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Abstract. In this paper we consider upscaling of multiphase flow in porous media. We

propose numerical techniques for upscaling of pressure and saturation equations. Extensions and
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1 Introduction

The modeling of multiphase flow in porous formations is important for both

environmental remediation and the management of petroleum reservoirs. Prac-

tical situations involving multiphase flow include the dispersal of a non-aqueous

phase liquid in an aquifer or the displacement of a non-aqueous phase liquid

by water. In the subsurface, these processes are complicated by the effects of

permeability heterogeneity on the flow and transport. Simulation models, if they

are to provide realistic predictions, must accurately account for these effects.

However, because permeability heterogeneity occurs at many different length

scales, numerical flow models cannot in general resolve all of the variation of

scales. Therefore, approaches are needed for representing the effects of subgrid

scale variations on larger scale flow results.

On the fine (fully resolved) scale, the subsurface flow and transport of N

components can be described in terms of an elliptic (for incompressible systems)

pressure equation coupled to a sequence of N − 1 hyperbolic (in the absence
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of dispersive and capillary pressure effects) conservation laws. In this paper we

address the upscaling of both pressure and saturation equations.

Traditional approaches for scale up of pressure equations generally involve

the calculation of effective media properties. In these approaches the fine scale

information is built into the effective media parameters, and then the problem

on the coarse scale is solved. We refer to [5, 10, 19, 20] for more discussion

on upscaled modeling in multiphase flows. Recently, a number of approaches

have been proposed in which the methods have the ability to capture the small

scales effect on the large scale solution without directly resolving the small scale

details [1, 13, 23, 24]. In particular, a number of approaches have been intro-

duced where the coupling of small scale information is performed through a

numerical formulation of the global problem by incorporating the fine features

of the problem into base elements. In this work we develop a similar approach

using finite volume framework. Because of their conservative feature, finite vol-

ume methods are often preferred in applications such as flow in porous media.

Our methodology is similar to multiscale finite element methods [18, 23]. We

discuss numerical implementation as well as some applications of our approach.

Though there are a number of technical issues associated with subgrid models

for the pressure equation, the lack of robustness of existing coarse scale models

is largely due to the treatment of the hyperbolic transport equations. Previ-

ous approaches for the coarse scale modeling of transport in heterogeneous oil

reservoirs include the use of pseudo relative permeabilities [3, 7, 31, 32], the

application of nonuniform or flow-based coarse grids [12], and the use of vol-

ume averaging and higher moments [10, 16, 17]. Our methodology for subgrid

upscaling of the hyperbolic (or convection dominated) equations uses volume av-

eraging techniques. In particular, we employ perturbation analysis to derive the

macro-diffusion that represents the effects of subgrid heterogeneities. Numerical

computation of macro-diffusion is addressed in this paper. The macro-diffusion,

in particular, can be written as a covariance between the velocity fluctuations

and fine scale quantity that represents the length of fine scale trajectories. For

the computation of fine scale quantities, we use detailed information that is con-

tained in multiscale base functions. Further application of our subgrid upscaling

approaches to other porous media flow problems such as multiphase flow in un-

saturated/saturated media (Richards’equation) is discussed. Numerical example
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is presented. The theoretical considerations of the approaches are brief and will

be presented elsewhere.

The paper is organized as follows. In the next section we discuss the main

upscaling procedures that will be used, and section 3 is devoted to the numeri-

cal results.

2 Fine and coarse scale models

We consider two phase flow in a reservoir � under the assumption that the

displacement is dominated by viscous effects; i.e., we neglect the effects of

gravity, compressibility, and capillary pressure. Porosity will be considered to

be constant. The two phases will be referred to as water and oil, designated

by subscripts w and o, respectively. We write Darcy’s law, with all quantities

dimensionless, for each phase as follows:

vj = −krj (S)
µj

k · ∇p, (2.1)

where vj is the phase velocity, k is the permeability tensor, krj is the relative

permeability to phase j (j = o,w), µj is its corresponding viscosity, S is the

water saturation (volume fraction), and p is pressure. In this work, a single set

of relative permeability curves is used and k is taken to be a diagonal tensor,

diag(kx, kz). Combining Darcy’s law with a statement of conservation of mass

allows us to express the governing equations in terms of the so-called pressure

and saturation equations:

∇ · (λ(S)k · ∇p) = q, (2.2)

∂S

∂t
+ v · ∇f (S) = 0, (2.3)

where λ is the total mobility, q is a source term, f is the flux function of water,

and v is the total velocity, which are respectively given by:

λ(S) = krw(S)

µw
+ kro(S)

µo
, (2.4)

f (S) = krw(S)/µw

krw(S)/µw + kro(S)/µo
, (2.5)

v = vw + vo = −λ(S)k · ∇p. (2.6)
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The above descriptions are referred to as the fine model of the two phase flow

problem.

Next, we wish to develop a coarse scale description for two phase flow in

heterogeneous porous media. Previous approaches for upscaling such systems

are discussed by many authors; e.g., [6, 3, 10, 15]. In most upscaling procedures,

the coarse scale pressure equation is of the same form as the fine scale equation

(2.2), but with an equivalent grid block permeability tensor k∗ replacing k. For

a given coarse scale grid block, the tensor k∗ is generally computed through the

solution of the pressure equation over the local fine scale region corresponding

to the particular coarse block [9]. Coarse grid k∗ computed in this manner have

been shown to provide accurate solutions to the coarse grid pressure equation. We

note that some upscaling procedures additionally introduce a different coarse grid

functionality for λ, though this does not appear to be essential in our formulation.

In this work, the proposed coarse model is upscaling the pressure equation (2.2)

to obtain the velocity field on the coarse grid and use it in (2.3) to resolve the

saturation on the coarse grid. A finite volume element method is implemented

to upscale the pressure equation (2.2). Finite volume is chosen, because, by its

construction, it enjoys the numerical local conservation which is important in

groundwater and reservoir simulations. We note that similar procedure for this

pressure equation upscaling has been implemented in [25]. First, we describe

briefly several geometrical terminologies related to the method. Let Kh denote

the collection of coarse elements/rectangles K , whose side lengths in x- and

z-direction, respectively, are hx and hz, and the maximum of those two is h. We

describe the construction of the control volumes as follows. Consider a coarse

elementK , and let ξK be its center. The elementK is divided into four rectangles

of equal area by connecting ξK to the midpoints of the element’s edges. We denote

these quadrilaterals by Kξ , where ξ ∈ Zh(K) are the vertices of K . Also, we

denote by Zh = ⋃
K Zh(K) the collection of all vertices and by Z0

h ⊂ Zh the

vertices which do not lie on the Dirichlet boundary of �. The control volume

Vξ is defined as the union of the quadrilaterals Kξ sharing the vertex ξ .

The key idea of the method is the construction of base functions on the coarse

grids such that these base functions capture the small scale information on each of

these coarse grids. The method that we use follows its finite element counterpart

presented in [23]. The base functions are constructed from the solution of the
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leading order homogeneous elliptic equation on each coarse element with some

specified boundary conditions. Thus, if we consider a coarse element K that

has d vertices, the local base functions φi, i = 1, · · · , d are set to satisfy the

following elliptic problem:

−∇ · (k · ∇φi) = 0 in K

φi = gi on ∂K,
(2.7)

for some function gi defined on the boundary of the coarse elementK . Hou et al.

[23] have demonstrated that a careful choice of boundary condition would guar-

antee the performance of the base functions to incorporate the local information

and, hence, improve the accuracy of the method. In this paper, the function gi

for each i varies linearly along ∂K . Thus, for example, in case of a constant

diagonal tensor, the solution of (2.7) would be a standard linear/bilinear base

function. We note that as usual we require φi(ξj ) = δij . Finally, a nodal base

function associated with the vertex ξ in the domain � are constructed from the

combination of the local base functions that share this ξ and zero elsewhere.

These nodal base functions are denoted by {ψξ }ξ∈Z0
h
.

Having described the base functions, we denote by V h the space of our ap-

proximate pressure solution which is spanned by the base functions {ψξ }ξ∈Z0
h
.

Now, we may formulate the finite dimensional problem corresponding to finite

volume element formulation of (2.2). A statement of mass conservation on a

control volume Vξ is formed from (2.2), where now the approximate solution

is written as a linear combination of the base functions. Assembly of this con-

servation statement for all control volumes would give the corresponding linear

system of equations that can be solved accordingly. It is obvious that the number

of the control volumes Vξ has to be equal to the dimension of the space V h.

The resulting linear system has incorporated the fine scale information through

the involvement of the nodal base functions on the approximate solution. To be

specific, the problem now is to seek ph ∈ V h with ph = ∑
ξ∈Z0

h
pξψξ such that

∫
∂Vξ

λ(S)k · ∇ph · �n dl =
∫
Vξ

q dA, (2.8)

for every control volume Vξ ⊂ �. Here �n defines the normal vector on the

boundary of the control volume, ∂Vξ and S is the fine scale saturation field.
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We note that concerning the base functions, a vertex-centered finite volume

difference is used to solve (2.7) along with a harmonic average to approximate

the permeability k at the edges of fine control volumes.

As mentioned earlier, the pressure solution may then be used to compute the

total velocity field at the coarse scale level, denoted by v = (vx, vz) via (2.6). In

general, the following equations are used to compute the velocities in horizontal

and vertical directions, respectively:

vx = − 1

hz

∑
ξ∈Z0

h

pξ

(∫
E

λ(S)kx
∂ψξ

∂x
dz

)
, (2.9)

vz = − 1

hx

∑
ξ∈Z0

h

pξ

(∫
E

λ(S)kz
∂ψξ

∂z
dx

)
, (2.10)

where E is the edge of Vξ . Furthermore, for the control volumes Vξ adjacent to

Dirichlet boundary (which are half control volumes), we can derive the velocity

approximation using the conservation statement derived from (2.2) on Vξ . One

of the terms involved is the integration along part of Dirichlet boundary, while

the rest of the three terms are known from the adjacent internal control volumes

calculations. The integration of forcing function may be approximated by mid-

point rule. This way, we have the following equations (l, b, r , and t stand for

left, bottom, right, and top, respectively):

vlx = vrx + 0.5 hx/hz
(
vtz − vbz

) − 0.5 hx q

for left Dirichlet boundary,

vbz = vtz + 0.5 hz/hx
(
vrx − vlx

) − 0.5 hz q

for bottom Dirichlet boundary.

(2.11)

The right and the top Dirichlet boundary conditions are defined similarly. It has

been well known that these approximations give a second order accuracy to the

velocity computation. We have analyzed both numerically and analytically our

two-scale finite volume methods and the results will be published elsewhere [22].

In this paper we will consider two different coarse models for the saturation

equation. One of them is a simple/primitive model where we use only the coarse
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scale velocity to update the saturation field on the coarse grid, i.e.,

∂S

∂t
+ v · ∇f (S) = 0. (2.12)

In this case no upscaling of the saturation equation is performed. This kind of

technique in conjunction with the upscaling of absolute permeability is com-

monly used in applications (e.g., [12, 11, 10]). The difference of our approach

is that the coupling of the small scales is performed through the finite volume

element formulation of the global problem and the small scale information of

the velocity field can be easily recovered. Within this upscaling framework, we

use S instead of S in (2.8). If the saturation profile is smooth, this approximation

is of first order. In the coarse blocks where the discontinuities of S are present,

we need to modify the stiffness matrix corresponding to these blocks. The latter

requires the values of the fine scale saturation. In our computation we will not

do this. We simply use λ(S) in (2.8).

In addition to the above described coarse model, we will also revisit a coarse

model on the saturation proposed by [17], which uses λ(S) = 1 and f (S) = S.

This model was derived using perturbation argument for (2.3), in which the

saturation, S, and the velocity, v, on the fine scale are assumed to be the sum of

their volume-averaged and fluctuating components,

v = v + v′, S = S + S ′. (2.13)

Here, the overbar quantities designate the volume average of fine scale quantities

over coarse blocks. For simplicity we will assume that the coarse blocks are

rectangular, which allows us to state that (cf. [33])

∇f = ∇f .

Substituting (2.13) into the saturation equation for single phase and averaging

over coarse blocks, we obtain

∂S

∂t
+ v · ∇S + v′ · ∇S ′ = 0. (2.14)

The term v′ · ∇S ′ represents subgrid effects due to the heterogeneities of con-

vection. This term can be modeled using the equation for S ′ that is derived by

Comp. Appl. Math., Vol. 23, N. 2-3, 2004



220 UPSCALED MODELING IN MULTIPHASE FLOW APPLICATIONS

subtracting (2.14) from the fine scale equation (2.3)

∂S ′

∂t
+ v · ∇S ′ + v′ · ∇S + v′ · ∇S ′ = v′ · ∇S ′.

This equation can be solved along the characteristics dx/dt = v by neglecting

higher order terms. Carrying out the calculations in an analogous manner to the

ones performed in [17], we can easily obtain the following coarse scale saturation

equation:

∂S

∂t
+ v · ∇S = ∇ · D(x, t)∇S(x, t), (2.15)

where D(x, t) is the macro-diffusive tensor, whose entries are written as

Dij (x, t) =
[∫ t

0
v′
i(x)v

′
j (x(τ ))dτ

]
. (2.16)

Next, it can be easily shown that the coefficient of diffusion can be approximated

up to the first order by

Dij (x, t) = v′
i(x)Lj ,

whereLj is the displacement of the particle in j direction that starts at point x and

travels with velocity −v. The diffusion term in the coarse model for the saturation

field (2.15) represents the effects of the small scales on the large ones. Note that

the diffusion coefficient is a correlation between the velocity perturbation and

the displacement. This is different from [17], where the diffusion is taken to

be proportional to the length of the coarse scale trajectory. Using our upscaling

methodology for the pressure equation, we can recover the small scale features

of the velocity field that allows us to compute the fine scale displacement.

For the nonlinear flux, f (S), we can use a similar argument by expanding

f (S) = f (S)+ fS(S)S ′ + . . . . In this expansion we will take into account only

linear terms and assume that the flux is nearly linear. This case is similar to the

linear case, and the analysis can be carried out in an analogous manner. The

resulting coarse scale equation has the form

∂S

∂t
+ v · ∇S = ∇ · fS(S)2D(x, t)∇S(x, t), (2.17)
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where D(x, t) is the macro-diffusive tensor corresponding to the linear flow.

This formulation has been derived within stochastic framework in [26]. We note

that the higher order terms in the expansion of f (S) may result in other effects

that have not been studied extensively to the best of our knowledge. In [16] the

authors use a similar formulation, though their implementation is different from

ours. A couple of numerical examples for nonlinear flux f (S) with λ(S) = 1

will be presented.

3 Numerical results

We now present numerical results that demonstrate the accuracy and limitation of

our model compared to the fine scale model. As in [17], the systems considered

are representative of cross sections in the subsurface. We therefore set the system

length in the horizontal direction x (Lx) to be greater than the formation thickness

(Lz); in the results presented below, Lx/Lz = 5. The fine model uses 120 × 120

rectangular elements. The absolute permeability is set to be diag(k, k). Thus,

the fine grid permeability fields are 121 × 121 realizations of prescribed overall

variance (quantified via σ 2, the variance of log k), correlation structure, and

covariance model. We consider models generated using GSLIB algorithms [8],

characterized by spherical and exponential variograms [30, 8]. The dimension

of the coarse models range from 10 × 10 to 40 × 40 elements and are generated

using a uniform coarsening of the fine grid description.

For the spherical and exponential variogram models, the dimensionless corre-

lation lengths (nondimensionalized byLx andLz, respectively) are designated by

lx and lz. As discussed in [17], because our dispersivity model is pre-asymptotic,

we do not expect it to be applicable to the case of very small lx . Therefore, in

the results below, we restrict ourselves to lx ≥ 0.1.

We set the relative permeabilities of oil and water to be simple quadratic func-

tions of their respective saturations; i.e., krw = S2 and kro = (1−S)2, where S is

the water saturation. Specifically for the first two examples, where we deal with

pressure dependence on the saturation, we set our viscosity ratio µo/µw = 5.

In all cases we fix pressure and saturation (S = 1) at the inlet edge of the model

(x = 0) and also fix pressure at the outlet (x = Lx). The top and bottom bound-

aries are closed to flow. Results are presented in terms of the fraction of oil in the
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produced fluid (denoted by F , where F = qo/q, with qo being the volumetric

flow rate of oil produced at the outlet edge and q the volumetric flow rate of to-

tal fluid produced at the outlet edge) versus pore volumes injected (PVI). PVI is

analogous to dimensionless time and is defined as qt/Vp, where t is dimensional

time and Vp is the total pore volume of the system. In this study, we applied our

models to a variety of permeability fields.

Our first example in Figure 1 is for the case lx = 0.4, lz = 0.04, and σ = 1.5.

An exponential variogram is used to generate the permeability realization. In the

following two figures, the 120 × 120 fine model is represented by solid lines,

while the coarse models are represented by the dashed lines and dotted lines,

depending on the coarse model’s dimension. On the top plot, the coarse model

were run on 10×10 elements (dotted lines) and 30×30 elements (dashed lines).

On the bottom plot, the coarse model were run on 20×20 elements (dotted lines)

and 40 × 40 elements (dashed lines). In both of these plots, the coarse model

overpredicts the breakthrough time and continues to overpredict the production

of the displaced fluid until PVI ≈ 1. After that time the comparison shows

that the coarse model agrees reasonably well with the fine model. Also, it can

be observed that the larger coarse models are more accurate in general. For

example, the 40 × 40 coarse scale model gives a reasonable approximation of

the fine scale model.

For the second example, we consider an isotropic field. Figure 2 shows com-

parison of the fractional flow for case lx = 0.1, lz = 0.1, and σ = 1.0. Both

plots in this figure show a good agreement between the fine model and coarse

model, regardless of the coarse model dimensions. In conclusion, we would like

to note that our coarse scale model tends to perform better for smaller correlation

length. In particular, for the upscaling of high correlation length cases, we need

larger coarse scale models. This difficulty can be relieved by introducing the

nonuniform coarsening, which is a subject of further research.

Another important aspect that requires consideration is the ability of the coarse

model to predict the saturation contour. In the following, we compare the sat-

uration contours obtained from fine and coarse models with the same two per-

meability field scenarios as in the previous figures. The saturation contours are

compared in the following fashion: the fine scale model result is averaged onto

the coarse grid and then is overlapped with the result from the coarse model of
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Figure 1 – Comparison of fractional flow of displaced fluid at the production edge for

the case lx = 0.4, lz = 0.04, and σ = 1.5 with exponential variogram, and µo/µw = 5.

Plots on the top are coarse model with 10×10 and 30×30 elements; plots on the bottom

are coarse model with 20 × 20 and 40 × 40 elements.

20 × 20 elements. In the subsequent figures, the following description is used:

the upper plot shows S = 0.10, the middle plot shows S = 0.30, and the lower

plot shows S = 0.50.

Figure 3 gives comparison of saturation contours at PVI = 0.15, which is

before breakthrough time. In general, the coarse model is able to predict the

trends exhibited by the fine model, although for smaller values of saturation,

it cannot quite follow the fingering indicated by the fine model as evident in

upper and middle plots. For a higher value of saturation, however, the coarse
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Figure 2 – Comparison of fractional flow of displaced fluid at the production edge for

the case lx = 0.1, lz = 0.1, and σ = 1.0 with spherical variogram, and µo/µw = 5.

Plots on the top are coarse model with 10×10 and 30×30 elements; plots on the bottom

are coarse model with 20 × 20 and 40 × 40 elements.

model can follow the fingering indicated by the fine model as seen in lower plot.

Similar behavior is shown in Figure 4 for isotropic field with lx = 0.1, lz = 0.1,

and σ = 1. These comparisons also show that the coarse model predicts the

contour of saturation better for lower correlation lengths compared to the case

with higher correlation length along the main flow direction, lx = 0.4, lz = 0.04,

and σ = 1.5.

At this stage, we present several numerical results of our coarse model with

the macro-diffusion as described in Section 2. Comparison is made between
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Figure 3 – Comparison of saturation contours at PVI = 0.15 for the case lx = 0.4,

lz = 0.04, and σ = 1.5 with exponential variogram, and µo/µw = 5. The solid

lines represent the fine grid saturation after averaging onto the coarse grid, while the

dashed lines represent the coarse model with 20 × 20 elements. Upper plots are the

contour of S = 0.10, middle plots are the contour of S = 0.30, and lower plots are the

contour of S = 0.50.

this transport coarse model with the primitive model, cf. (2.12). As opposed to

the coarse model with macro-diffusion, by its nature, the primitive model does

not account for the subgrid effects on the coarse grid. The macro-diffusion is

computed using the approximation of the fine scale velocity field by sampling

the base functions.

The performance of this macro-diffusion model is exhibited in Figures 5 and 6.

The following notation and terminology are used in those two figures. The solid

line represents the fine model run on 120×120 elements, which as before, serves
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Figure 4 – Comparison of saturation contours at PVI = 0.15 for the case lx = 0.1,

lz = 0.1, and σ = 1.0 with spherical variogram, and µo/µw = 5. The solid lines

represent the fine grid saturation after averaging onto the coarse grid, while the dashed

lines represent the coarse model with 20 × 20 elements. Upper plots are the contour of

S = 0.10, middle plots are the contour of S = 0.30, and lower plots are the contour of

S = 0.50.

as a reference solution. The dashed line represents the primitive coarse model

(D=0), while the dotted line represents the coarse model with macro-diffusion

(with D). All coarse models are run on the 10 × 10 elements.

Figure 5 shows the macro-diffusion model performance in the case of a linear

flux function, f (S) = S and λ(S) = 1. The plot on the top corresponds to the

isotropic permeability field with lx = 0.1, lz = 0.1, and σ = 1.5, and the plot on

the bottom corresponds to permeability field with lx = 0.40, lz = 0.04, and σ =
1.5. For the isotropic case (top plot), it is evident from this figure that although
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Figure 5 – Comparison of fractional flow of displaced fluid at the production edge. The

flux function used is linear, f (S) = S. All coarse models are run on 10 × 10 elements.

Plot on the top corresponds to lx = 0.1, lz = 0.1, and σ = 1.5 with spherical variogram.

Plot on the bottom corresponds to lx = 0.40, lz = 0.04, and σ = 1.5 with spherical

variogram.

the performance of the primitive coarse model seems to agree reasonably well

with the fine model (specifically on the breakthrough time), the coarse model

with macro-diffusion does improve the overall prediction. Conversely, when the

correlation length is larger along the main flow direction (bottom plot), where

now the diffusion caused by heterogeneity is stronger, the coarse model with

macro-diffusion gives a better prediction compared to the primitive model.
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The performance of the coarse model with macro-diffusion in the case of

nonlinear flux function is shown in Figure 6. Here we have used

f (S) = 5S2

5S2 + (1 − S)2
and λ(S) = 1 .

Again, the plot on the top corresponds to isotropic permeability field with

lx = 0.1, lz = 0.1, and σ = 1.5, and the plot on the bottom corresponds to

permeability field with lx = 0.40, lz = 0.04, and σ = 1.5. The significance

of the macro-diffusion model in these two plots are obvious, in that the macro-

diffusion model circumvents the primitive model in predicting the production on

and shortly after the breakthrough. Also in this nonlinear flux function case, the

model does not seem to be sensitive to the prescribed correlation structures.

To summarize, these computations reveal that the macro-diffusion resulting

from the heterogeneity in the flow affects the coarse grid model, which may

not be easily disregarded. Moreover, although solely based on the first order

approximation, our proposed macro-diffusion model gives a reasonably well

performance compared to the widely used primitive model.

Finally, we note that the viscous coupling is not taken into account in the

macrodispersion model. In [2, 21] the authors investigated the viscous coupling

and their findings indicate that the distinct dispersive regimes can occur depend-

ing on the relative strength of nonlinearity and heterogeneity. In particular, the

viscosity ratio plays an important role in the stability of the fingering [2]. In the

future we plan to use these results for developing new upscaling techniques for

two-phase flow. For these approaches the upscaled mobility functions, λ∗(S),
that is different from λ(S), will be employed. More general mobility functions,

λ∗(S,∇S), that depends on both S and ∇S, will be also considered. We have

employed the latter in a different upscaling framework in one of our previous

works [14].

Another important class of flow in porous media problems is the unsatu-

rated/saturated water flow governed by Richards’equation [4, 29]. This equation

comes up from the simplification of the two phase water-air flow problem, where

it is assumed that the temporal variation of the water saturation/water content

is significantly larger than the temporal variation of the water pressure, and that

the air phase is infinitely mobile so that the air pressure remains constant in
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Figure 6 – Comparison of fractional flow of displaced fluid at the production edge. The

flux function used is nonlinear, f (S) = 5S2

5S2+(1−S)2 . All coarse models are run on 10×10

elements. Plot on the top corresponds to lx = 0.1, lz = 0.1, and σ = 1.5 with spherical

variogram. Plot on the bottom corresponds to lx = 0.40, lz = 0.04, and σ = 1.5 with

spherical variogram.

the atmospheric level. The typical Richards’ equation that we consider here is

the so-called mixed formulation, in which the mass storage and transport are

expressed in terms of water content and pressure head, respectively:

∂θ(p)

∂t
− ∇ · (kkrw(p)∇p)− ∂ (kzkrw(p))

∂z
= 0, (3.18)

where p denotes the water pressure head, θ(p) denotes the water content that

depends on the pressure head p.
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Fine Model, 256×256 Coarse Model, 32×32
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Figure 7 – Two-scale approximation of the Richards’ equation. Comparison of water

pressure between the fine model (left) and the coarse model (right).

The two-scale finite volume method described in Section 2 is applied to (3.18),

where the resulting coarse model employs the same base functions as the linear

problem. This approximation is motivated by the homogenization results of this

class of equation [27, 28]. The analysis and more detailed description of this

application will appear elsewhere.

One numerical example that we consider is a typical water infiltration shown in

Figure 7. A fixed pressure is given on the top and bottom boundaries, and there is

no flow on the lateral boundaries. A vertically linear initial pressure is imposed

in the domain. The permeability field is generated with lx = 0.1, lz = 0.1,

and σ = 1.5. The water content and the relative permeability use exponential

model, i.e., θ(p) = exp(p) and krw(p) = exp(p). We note that the nonlinearity
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of Richards’ equation is handled using the Picard iteration first proposed in [4].

The figure shows comparison of the water pressure plotted on 257 × 257 grids

obtained using the fine model (left) and the coarse model (right). The fine model

uses 256 × 256 elements, while the coarse model uses 32 × 32 elements. It is

apparent from the figure that the coarse model agrees with the fine model.

4 Summary

In this paper we considered subgrid models for porous media flows. Upscal-

ing procedures have been proposed for some multiphase flow applications and

numerical results are presented. The numerical calculation of pressure and trans-

port equations is accomplished in a consistent manner, providing a unified coarse

scale model. The model was applied to a number of example cases involving

heterogeneous permeability fields, varying linear and nonlinear fine scale flux

functions. In essentially all cases considered, the subgrid model performed well

on relatively coarse grids.
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