t)e
iαydα .

A first order analysis of the flow process then shows that the evolution of the

perturbation mode δxα is governed by the following equation (King and Dunay-

evsky, 1989):

d

dt
δxα(t) = |α| Mf − 1

Mf + 1
cδxα(t) ,

where c = u0f
′(Sf ). From this equation we see that for favorable mobility

ratios, Mf < 1, the flow is stable: (small) perturbations of the water front into

the oil-saturated zone will be damped because of a crossflow due to viscous

forces which favors the propagation of the trailing parts of the front. If Mf > 1,

on the contrary, such perturbations are amplified during the displacement process

and the front is unstable.

When the permeability field K(x, y) is heterogeneous, the velocity field is

perturbed and the front is deformed during the displacement. The evolution of the

deformed front is governed by two interacting mechanisms (Artus, Noetinger and

Ricard, 2002). One results from velocity fluctuations induced by heterogeneities

alone, and can be understood from tracer flow theories in heterogeneous media

(Dagan, 1989). The other is the effect of viscous coupling, and can be understood

from linear stability analyses in homogeneous media (King and Dunayevsky,

1989). The interplay between these mechanisms is crucial for the development

of the large-scale structure of two-phase flow in heterogeneous media, and will

be investigated in the next sections.
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3 Flow regimes in heterogeneous media

3.1 Importance of viscous crossflow

Two-phase flow in stratified media has been investigated for a long time. Two

simplified models, each representing an extreme case of the influence of viscous

crossflow, have generally been used. In one extreme (Stiles, 1949, Dykstra and

Parsons, 1950), the layers are assumed to be noncommunicant. In this case,

viscous crossflow between adjacent layers does not occur and the only effect

of viscous coupling is to change the velocity in each layer as water is injected

into the medium. If the mobility ratio is unfavorable (Mf > 1), the mobility in

each layer increases as the front advances, and the resultant increase in velocity

is larger in the more permeable layers than in the less permeable ones. This

enhancement of velocity contrast across distinct layers results in a dramatic

reduction of the sweep efficiency of the recovery mechanism. If the mobility

ratio is favorable (Mf < 1), the velocity contrast across layers is attenuated as

the flooding progresses, due to the reduction of fluid mobility, but the flow in

more permeable zones remains faster than the flow in less permeable ones.

In the other extreme (Hearn, 1971, Simon and Koederitz, 1982,Yortsos, 1992),

perfect communication between adjacent layers is assumed. In this case, re-

ferred to as vertical equilibrium, viscous crossflow between layers occurs in-

stantaneously so that the component of the pressure gradient in the direction

perpendicular to the layers vanishes. If the mobility ratio is favorable, the effect

of this crossflow is to speed up the flow in slower layers resulting in less variabil-

ity of the front position across the layers. If this crossflow is sufficiently strong,

some adjacent layers with distinct permeability values can even be invaded with

the same velocity. In these zones, the relative position of the front across layers

remains unchanged during flooding. We will further investigate this mechanism

later in this section.

A comparison between the models of noncommunicant and perfectly com-

municant layers (Zapata and Lake, 1981, Fitzmorris, Kelsey and Pande, 1992)

reveals in a simple way the major role played by viscous coupling in the evo-

lution of two-phase fronts in stratified media. However, these models consider

extreme cases and a more general model should be developed to describe all the

physical mechanisms involved.
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3.2 Small heterogeneity contrasts

Recently (Artus, Noetinger and Ricard, 2002), a first order model for two-phase

flow at large scales was developed to include the effects of viscous coupling

without the simplifying assumption of vertical equilibrium. This analysis, sum-

marized below, focused on the dynamics of the front position x(Sf , y, t) in

heterogeneous media.

At first order, velocity fluctuations can be expressed as the sum of two contri-

butions:

δu(x, y, t) = δua(x, y, t) + δub(x, y, t) .

The first contribution arises from velocity changes induced by viscous coupling

alone (velocity fluctuations in a homogeneous medium with a perturbed satura-

tion map). The second contribution comprises velocity fluctuations induced by

heterogeneities alone (the saturation field is assumed to be a Buckley-Leverett

profile).

Decomposing all pertinent variables into mean values plus a sum of perturba-

tion modes,

K(x, y) = K0(x, y) + 1

2π

+∞∫
−∞

δKα(x)eiαydα ,

ubx(x, y, t) = u0 + 1

2π

+∞∫
−∞

δubαx(x, t)eiαydα ,

uby(x, y, t) = 1

2π

+∞∫
−∞

δubαy(x, t)eiαydα ,

x(Sf , y, t) = u0f
′(Sf )t + 1

2π

+∞∫
−∞

δxα(t)e
iαydα ,

and substituting into the flow equations (1–2) yields the following equations for
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the evolution of front perturbations in a heterogeneous medium:

d

dt
δxα(t) = |α| Mf − 1

Mf + 1
cδxα(t) + f ′(Sf )δubαx(t) , (4)

where c = u0f
′(Sf ). The first term on the right-hand side of (3) results from

the crossflow induced by the viscous coupling, and is obtained through a linear

stability analysis (Saffman and Taylor, 1958, King and Dunayevsky, 1989). The

second one is due to permeability fluctuations alone (Dagan, 1989, Langlo and

Espedal, 1994). For stratified reservoirs equation (3) simplifies to

d

dt
δxα(t) = |α| Mf − 1

Mf + 1
cδxα(t) + c

δKα

K0
(5)

whose solution yields the following expression for the evolution of front pertur-

bations:

δxα(t) = cδKα

|α| AK0

(
e|α|At − 1

)
, A = Mf − 1

Mf + 1
c . (6)

(5) elucidates the influence of viscous effects. For Mf > 1, perturbations of

the front position induced by permeability heterogeneities (second term on the

right-hand side) are amplified by the viscous term (first term on the right-hand

side) and the flow becomes unstable. For Mf < 1, on the contrary, the front

perturbations are dampened and a long-time stationary solution follows. This

stationary solution describes the equilibrium situation which is reached when the

viscous crossflow balances the effects of permeability variations. In this case,

the front line maintains a constant width during flooding.

However, this analysis presupposes small permeability fluctuations. If suffi-

ciently high permeability contrasts appear in the medium, a frontal mobility ratio

merely lower than one may not be enough to generate a crossflow that balances

the contrasts. It is then plausible to expect that the simple stability diagram

predicted by the first-order model (5) will be modified in the presence of more

heterogeneous fields.

3.3 Interaction of viscous effects and heterogeneity

For layered media, the vertical equilibrium theory predicts two distinct regimes.

When the frontal mobility ratio is favorable enough to compensate for permeabil-

ity contrasts from one stratum to another, the crossflow from the more permeable
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layers to the less permeable ones is such that the front travels at the same speed in

all layers. As a consequence, the relative front position across the layers remains

stationary and the size of the mixing zone is constant during flooding. Loggia,

1996, has shown that under the vertical equilibrium assumption such “station-

ary front” occurs as soon as the mobility ratio is greater than the permeability

contrasts existing in the medium.

For example, consider a medium with two layers of absolute permeability K1

and K2 and assume that K1 > K2. The front line travels with velocities U1 in the

first layer and U2 in the second layer. Under the vertical equilibrium assumption,

Loggia, 1996 shows that:

U1 = U2K1

K2
Mf

It is clear from this equation that as Mf decreases, U1 approaches U2, being

exactly to U2 equal when Mf = K2/K1. Below this critical vale for Mf ,

the front will travel at the same speed in the two layers and will be stationary.

This derivation can be extended to media with more layers. It shows that when

the mobility ratio is low enough, the induced viscous crossflow is sufficient to

compensate for permeability contrasts and generates a stationary front.

In media with multiple layers, when the mobility ratio is not sufficient to

completely stabilize the flow on the whole width, the front is stationary by parts

in the medium, in zones where contrasts are lower than the mobility ratio. In

these zones, the front is locally stabilized and travels at different but constant

speeds, and the “mixing length” evaluated across the whole width of the medium

grows linearly with time. The overall process is hence unstable with a linear front

growth that can be easily modeled with an appropriate fractional flow term in the

saturation equation (Hearn, 1971, Simon and Koederitz, 1982, Loggia, 1996).

The vertical equilibrium theory, which hinges on the idealized situation of

perfect communication between adjacent layers (maximum viscous crossflow),

only predicts the following two flow regimes: If the stationary behavior is ensured

throughout the whole width of the medium, the mixing length does not grow

and the flow is stale; otherwise, the mixing length grows linearly in time and

the flow is unstable. In more general cases, as communication is not perfect,

the interaction between crossflow and heterogeneity is likely to complicate the

stability diagram.
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In previous papers, Furtado and Pereira have investigated the evolution of the

front in isotropic fractal heterogeneous media for different values of the mobility

ratio and of the heterogeneity index (Furtado and Pereira, 1998 and 2002). Their

analysis, based on Monte Carlo simulations, focuses on the mixing length, ML,

defined as:

MLr(t) = 1

(s− − s+)

∫ ∣∣S̄r (x, t) − SH(x, t)
∣∣ dx , ML(t) = 〈MLr(t)〉

Here, S̄r is the average in the direction transverse to the mean flow of the saturation

solution corresponding to the realization Kr of the permeability field; SH is the

homogeneous saturation solution corresponding to the constant permeability

KH = 〈K〉; s− (respectively s+) is the saturation value immediately behind

(respectively ahead) the saturation front (in our case, s− = Sf , s+ = 0).

The results of their analysis show that the interaction between viscous effects

and heterogeneity contrasts leads to different flow regimes, depending on the

relative strength of nonlinear viscous effects or linear heterogeneous effects. The

signatures of these different regimes at large scale are different evolutions of the

mixing length with time. When the frontal mobility ratio is close to 1, the effects

from the heterogeneity are predominant, and lead to a macrodispersive behavior

for the front. The flow regime is hence essentially linear. When nonlinearity due

to viscous effects dominates the flow, a nonlinear stable regime or a nonlinear

unstable regime occurs, depending on the value of the mobility ratio at the front

(Mf < 1 or Mf > 1).

For small heterogeneity index, their analysis agrees with the results of the first-

order analysis. As soon as permeability contrasts are higher, a higher mobility

ratio is needed to reach stability. This is in accord with what we have already seen

in stratified media under the vertical equilibrium assumption (Loggia, 1996).

In the next sections we will start such an analysis for stochastic layered fields,

in order to define the different flow regimes and evaluate the limits of stable

regimes. The existence of stable flows is of particular interest for large-scale

flow simulations, as in these cases the medium can be considered as a single

hydrodynamic flow unit and easily coarsened. In real situations, stable processes

are likely to happen: although the end-points mobility ratios between water and

oil are often unfavorable, the frontal mobility ratio is often favorable, due to
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the particular shapes of the relative permeability curves. For example, for the

quadratic relative permeability curves employed in this study,

krw(S) = S2, kro(S) = (1 − S)2 ,

the mobility ratio is favorable, Mf < 1, if µo/µw < 3.

For many realistic relative permeability curves, the mobility ratio evaluated

across the front is still favorable even for viscosity ratios of several decades!

This makes waterfloods stable for a lot of application cases. Moreover, this

stability due to kr(S) curves is amplified by the stabilizing effect of gravity, as

will be shown in the next sections.

4 Stabilizing effect of gravity for flow in vertical layers

Our goal is to investigate the impact of gravity on the conditions that define the

distinct flow regimes. As in practical cases gravity plays a stabilizing role, we will

only focus on flows where the displacing fluid is denser than the fluid in place.

For simplicity, we will also assume that layers are vertical, so that the direction

of gravity is parallel to the flow. Although such a vertical displacement is more

likely to occur during a laboratory experiment than in a realistic geological

context, the present study sheds some light on the influence of gravity. We leave

the study of dipped layers for future investigations.

Under the conditions above, gravity effects modify the fractional flow function

as follows:

f (S) = µo/kro(S) + K(ρw − ρo)g/u0

µw/krw(S) + µo/kro(S)
.

Here, ρi are the phase densities and u0 is the flow velocity determined by the

injection rate. Since gravity effects modify the fractional flow function, the front

saturation Sf (figure 1) as well as the mobility profiles also change. The magni-

tude of such changes depends on the permeability and the injection velocity u0.

Let us consider a vertical displacement in a homogeneous medium. The exten-

sion of the previously discussed linear stability analyses, based on the assump-

tion of piston-like displacements, to include gravity effects yields the following

equation for the evolution of a perturbation mode of the front position:

d

dt
δxα(t) = |α| Mf − 1

Mf + 1
(c − uc)δxα(t) ,
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Figure 1 – Evolution of the front saturation value, depending on the injected viscosity

µw and density ρw, for Q = 0.1PVI/year, ρo=1.0g/cm3 and µo=10 cp.

where the critical speed, uc, is

uc = K(ρw − ρo)g

λ−1(0) − λ−1(Sf )−1
= λ(Sf )Kg�ρ

Mf − 1
.

Therefore, if the effects of heterogeneity are also considered, the first order

model (4) becomes

d

dt
δxα(t) = |α| Mf − 1

Mf + 1
(c − uc)δxα(t) + c

δKα

K0
(6)

where uc is evaluated using the mean permeability K0.

We see from (6) that the inclusion of gravity enhances the stability of flows in

heterogeneous media. Since we only consider flows where �ρ > 0, two regimes

are possible, according to the sign of:

Ag = Mf − 1

Mf + 1
(c − uc)

If Mf < 1, uc < 0 (since �ρ > 0), Ag < 0 and the flow is stable for any

injection rate (recall that we consider flows where water displaces oil, so c > 0).

If Mf > 1, uc > 0 and the stabilizing effects of gravity mitigate the destabilizing

viscous effects. As a consequence, the flow is stable for injection rates such that
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the front speed c is smaller than the critical speed uc (Ag < 0). The critical speed

depends on the frontal mobility ratio, so it also depends on the injection rate.

This analysis yields the following stability diagram. For a given injection rate

Q, oil density ρo and oil viscosity µo, stable flows will occur in a certain region

of the (ρw, µw) parameter space. This region corresponds to those values of

(ρw, µw) for which the front speed is smaller than the critical speed (figure 2).

As the injection rate increases, the size of the stability region decreases, since an

increase in the injection rate enhances the destabilizing viscous effects relative

to the stabilizing gravity effects (figures 2 and 3).

Figure 2 – Evolution of the front velocity and the critical velocity, depending on µw

and ρw, with ρo=1.0 g/cm3 and µo=10 cp, for Q = 0.1PVI/year. The stable region

corresponds to a front velocity lower than the critical velocity.

5 Numerical experiments

5.1 Experiments

The model (6) is only expected to be valid for slightly heterogeneous media.

If sufficiently high contrasts exist in the medium, the viscosity and density of

injected fluids have to be increased in order to guarantee stability, as predicted

by the vertical equilibrium theory. To study these effects, we performed nu-
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Figure 3 – Evolution of the front velocity and the critical velocity, depending on µw and

ρw, with ρo=1.0 g/cm3 and µo=10 cp, for Q = 0.2PVI/year.

merical flow simulations in stochastic heterogeneous media, and investigated

the appearance of distinct flow regimes as the mobility ratio, injection rate, and

density ratio were varied.

Simulations were performed on layered permeability fields. In all simula-

tions, the flow domain was a rectangle LX × LY with dimensions LX = 300m,

LY = 25m, and a 600 × 75 computational grid was used. The permeability field

was taken to be lognormal, with mean K0 = 100mD, variance σ 2
ln(K) = 0.1,

and with a Gaussian variogram of correlation length lc = 6m. Twenty realiza-

tions of the permeability field where generated using the FFT-MA algorithm.

Relative permeability curves were uniform in the medium: krw(S) = S2 and

kro(S) = (1 − S)2. Two-phase, immiscible flow was simulated in all fields,

using ρo = 1g/cm3, µo = 10cp, ρw ranging from 1 to 10, µw ranging from 1 to

30 and u0 = 0.1 and 0.2 PVI/year. This choice of parameter values allows the

investigation of the relative influence of the relevant physical mechanisms and

the occurrence of distinct flow regimes.

We employed an IMPES method (implicit in pressure and explicit in satura-

tion), which combines a hybridized mixed finite element method for the solution

of the pressure equation and a second-order, nonoscillatory central finite differ-

ence scheme for the solution of the saturation equation (Zhu, 2001).
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5.2 Results

In order to characterize the flow regimes corresponding to different choices of

ρw, µw and u0, two measures of the extent of the mixing zone were employed.

One is the mixing length ML as defined by Furtado and Pereira. The other is the

average distance L between the two extreme points (most and least advanced)

of the 2D front line. Both measures led to the same qualitative results.

Three regimes were observed from our experiments. When viscous and gravity

effects are stabilizing enough to compensate for permeability contrasts, the flow

is stable and the average front length reaches a fixed equilibrium length (figure 5).

It corresponds to a front line completely stationary in the medium. When the

stabilizing effects are not strong enough, the average front length grows linearly

with time (figure 4 and 8). This corresponds to a front line which is continuously

stretched during flooding and the flow is unstable. The last regime can be seen

as a critical one: viscous and gravity effects do not completely stabilize the front

before the breakthrough, and the average front length grows logarithmically

during flooding.

Figure 4 – Evolution of the length of the front L (m) with traveled distance, depending

on the injected density ρw, for µw = 2.0 cp and Q = 0.1PVI/year, with ρo = 1.0 g/cm3,

µo = 10.0 cp.
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Figure 5 – Evolution of the length of the front L with traveled distance, depending on

the injected density ρw, for µw = 20.0 cp and Q = 0.1PVI/year, with ρo = 1.0 g/cm3,

µo = 10.0cp.

Although the first order model predicted that most of our simulations would

be stable for a low injection rate Q = 0.1 PVI/year (figure 2), the results of our

Monte Carlo simulations show that the stability region is narrower, and stability

is reached only for higher viscosity and density values (figures 4 to 8). This

can be explained by the occurrence of important permeability contrasts in our

realizations. When two zones in the medium have very different permeabilities,

the viscous crossflow must be very strong to compensate for this contrast and

the mobility ratio must be lower, compared to the one predicted by the first

order approximation. For example, let us consider the case where gravity has

no influence, ρw = 1.0g/cm3. Our first order analysis predicts that the front

is stable if Mf < 1, i.e., if µw > 3.3cp. Actually, since strong permeability

contrasts exist, we only observed stabilization for higher values of the mobility

ratio (figures 5 and 7).

Gravity has a clear stabilizing role in our experiments, even for very low

mobility ratios, as can be shown from figure 4. As gravity quickly dampens

fingers, the mixing length reached after stabilization is much smaller than in flows

without gravity effects, even when the latter are stable (figures 4). Stabilized

profiles are also reached faster when gravity is included.
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Figure 6 – Evolution of the mixing length ML with traveled distance, depending on the

injected density ρw and viscosity µw = 2.0 cp, with Q = 0.1PVI/year, ρo = 1.0 g/cm3

and µo = 10.0 cp.

Figure 7 – Evolution of the mixing length ML with traveled distance, depending on the

injected density ρw, for µw = 10.0 cp and Q = 0.1PVI/year, with ρo = 1.0 g/cm3,

µo = 10.0 cp.
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As predicted by the first-order model, an increase of the injection rate is desta-

bilizing. From figure 8, we can see that when the injection rate is doubled, the

growth rate of the front increases, albeit not dramatically. However, this effect

is sufficient to trigger the instability of the flow: for the case ρw = 5.0g/cm3

and µw = 5.0cp, the flow was stable for Q = 0.1 PVI/year, and unstable for

Q = 0.2 PVI/year.

Figure 8 – Evolution of the front length L with traveled distance, depending on

the injected density ρw and viscosity µw = 10.0 cp for Q = 0.1PVI/year and

Q = 0.2PVI/year.

6 Conclusions

We started an investigation of large-scale regimes for two-phase, immiscible flow

in vertically stratified reservoirs. The interaction of viscous and gravity effects

with heterogeneity is shown to produce different flow regimes, depending on

their relative strength.

Gravity is shown to be strongly stabilizing in our experiments: realistic flows in

stratified media are then likely to be stable and stationary. In this case, the mixing

length reaches an equilibrium value and does not change while flooding. When

high permeability contrasts exist in the medium, the front cannot be stationary

on the whole width and the mixing length grows linearly with travel distance.
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A first-order model, applicable in the case of small heterogeneity contrasts,

was proposed. This model yields the prediction of flow regimes in terms of the

front evolution. When the variance of the heterogeneity is higher, the vertical

equilibrium theory can predict the flow regime, depending on the value of the

mobility ratio across the front, Mf . The evolution of the stabilizing values for Mf

and �ρ when the variance of the heterogeneity increases, in a stochastic context,

remains to be investigated, as well as the emergence of different flow regimes.

Finally, a stochastic study of stratified fields with dipped layers remains to be

performed. Under these conditions, the role of gravity is more complex due to a

transverse influence of gravity. Well-developed fingers could then tend to flow

downward, and modify the large-scale evolution of the front.
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