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Abstract. In this paper we consider the modeling of heterogeneous aerosol coagulation

where the heterogeneous aerosol particles (called droplets) contain smaller particles (enclosures).

Droplets and enclosures coagulate with different collision kernels. We discuss macroscopic mod-

eling and simulation of these processes using both deterministic and Monte-Carlo methods.
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1 Introduction

The study of aerosol dynamics is often limited to homogeneous, single-

component aerosol particles. Furthermore, even those studies that have em-

ployed more than one component assume that aerosol is a homogeneous mixture

of all multi-component constituents. However, it is known that phase segrega-

tion will take place within an aerosol droplet if the thermodynamics and kinetics

are favorable, in a manner analogous to that observed in bulk materials. So in

order to accurately predict and control multi-component particle production it

is not sufficient to assume that aerosol is a homogeneous mixture of all multi-

component constituents. In a manner analogous to bulk materials our goal is to

be able to control and characterize the overall behavior of the multi-component

aerosol particles.

It is becoming increasingly apparent that multi-component aerosol particles are

of both industrial importance and an area in need of significant research activity.
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There have been a number of multi-component aerosol dynamics studies with het-

erogeneous aerosol particles that have shown the importance of multi-component

aerosol particles in material synthesis. There are experimental studies on the for-

mation of binary metal oxide systems with application to removal of heavy metals

[4, 5] as well as the formation of materials with novel and interesting properties

[10, 11, 26]. One of the main goals in this research is to study the evolution

of the internal state of the aerosol droplets and accurately predict and control

their internal morphology. Initial success in growing interesting microstructures

[26] indicated that further research was warranted. In subsequent studies both

in-situ investigation into the formation process [18], multi-component aerosol

dynamic modeling [3] and molecular dynamics computation [27] have been em-

ployed. One of the primary conclusions was that for high temperatures where

these materials are typically grown, nanodroplets are in liquid-like state, and that

phase segregation taking place within the nanodroplet was probably limited by

the transport within nanodroplet. This was one of our working assumptions in

modeling and simulation [7, 8 9] of multi-component nanodroplets. In Figure 1

we present an example of TEM results for the SiO2/Fe2O3 system.

In the course of this paper, we shall use the terms minor phase and enclo-

sure interchangeable to refer to the component within each aerosol droplet, and

droplet or aerosol when referring to the major phase. The mathematical formu-

lation of the problem allows one to consider the enclosures as particles inside the

droplet that coagulate with collision kernel that is different from that of droplet

coagulation. The temporal evolution of the aerosol and enclosures is schemat-

ically depicted in Figure 2. Instantaneous coalescence assumption is used in

the modeling that is justified by experiments. More detailed description of the

experiment can be found in [26].

In the paper we will be interested when collision processes governing droplet

coagulation and enclosure coagulation are different. In particular, we will be

interested in the macroscale quantities and their evolution. One of our main goal

is to discuss the mean enclosure volume of each droplet and their asymptotic

behavior. We will show that the mean enclosure volumes of each droplet tends

to a constant if mean number of enclosures per droplet increases. This fact greatly

simplifies the problem (reduces the degrees of freedom) and allows us to derive
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Figure 1 – Evolution of the aerosol (SiO2) and minor phase (Fe2O3) during the growth

of SiO2/Fe2O3 nanocomposites.
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Figure 2 – Schematic description of droplet-enclosure growth process.

macroscale models. Our argument is not mathematically rigorous and we back

it up with physical arguments as well as with Monte-Carlo simulations. The

global existence result for the generalized model that describes heterogeneous

aerosol coagulation is also presented.

The heterogeneous aerosol coagulation processes have multi-scale nature. In

particular, because of multi-scale nature of the time and dimension scales in-

volved in these processes we try to simplify the computations and develop more

innovative numerical techniques. For the deterministic macroscale models this

involves the use of coarse spaces for the discretization of the volume space.

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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On the other hand, Monte Carlo methods have the advantage that multi-scale

and time phenomena can be simultaneously solved without the requirement of a

single unifying governing multi-variate equation. We discuss the difficulties of

Monte-Carlo methods for heterogeneous aerosol coagulation processes due to

the multiscale nature of these processes and the approaches to overcome these

difficulties.

The paper is organized as follows. In the next section we discuss the determin-

istic models and the assumptions involved in this modeling. Section 3 is devoted

to numerical results. The conclusions are drawn in section 4.

2 Heterogeneous aerosol coagulation

2.1 Deterministic modeling of heterogeneous aerosol coagulation

Conceptually, there are two kinds of mathematical models describing the dynam-

ics of homogeneous aerosol particles: deterministic and stochastic models. The

deterministic models describe the evolution of some average quantities, e.g., the

number density of aerosol particles with certain properties. For spherical parti-

cles, we are usually interested in the number density of the particles, N(t, V ),

with volume V . More precisely, N(t, V )dV is the number of aerosol particles

with volumes between V and V + dV . The coagulation process is characterized

by a collision kernel which describes the collision mechanism. The expression

for the collision kernel is based on a physical model and particle properties (size,

density, etc). The equation for the evolution of N(t, V ) was first introduced by

Smoluchowski [23] (survey paper [6]):

dN(t, V )

dt
= 1

2

∫ V

0
K(U, V − U)N(t, U)N(t, V − U)dU

− N(t, V )

∫ ∞

0
K(V, U)N(t, U)dU.

(1)

The first term on the right hand side accounts for the gain of particles of volume

V due to the collision of particles of volume U and V − U , and the second term

on the right hand side accounts for the loss of particles due to the collision of

particles of volume V with any other particle of volume U . Smoluchowski’s

equation can be generalized by including additional physical effects, such as

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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fragmentation, condensation, nucleation, diffusion and etc. Some of commonly

used collisions kernels in aerosol coagulation ([12]) are free-molecule collision

kernel

KF (U, V ) = K0

(
1

U
+ 1

V

)1/2

(U 1/3 + V 1/3)2, (2)

where K0 = (
3

4π

)1/6
(

6kT

ρ

)1/2

and Brownian (continuum regime) collision

kernel

KD(u, v) = K0(u
1/3 + v1/3)

(
1

u1/3
+ 1

v1/3

)
, (3)

where K0 = 2kT

3µ
. Here k denotes Boltzmann’s constant, T is the temperature,

µ is the viscosity of the medium comprising aerosol particles and ρ is the density

of droplets. Throughout the paper we will assume that the collision kernels are

homogeneous, i.e., K(λu, λv) = λpK(u, v). Note that for free-molecule regime

p = 1/6 and for Brownian coagulation p = 0.

For the heterogeneous aerosol coagulation we assume that the collision kernels

for the enclosure coagulation (or coagulation of the minor phase) has p = pe

and the collision kernel for the droplet coagulation has p = pd . In particular, we

are interested when the collision kernels for enclosure and droplet populations

have different degrees of homogeneities (p). For iron/silica oxide binary system

(see [7]), the collision kernel for enclosure coagulation has pe = 0, while the

collision kernel for droplet population has pd = 1/6.

The difficulty in mathematical modeling of the enclosure distribution of the

whole system lies in the nonlinear nature of enclosure as well as in droplet

coagulations. Assume that the collision kernel of the enclosures in each droplet

is the same, and all droplets contain large number of enclosures so that we can

describe their evolution by Smoluchowski’s equation. Denoting the number

density of the enclosures in a droplet with volume V , by nV (t, u)/V , we can

write a population balance equation for the enclosures in a droplet of volume V ,

dnV (t, v)

dt
= 1

2V

∫ v

0
K(u, v − u)nV (t, u)nV (t, v − u)du

− 1

V
nV (t, v)

∫ ∞

0
K(v, u)nV (t, u)du.

(4)

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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Note that nV (t, u)du is the number of enclosures with volume between u and

u+du that are in the droplet of volumeV . In general, in order to find the enclosure

distribution for the whole system one needs to add the enclosure distributions

over all droplets,

ntotal(t, u) =
∫ ∞

0
nV (t, u)N(t, V )dV . (5)

Here we denote by ntotal(t, u), the enclosure distribution of the whole system,

and N(t, V ) is the number density of the droplets. Since the equation (4) is

nonlinear and the operation (5) is linear one cannot derive an equation for the

evolution of ntotal(t, u) analytically. Moreover, it is not possible to describe

the individual enclosures inside individual droplets since the numerical efforts

would be tremendous.

One of approaches in modeling is to limit the description of enclosure popu-

lation to their basic statistics. This idea is utilized for a simple two-component

system characterizing SiO2/Fe2O3, in one of our work [7]. A goal is to model

Nn,u,σ (t, V ), which is the number density of aerosols with volume V and n en-

closures whose size distribution is characterized only by their (enclosures) mean

volume u and standard deviation σ . Note that here we assume that the enclo-

sure population has log-normal distribution. This assumption will be discussed

in details below. The equation for the evolution of Nn,u,σ (t, V ) can be written

based on conservation principles (see [7])

dNn,u,σ (t, V )

dt
= 1

2

∫ V

0
K(U, V − U)

∑
N

k
′
,u

′
,σ

′ (t, U)N
k
′′
,u

′′
,σ

′′ (t, V − U)dU

− Nn,u,σ (t, V )

∫ ∞

0
K(U, V )

∑
N

k
′
,u

′
,σ

′ (t, U)dU

+
∑

γ
(k

′
,u

′
,σ

′
)→(n,u,σ )

(t, V )N
k
′
,u

′
,σ

′ (t, V )

−
∑

γ
(n,u,σ )→(k

′
,u

′
,σ

′
)
(t, V )Nn,u,σ (t, V ).

(6)

The first two terms in the equation (6) account for the gain and loss due to co-

agulation of droplets. We omit the details of the summations because they are

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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cumbersome (the details in [7]). For example, in the first term the summation is

taken over all possible (k
′
, u

′
, σ

′
) and (k

′′
, u

′′
, σ

′′
) such that if two droplets with

volume U and V − U and enclosure distribution characterized by (k
′
, u

′
, σ

′
)

and (k
′′
, u

′′
, σ

′′
) collide then the enclosure distribution of the resulting droplet

is characterized by (k, u, σ ). The last two terms refer to the gain and loss due

to interaction of the enclosures inside a droplet of volume V . The quantity

γ
(k

′
,u

′
,σ

′
)→(n,u,σ )

(t, V ) denotes the rate that in a droplet of volume V the distri-

bution of enclosure population will change from (k
′
, u

′
, σ

′
) to (n, u, σ ) during

the time dt . The details of the summation are again omitted.

In order to find γ
(k

′
,u

′
,σ

′
)→(n,u,σ )

(t, V ) we need to model the evolution of ba-

sic statistics of the enclosure population in each droplet. The latter can be

easily done by multiplying Smoluchowski’s equation by vi (i = 0, 1, 2) and

integrating over all v ([7, 16]). This yields the following equations for the

moments dM0/dt = −K[M2
0 + M1/3M−1/3], dM1/dt = 0, and dM2/dt =

2K[M2
1 +M4/3M2/3], where Mi = ∫

vin(v, t). To close this system an assump-

tion about the nature of the enclosure distribution is needed. It is known that

for large times the enclosure distribution can be approximated by the log-normal

distribution [16, 20, 19]. Assuming that the enclosure distribution is log-normal

Mk = nvk
g exp

(
9

2
k2 log2(σ )

)
one can derive an evolution equation for n (the

total number of particles), vg (the geometric mean particle volume), and σ (the

geometric standard deviation), from where γ (see eq. (6)) can be computed

analytically (see [7]). To solve (6) we employed binning strategy that divides

the space of droplet volumes and enclosure numbers into coarse partitions [7].

The latter is necessary because the range of droplet volumes and the number of

enclosures is very large which makes it difficult to use standard discretization

techniques.

2.2 Assumptions involved in deterministic modeling

In this section we will discuss the main assumption involved in this modeling that

is not addressed in [7]. This assumption is crucial for the modeling purposes and

needed in order to preserve the log-normal distribution of enclosure population

after two droplet collisions. After the collision of two droplets the distribution

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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of enclosure population in the resulting droplet is equal to the sum of the distri-

butions of enclosure populations in the colliding droplets. Thus, it will remain

log-normal if and only if the mean volume of the enclosures and their variance

in the colliding droplets are the same. We claim that the mean enclosure volume

of each droplet is the same among the droplets for large times provided pe < pd .

The mean enclosure volume of each droplet i is defined as ui = Ui/ni , where

Ui is total enclosure volume in a droplet i, and ni is the number of the enclosures

in the droplet i. This fact (the equality of mean enclosure volumes) plays an

important role in modeling of aerosol systems where the enclosure population

is characterized only with its basic statistics (e.g., total number, mean and vari-

ance). Furthermore, this assumption greatly reduces the number of unknowns of

the problem and can be used for various simple models. To show the validity of

this assumption we will need to discuss the following two facts (1) the equality

of the enclosure concentration in each droplet for large times (2) the behavior of

the mean enclosure numbers in each droplet. With these two results we can argue

that the mean enclosure volume of each droplet is the same among the droplets

for large times provided the mean number of enclosures increases. Note that the

latter is true if pe < pd .

The equality of the enclosure concentration in each droplet at large times.
Define the concentration of enclosures in a droplet i by ci , which is given as the

total enclosure volume in this droplet divided by the droplet volume. We assert

that ci is independent of i, ci = c. This assumption is true if initially the concen-

tration of the enclosures in each droplet is uniform. Then these concentrations

will remain constant. Indeed, if two droplets with volumes V1 and V2 collide,

then the total concentration of enclosures in a resulting droplet with volume

V1 + V2 will be c(V1 + V2), i.e., concentration will remain constant equal to c.

It can be shown that if the enclosure concentration in droplets are not the same

initially it will evolve to the state when enclosure concentrations will become

equal. This fact has been observed numerically in our Monte Carlo simulations

and can be studied independently of the size distribution of enclosure popula-

tion. Indeed, introduce the quantity N(t, V , c), number density of droplets with

volume V and with the enclosure concentration c. Note that if two droplets

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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with volume V1 and V2, and enclosure concentrations c1 and c2 collide, then the

volume of the resulting droplet is V = V1 +V2, and the enclosure concentration

is c = (c1V1 +c2V2)/V . Thus the evolution of N(t, V , c) is simply governed by

dN(t, V , c)

dt
= 1

2

∫ V

0
K(U, V − U)

∫ c

0
N(t, U, c1)N

(
t, U,

cV − c1U

V − U

)
dUdc1

− N(t, V )

∫ ∞

0

∫ ∞

0
K(V, U)N(t, U, c1)dUdc1.

(7)

Here the first term accounts for the gain of particles with volume V and the

enclosure concentration c. These particles are formed as a result of a collision

of droplets with volume U and V − U and enclosure concentrations c1 and

(cV − c1U)/(V − U). Similarly, the second term accounts for the loss of

droplets with volume V and the enclosure concentration c. The asymptotics

of these kinds of equations have been studied in [13, 21]. It was shown that∫ ∞
0

∫ ∞
0 (c − c)V N(t, V , c)dV dc converges to zero as t → ∞. We see from (7)

that the study of the concentration of enclosure population does not depend on

the distribution of enclosure population in each droplet. This is a fundamental

difference between this study and the study of mean number of enclosures per

droplet as well as the study of mean enclosure volume of each droplet.

The behavior of the mean enclosure numbers in each droplet. The assump-

tion of the equality of mean volume of enclosures in each droplet, ui , holds if

pe < pd , and it is approximate if pe ≈ pd . We do not have rigorous mathemat-

ical proof of this fact, and will use physical argument as well as Monte-Carlo

simulations to demonstrate this. For this reason, we introduce the mean num-

ber of enclosures per droplet, i.e., ntot/Mtot , where ntot is the total number of

enclosures, and Mtot is the total number of droplets. If we assume pe < pd it

can be shown that the mean number of enclosures per droplet increases. Indeed,

using the self-similar theories (see [1]) it can be shown that in each droplet the

number of enclosures decays as t−1/(1−pe). This rate is the same for all the en-

closures, consequently the total number of enclosures decays as t−1/(1−pe). On

the other hand, the total number of droplets decays as t−1/(1−pd). Consequently

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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mean number of enclosures per droplet grows as t−1/(1−pe)+1/(1−pd). Thus if

pe < pd the mean number of enclosures in each droplet will increase as tγ ,

γ = −1/(1 − pe) + 1/(1 − pd) > 0. We will confirm this rate in our Monte-

Carlo computations.

Next we present our argument on ui . The characteristic interaction (i.e., co-

agulation) time for the enclosures in each droplet Vi , is given by

t ci = Ke
0

Vi

ni

, (8)

where ni are the number of enclosures in a droplet i and Ke
0 is a constant that

depends on the physical parameters (the background media). We assume that at

an asymptotic condition, the characteristic interaction times for the enclosures

in each droplet are balanced with the characteristic coagulation time for the

droplets. Consequently, the characteristic interaction time for the enclosures is

the same. Since the total enclosure volume of a droplet with volume Vi , is cVi ,

t ci can be written as

t ci = Ke
0

ui

c
,

where ui is the mean volume of the enclosures of the droplet. So at an asymptotic

limit we expect the mean enclosure volumes of each droplet to be constant.

However, this characteristic time (8) is only defined if ni > 1. So if the number

of enclosures per droplet is close to unity the characteristic enclosure coagulation

times (defined in (8)) in each droplet will in general not be equal to each other

and we need to take account of the variation in number of enclosures per droplets.

This corresponds to the case when pe ≥ pd . To see this we consider the case

when there is one enclosure per droplet. Then the volume of the enclosure (or

mean volume of the enclosures per droplet) is equal to cV , where c is the total

concentration independent of the droplets. Thus mean volumes of the enclosures

will have the same distribution as the volume of droplets. Volume of droplets has

self-preserving shape distribution with nonzero width on the log scale (e.g. [12]).

From here we can conclude that mean volume of enclosures in a droplet is not the

same if the mean number of enclosures per droplet is small. We can also show

that the standard deviations of the enclosure populations in each droplet will be

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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constant (independent of the droplet) for large times if the mean enclosure volume

of each droplet is constant. Consider, S2 = ∑
(vi − v)2n(vi, t) = M2 − v2n,

where M2 = ∑
v2

i n(vi, t)dv, n(vi, t) is the number of enclosure with volume vi ,

n is the total number of enclosures, and v is the mean enclosure volume. For two

colliding droplets with enclosure distribution n′(v, t) and n
′′
(v, t) we have M2 =

M
′
2+M

′′
2 . From where assuming that v

′ = v
′′

we have S2 = S
′
2+S

′′
2 , n = n′+n

′′
.

Then for standard deviation s = S2/n we have s = (n′S ′
2 + n

′′
S

′′
2)/(n

′ + n
′′
).

From here using argument similar to the analysis of the enclosure concentration

we can show that s tends to a constant for large times. The rigorous proof of this

fact is a subject of future study.

3 Numerical methods and results

3.1 Monte-Carlo methods

Monte Carlo methods to simulate particulate growth processes are not new,

and the theoretical foundations have been discussed extensively in the literature

[14, 24, 25]. Basically the Monte Carlo approach utilizes probabilistic tools to

study a finite dimensional subsystem in order to infer the properties of the whole

system. Here we briefly discuss Monte-Carlo methods used in our simulations.

There are in general two types of finite-volume Monte-Carlo techniques. In

the first approach, the user sets the time interval �t , and uses Monte-Carlo to

decide which and how many events will be realized. This method is sometimes

referred to as time driven Monte-Carlo. In the second approach, the user selects

a single event and then advances the time by an appropriate increment. In the

method presented here we employ the first method for the enclosures or minor

phase, and the second method to describe the droplets/aerosol. More precisely,

we first select a single coagulation event for the droplets, and compute the time

�T required for this event. Then for each droplet we calculate the enclosure

interactions occurred during this time interval.

At each step of the simulation, droplets i with volume Vi and j with volume

Vj are selected to coagulate, and a new droplet of size Vi + Vj is formed with a

probability that is proportional to the coagulation probability, Kij . To calculate

the mean inter-event time between two successive events we consider a system
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with initial number concentration C0 and total number N0 droplets in the simu-

lation. Then as outlined by Smith and Matsoukas [22] the effective real volume

being simulated is N0/C0, so that one coagulation event in our (model) system

represents C0/N0 actual droplets per unit volume. To connect our simulations

to real time we calculate the inter-event time, by noting that the time between

two events is inversely proportional to the sum of the rates of all possible events.

If for example k successful events are realized, then the remaining number of

droplets in the system is Nk = N − k, and the total number concentration of the

system Ck is given by
Ck

C0
= Nk

N0
. The mean inter-event time after k coagulations

as [22]

�Tk = 2N0

C0
∑Nk−1

i=1

∑Nk−1
j=1 KF

ij

. (9)

For each droplet we use the inter-event time to determine the number of suc-

cessful enclosure interactions (coagulation driven growth) before the next droplet

coagulation. This unfortunately restricts the time step, because modeling the in-

ternal state of the droplets requires complete knowledge of enclosure distribution

within each droplet.

In an analogous manner to that of the droplets we also define the mean inter-

event time for the enclosures in a droplet of volume V as

�t = 2V∑n−1
i=1

∑n−1
j=1 KD

ij

,

where n is the number of the enclosures, and n/V is their number density. The

number of successful enclosure interactions inside the droplet during the time

interval �T1 is given by the integer k which satisfies

k∑
i=1

2V

〈KD
ij 〉(n − i)(n − i − 1)

≤ �T1

≤
k+1∑
i=1

2V

〈KD
ij 〉(n − i)(n − i − 1)

.

(10)

On the left hand side of (10) we have the total time needed for the coagulation of

k enclosures and on the right hand side the total time needed for the coagulation

of k + 1 enclosures.
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When the number of droplets drops to half the initial value, we replicate the

droplets and their internal state. In order to preserve the physical connection

to real time, the topping up process must preserve the average behavior of the

system corresponding to the time prior to topping up. In particular, one has to

ensure that the characteristic time for droplet collisions stays the same, and to

do this requires an increase in the system volume in proportion to the increase in

droplets. On the other hand, if the number of enclosures in a droplet becomes too

large for the simulation, one can truncate the enclosure system within a droplet by

randomly picking a certain number of enclosures and adjusting the corresponding

computational volume. A flow chart of our Monte Carlo algorithm is depicted

in Figure 3.

 

  

For
each
droplet

Randomly choose two droplets and calculate their collision probability

Calculate the elapsed time, dT,  for this  coagulation event

Perform k enclosure interactions such that the total sum of inter−event times

spent during the enclosure interactions greater than or equal to dT

Calculate the extra time spent during the enclosure interactions in each droplet.

This quantity will taken into account during the next droplet coagulation event

    Implement the coagulation of the chosen droplets and calculate the enclosure distribution for the new droplet

If the number of droplets is less than M/2 (M is the number of initial droplets),.

                     Increase the size of the computational domain twice.
duplicate the particles with their internal state.

                   t=t+dT

Figure 3 – Flow chart of Monte Carlo algorithm.

3.2 Numerical results

In the numerical examples we will use different constants K0 for enclosure

coagulation, Ke
0 and for droplet coagulation Kd

0 (see e.g. (3)). In the first

numerical example we assume that enclosures coagulate in the Brownian regime
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pe = 0, while droplets coagulate with constant collision kernel pd = 0, and

take Ke
0 = 4.8e − 18, Kd

0 = 3.6e − 9, φ = 5.2e − 7, where φ is the total

concentration of the droplets (see [9]). In this case our assumption on the mean

volume of the enclosures will not be exact as the number of the enclosures per

droplet does not increase. In the Figure 4 we plot mean number of enclosures

per droplet using our Monte-Carlo simulations. As we see from this figure that

mean number of enclosures per droplet reaches constant as it was predicted

since γ = 0. The experiments are performed for three different values of M

(initial number of droplets) and m (initial number of enclosures in each droplet).

Because the mean number of enclosures per droplet does not increase we do not

expect our assumption on ui (mean enclosure volume of each droplet) discussed

in the previous section to hold. Here ui , i = 1, . . . , M denote the mean enclosure

volume in the ith droplet, and M is the total number of droplets. To measure the

variability of ui we introduce the normalized variance u2
m/u2

m , where

u2
m = 1∑

i mi

∑
i

miu
2
i , um = 1∑

i mi

∑
i

miui,

mi is the number of the mean enclosure volumes with volume ui . Note that the

normalized variance is 1 if all ui are equal, i.e., for uniform ui . In Figure 5 we plot

the normalized variance of mean enclosure volumes of each droplet, u1, . . . , uM

(in this case (1000, 3000) is chosen). Note that we do not expect to see significant

changes for different values of (M, m). The first interesting observation is that

the normalized variance of the mean enclosure volumes of each droplet reaches

an asymptotic value, which is quite sensitive to the mean number of particles.

This asymptotic value of the variance is close to one if the mean number of

enclosures per droplet is large. Indeed, if the mean number of enclosures of

each droplet is large our assumption regarding of the equality of mean enclosure

volumes holds. Thus, the normalized variance of this quantity will be close to

one. On the other hand, when the mean number of enclosures per droplet is only

one or two then the mean enclosure volumes of each droplet simply track the

droplet volumes, i.e., reach the self-preserving size distribution corresponding

to the Brownian regime, which is 2. This is not difficult to check. If there is

only one enclosure per droplet and assuming that the enclosure concentrations

are uniform across the droplets and given by c, then the volume of the enclosure
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in the droplet i is given by cVi , where Vi are the volumes of the droplets. The

coagulation of the droplets is independent of the enclosures and it is known that

the normalized variance of the droplet volumes is almost 2, [12].
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Figure 4 – Mean number of the enclosures per droplet

(
the total number of the enclosures

total number of droplets

)

for three values of (M, m), where M refers to the initial number of the droplets and m

refers to the initial number of the enclosures per droplet in our simulation. All droplets

and enclosures are initially monodisperse. n designates mean number of enclosures per

droplet. Case pe = pd .

Our next set of numerical results describe the situation where the enclosures

coagulate in the Brownian regime (3) pd = 0, while droplets coagulate in the

free-molecular regime (2), pe = 1/6. We consider growth at two temperatures

2300 K and 2600 K, both of which were operating conditions for experiments.

The viscosity of the droplets will govern the rate of Brownian transport of the

minor phase and therefore the growth rate of enclosures. The viscosity of the

major component silica (SiO2) as a function of temperature is given by [15]

µ = 10−8.6625(1−3556.03K/T ) (kg)/(m s). and the density of SiO2 is held constant

at ρ = 5.5g/cm3. With these constants Ke
0 and Kd

0 can be easily determined.

In Figure 6 we plot mean number of enclosures per droplet for three differ-

ent initial conditions. As we observe mean number of enclosures per droplet

increases and the increase rate is given by t1/(1−pd)−1/(1−pe) = t1/5. To confirm
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Figure 5 – The normalized variance (u2
m/u2

m) of the mean enclosure volumes of each

droplet for different mean number of enclosures per droplet. Case pe = pd .

this rate in Figure 7 we plot the mean number of enclosures per droplet in a

log-log scale along with a straight line with a slope 1/5. It is clear from this

Figure that the growth of the mean number of enclosures per droplet has a rate

1/5. Since mean number of enclosures per droplet increases we expect that the

mean enclosure volumes of each droplet will become uniform across droplet

populations, i.e., u1 = · · · = uM , where ui is the mean enclosure volume of ith

droplet and M is the number of the droplets. Indeed, Figure 8 shows this. In

this Figure we plot the normalized variance of mean enclosure volumes of each

droplet. Clearly, this number is close to one for large times (compare with the

case pe = pd , Figure 5). We note that the constants Ke
0 and Kd

0 (which depend

on physical parameters) do not affect growth rate.

Finally in Figure 9 we present a comparison of Monte-Carlo computation

with our deterministic model. The agreement is quite reasonable. Thus we can

conclude that assumptions involved in macroscale modeling ([7]) are valid in an

asymptotic regime, and the macroscopic model describes the physical process

with a reasonable accuracy. InAppendixA we provide the global existence result

for this model equations in a discrete case.
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Figure 6 – Mean number of the enclosures per droplet

(
the total number of the enclosures

total number of droplets

)

for two values of (M, m), where M refers to the initial number of the droplets and m

refers to the initial number of the enclosures per droplet in our simulation. All droplets

and enclosures are initially monodisperse. Case pe = 0, pd = 1/6.

10
−3

10
−2

10
−1

10
3.1

10
3.2

10
3.3

10
3.4

10
3.5

time, seconds

m
ea

n 
nu

m
be

r 
of

 e
nc

lo
su

re
s 

pe
r 

dr
op

le
t

slope=1/5 

Figure 7 – Relative growth rate for different k. α = 1. The asymptote curve (designated

by dashed line) grows as ∼ t1/5, t is time. Case pe = 0, pd = 1/6.
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(
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of the mean enclosure volumes of each

droplet. Case pe = 0, pd = 1/6.
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Figure 9 – Mean number of the enclosures per droplet

(
the total number of the enclosures

total number of droplets

)

compared with sectional model.
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One of the difficulties in Monte-Carlo simulations is the handling of the large

number of enclosures within the droplets. Since we need to keep the number

of droplets at some reasonable level, the increase in the number of enclosures

per droplet makes our computations very difficult. Currently we are working on

the approaches where the enclosure population in each droplet is carried only

with three main statistics, the number of enclosure, the mean volume, and the

variance. Each time when the detail enclosure population is needed we generate

it from the log-normal distribution. If two droplets collide then the enclosure

population is generated and a new droplet with whole new enclosure population

is created. We carry full (detail) enclosure population for this droplet for some

time until it relaxes to log-normal distribution. Then the enclosure population

can be characterized with three moments. Our initial results look promising and

the further research into the mathematical and computational aspects of this kind

methods will be carried out.

4 Concluding remarks

In this paper we study the coagulation of heterogeneous aerosol particles and

discuss main assumptions involved in deterministic modeling. In particular, we

show that the mean volume of the enclosures per droplet is uniform for large

times. The latter is crucial for the understanding of the heterogeneous coag-

ulation processes. Because of multi-scale nature of the heterogeneous aerosol

coagulation processes some innovative numerical methods are needed. We dis-

cuss our current research on this direction.

A Global existence result for generalized Smoluchowski’s equation

We will consider a discrete coagulation model corresponding to the generalized

Smoluchowski’s equation

dxjm

dt
= 1

2

∑
p+q=j,s+r=m

Kpqxpsxqr −
∞∑

p=1,r=1

Kjpxjmxpr +
∞∑

s=m

Ams

j
xjs. (11)

Here xij is the number of droplets whose volume i and contains j enclosures.

We assume that xjm(0) = cjm, such that
∑

j 2cjm ≤ C. Assume Kij ≤ iα + jα,
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α < 1, and Aij ≤ C. Finite dimensional version of the equation (11) can be

obtained through truncation up to N terms. The kernel is replaced by K
(N)
ij as

K
(N)
ij = {

Kij , if i + j ≤ N; 0 otherwise
}
,

A
(N)
ij = {

Aij , if i ≤ N, j ≤ N; 0 otherwise
}
.

The finite dimensional version of (11) is

dx
(N)
jm

dt
= 1

2

∑
p+q=j,s+r=m

K(N)
pq x(N)

ps x(N)
qr

−
N∑

p=1,r=1

K
(N)
jp x

(N)
jm x(N)

pr +
N∑

s=m

A(N)
ms

j
x

(N)
js .

(12)

Next we introduce

Me =
∑
j,m

xjm, Mv =
∑
j,m

jxjm, M(N)
e =

∑
j,m

x
(N)
jm , M(N)

v =
∑
j,m

jx
(N)
jm .

Lemma A.1. x
(N)
jm exist, unique and xN

jm are positive.

Since the r.h.s. of (12) satisfies Lipschitz condition the solution exists, unique

and bounded. Positiveness of the solution can be obtained similar to [17, 24].

The following can be checked directly

Lemma A.2.

dM(N)
v

dt
≤ 0,

dM(N)
e

dt
≤ 0.

Then we have

x
(N)
jm ≤

∑
l,p

lx
(N)
lp = M(N)

v (t) < C, |dx
(N)
jm /dt |

≤ 1

2

∑
p,q,s,r

(p + q)x(N)
ps x(N)

qr +
N∑
p,r

(j + p)x
(N)
jm x(N)

pr +
N∑

s=m

A
(N)
ms

j
x

(N)
js

≤ C
∑
p,s

px(N)
ps

∑
q,r

qx(N)
qr +

∑
j,s

xjs ≤ C.

(13)
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From here using Ascoli’s lemma we obtain that x
(N)
jm converges along a subse-

quence Nk uniformly in any time interval. Denote xjm = limN→∞ x
(N)
jm for the

subsequence. Note that xjm has bounded first moments because x
(N)
jm has bounded

first moments independent of N . To show that xjm satisfies equation (11) we

need to show that ∑
p

K
(N)
jp x(N)

pm →
∑

p

Kjpxpm, N → ∞

∑
p

A(N)
ms x

(N)
js →

∑
p

Amsxjs N → ∞.

(14)

Consider∣∣∣∣∣
∑

p

Kjpxpm −
∑

p

K
(N)
jp x(N)

pm

∣∣∣∣∣ ≤
∑
p<N1

|Kjpxpm − K
(N)
jp x(N)

pm |

+
∑
p>N1

Kjpxpm +
∑
p>N1

K
(N)
jp x(N)

pm .

(15)

The first term can be made small by choosing N large enough, the second

(and third term) can be made small by choosing N1 large enough in the follow-

ing way:

∑
p>N1

Kjpxpm ≤
∑
p>N1

jαxpm +
∑
p>N1

pαxpm

≤ jαN−1
1

∑
p>N1

pxpm + Nα−1
1

∑
p>N1

pxpm

≤ jαN−1
1 Mv(t) + Nα−1

1 Mv(t) → 0, ∀j, m.

(16)

Furthermore,
∣∣∣∣∣
∑

s

Amsxjs −
∑

s

A(N)
ms x

(N)
js

∣∣∣∣∣ ≤
∑
s<N1

|Amsxjs − A(N)
ms x

(N)
js |

+
∑
s>N1

Amsxjs +
∑
p>N1

A(N)
ms x

(N)
js

(17)
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Choosing N large we make the first term small. Choosing N1 large such that

N1 � m we can make the second and third terms small.

Uniqueness of the solution can be obtained in a manner analogous to [2].
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