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Abstract. The present article discusses the relation between boundary conditions and the

Sommerfeld radiation condition underlying the dynamics of unbounded domains. It is shown

that the classical Dirichlet, Neumann and mixed boundary conditions do not fulfill the radiation

condition. In the sequence, three strategies to incorporate the radiation condition in numerical

methods are outlined. The inclusion of Infinite Elements in the realm of the Finite Element

Method (FEM), the Dirichlet-to-Neumann (DtN) mapping and the Boundary Element Method

(BEM) are described. Examples of solved dynamic problems in unbounded domains are given

for the Helmholtz and the Navier operators. The advantages and limitations of the methodologies

are discussed and pertinent literature is provided.
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1 Introduction

In many physics and engineering areas nature may be best represented or modeled

by unbounded or semi-unbounded domains. The propagation of noise generated

by a traffic route, the dynamic interaction of offshore facilities with the surround-

ing ocean, the description of waves propagating through the soil and generated at

shock producing industrial facilities or subway lines, the electromagnetic mod-

eling of antennas, represent only a few selected topics that requires considering

the dynamics of infinite domains.
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2 NUMERICAL METHODS FOR THE DYNAMICS OF UNBOUNDED DOMAINS

The key issue in modeling the dynamic behavior of infinite domains is the

idea that there is no energy source at very large distances from the region being

analyzed. All energy sources are circumscribed within a limited domain. So

physically, energy generated at the bounded domain flows, usually as waves,

mechanical or electromagnetic, from the sources into the infinite domain and is

not reflected. The unbounded domain is a perfect sink, where energy, in all its

frequency content and forms, is consumed.

The withdrawal of energy from the bounded system into the unbounded domain

is known as the Sommerfeld Radiation Condition (SRC). Let us resort to Arnold

Sommerfeld words [1]: “The sources must be sources, and not energy sinks.

Energy radiated from the sources must dissipate in the infinite; energy shall not

flow from the infinite into the field singularities”.

The present article discusses the relation between boundary conditions (BC)

and the SRC. It will be shown that the classical Dirichlet, Neumann and mixed

BCs do not satisfy the SRC. Further, three strategies to incorporate the SRC in

numerical methods will be outlined. The inclusion of Infinite Elements in the

realm of the Finite Element Method (FEM), the Dirichlet-to-Neumann (DtN)

mapping and the Boundary Element Method (BEM) are described. Examples of

solution for dynamic problems in unbouded domains are given for the Helmholtz

and the Navier operators. The advantages and limitations of the methodologies

are discussed and pertinent literature is furnished.

2 Mathematical description of the Sommerfeld Radiation Condition

Discussing the stationary acoustic wave propagation problem in unbounded do-

mains governed by the Helmholtz operator �2u + k2u = 0, Sommerfeld [1]

formulated the mathematical expression for the SRC:

lim
r→∞ r

(d−1)/2

(
∂u

∂r
− iku

)
= 0 (1)

In equation (1) the variable r represents the distance from the origin and d

is the dimension of the problem (d = 1, 2, 3). It is tacitly understood that

all processes have a harmonic time dependence according to the expression

ū(x, t) = u(x) exp(−iωt).
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EUCLIDES MESQUITA and RENATO PAVANELLO 3

The obstacles for the implementation of the SRC in numerical solution

methods is now addressed. Domain type methods, like the Finite Difference

Method (FDM) and the Finite Element Method (FEM), require the discretization

of the entire domain. The larger the domain, the larger the size of the resulting

algebraic system. Clearly no unbounded domain can be discretized by these

methods, since it would lead to infinitely large algebraic systems. So the FEM

mesh must be truncated at some position. Now the question arises as to which

BC should be placed at the outer boundary of the truncated mesh. This must be a

perfectly energy transmitting BC, since all energy must be radiated into infinity

and no part of it should be reflected back to the bounded mesh domain.

The 1−d Helmholtz operator, which governs linear acoustics and the dynamics

of bars

d2u

dx2
+ ku2 = 0 (2)

is used to exemplify the difficulty of imposing a perfectly radiating BC to a

bounded mesh. Considering the time harmonic dependence exp(−iωt), the

solution of the homogeneous equation (2) may be expressed as [21]:

ū(x, t) = A1 exp[i(kx − ωt)] + A2 exp[−i(kx + ωt)] (3)

The first expression on the right-hand side of (3) represents an outgoing har-

monic wave with circular frequencyω and amplitudeA1, travelling in the positive

x-direction with wave number k. The second expression is an incoming harmonic

wave of amplitude A2. Imposing the SRC (1) on solution (3) leads to A2 = 0.

This is a rather obvious result because it eliminates the incoming part of the

wave and consequently no energy is coming from the infinite or is reflected at

the boundary towards the origin. Therefore a BC fulfilling the SRC (1) must

enforce A2 = 0.

The problem is that, in the usual FDM or FEM mesh, it is not possible to

simulate the radiating BC (1). Consider the one-dimensional domain (0 ≤
x ≤ 1) governed by equation (2). Boundary conditions must be prescribed

to determine the constants A1 and A2, as well as the proper wave number kn,

(n = 1, 2, . . . ). For all cases considered, unit Dirichlet BC will be applied at

left-end of the domain, u(x = 0) = 1. Dirichlet and mixed BCs will be applied
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4 NUMERICAL METHODS FOR THE DYNAMICS OF UNBOUNDED DOMAINS

at the right-end of the domain, x = 1 . The ability of the right-end BC to model

the SRC (A2 = 0) will be discussed. Figure 1 shows the addressed BCs.

x = 0 x = 1

1

x = 0 x = 1

1 s

x = 0 x = 1

1 c

a) Case 1:
( 0) 1
( 1) 0
u x
u x

b) Case 2:

1

( 0) 1
i

x

u x
du dx u

c) Case 3:

1

( 0) 1
i

x

u x
du dx cu

Figure 1 – Boundary conditions for the 1-d Helmholtz operator.

Case 1. Homogeneous Dirichlet BC is applied at the right-end, u(x = 1) = 0.

The solution is the superposition of two waves, with the complex amplitudes A1

and A2 = (1 − A1) determined at the proper wave numbers

kn = 1

2

[
3π

4
+ (n− 1)π

]
, (n = 1, 2, . . . ).

As can be seen in figure 2, the solution for k4 = 15
8 π is a standing wave (fig. 2a)

composed of an outgoing wave with amplitude A1 (fig. 2b) and superposed to

an incoming waveA2 = (1−A1), (fig. 2c). This wave propagation pattern does

not fulfill the SRC, since A2 �= 0.
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Figure 2 – Solution for homogeneous Dirichlet BC at the right-end, u(x = 1) = 0.

It can be shown that applying homogeneous Neumann BC to the right-end

du(x = 1)/dx = 0, will lead to a wave propagation pattern that has basically

the same properties described in Case 1.
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Case 2. In the second case a spring with unit stiffness (s = 1) is applied at the

right-end, leading to a mixed type BC, du(x = 1)/dx = −iu(x = 1). Again

the solution is the superposition of two waves, with the complex amplitudes A1

and A2 = (1 − A1) determined at the proper wave numbers. Figure 3 show

the solution for k4 = 4, 3831 as a standing wave (fig. 3a) composed of an

outgoing wave with amplitude A1 (fig. 3b) and superposed to an incoming wave

A2 = (1 −A1), (fig. 3c). Since A2 �= 0, this wave propagation pattern also does

not fulfill the SRC.
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Figure 3 – Solution for mixed BC at the right-end, du(x = 1)/dx = −iu(x = 1).

Case 3. Mixed BC du(x = 1)/dx = iωcu(x = 1). This BC corresponds to

a damper (dashpot) with a coefficient c attached to the right-end of the domain.

The solution of this problem has a particularity. For an arbitrary value of the

damping coefficient c, the solution is a superposition of two waves with the

complex amplitudes A1 and A2 = (1 − A1). But the damping value c may

be tuned according to the system characteristics to render a solution in which

A2 = 0. This solution is able to satisfy the SRC. The c value which fulfills the

SRC is called, in this context, the critical damping and is given by cc = k/ω,

where k is a system eigenvalue. The relation between the actual damping c and

the critical value cc is called damping factor, fc = c/cc.

Figure 4 depicts the wave propagation process for the wave number k4 =
9.6566 and for a non-critical value of the damping, fc = 0.60. It can be readily

recognized that the resulting wave propagation pattern (fig. 4a) is the superpo-

sition of an outgoing wave (fig. 4b) and an incoming wave (fig. 4c). Clearly

there is wave and energy reflection at the right-end boundary where the damper
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6 NUMERICAL METHODS FOR THE DYNAMICS OF UNBOUNDED DOMAINS

is attached and consequently A2 �= 0. On the other hand the wave propagation

for the critical value fc = 1 is shown in figure 5.
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Figure 4 – Solution for damper c at x = 1: non-critical damping fc = 0.60.
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Figure 5 – Solution for dashpot at x = 1: critical damping fc = 1.0.

But this is a very specific and unique situation. For one-dimensional, mono-

chromatic propagation phenomena, there is a critical damping which may sim-

ulate the SRC. For two- and three-dimensional problems as well as for colored

wave propagation processes, it is not possible to fulfill the SRC through one of

the above described BCs.

For 1-d problems describing the axial and flexural waves in bars and beams,

there is one element, called Spectral Element (SE), which may satisfy analytically

the SRC [20]. The complex non-standing solution described in figure 4 represents

a combination of a vibrating mode and a wave propagation phenomena. A

detailed discussion of the relation between complex modes and wave propagation

may be found in [22].
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EUCLIDES MESQUITA and RENATO PAVANELLO 7

The key consequence to be drawn from this section is that there is no simple

BC that can be applied to a bounded mesh in order simulated the SRC, which

is inherently present in the dynamics of unbounded domains. The adequate

numerical simulation of unbounded domain dynamics requires specific strategies

which must be able to account for the SRC. In the sequence three such strategies

will be described.

3 Incorporating Infinite Elements in Finite Element Procedures

Initial Remarks. The Finite Element Method (FEM) is the most widespread

numerical method used to approximate the solution of problems in engineering

and mathematical physics. The method is available in the form of commercial

codes to a large part of the engineering community. So it would be desirable to

develop a type of element which could model infinite (unbounded) domains and

the underlying SRC. The developed elements have been called Infinite Elements

(IEs) [32]. The inclusion of the IEs in the FEM code would provide a powerful

enhancement to the method. They would fullfil the SRC and keep some important

features of the original FE formulation.

Types of Infinite Elements. The pioneering articles of Bettess [30, 31, 32]

introduced two classes of Infinite Elements, which have built the basis for their

classification. According to Bettess [32] the Infinite Elements may be classified

into:

• Decay Infinite Elements

• Mapping Infinite Elements

The basic idea in synthesizing an IE is to modify the standard FE shape func-

tions Pi(ε, η), expressed in terms of the normalized coordinates ε, η, by adding

a decay or mapping function Fi(ε, η). The resulting IE shape functionsNi(ε, η)

are [32,40]:

Ni(ε, η) = Pi(ε, η)Fi(ε, η) (4)

Comp. Appl. Math., Vol. 24, N. 1, 2005



8 NUMERICAL METHODS FOR THE DYNAMICS OF UNBOUNDED DOMAINS

For monochromatic stationary wave propagating phenomena, the shape functions

are modified by adding a decay parameter α and function with the wave number

k:

Ni(ε, η) = Pi(ε, η)Fi(ε, η, α) exp(ikε) (5)

In elastic solids, when compression (p), shear (s) and Rayleigh (r) waves are

present, the IE may include a shape functions for every wave type (j = p, s, r)

Ni(ε, η) =
∑
j

λjPi(ε, η)Fi(ε, η, αj ) exp(ikj ε) (6)

In this formulation the decay factors αj and the coefficients λj must be deter-

mined either empirically or using information from known analytical solutions.

Several IEs have been proposed, which fall into this schematic representation

[10, 37, 48, 46, 49, 47]. Decay functions may present a polynomial or an expo-

nential character and they may decay in one, two or three directions according

to the problem requirements. Mapping functions may also be one-dimensional

or multi-dimensional. The choice of the decaying or mapping function is largely

determined by the numerical integration schemes available to synthesize infinite

element matrices. Figure 6 represents a typical radially oriented R(ε) Infinite

Element. Figure 7 shows a two-dimensional exponential decay shape function,

whereas figure 8 shows a typical two-dimensional mapping Infinite Element.

R3 R4

R1 R6

R( )
1

2

3

4

5
6

Figure 6 – A radially oriented R(ε) Infinite Element.
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Figure 7 – A typical two-dimensional decay Shape Function F(ε, η).
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Figure 8 – A typical mapping infinite element.

Numerical examples. A Dynamic Soil-Structure Interaction (DSSI) problem

will illustrate the versatility of the IEs incorporated to a standard FE code. Fig-

ure 9 shows a two-dimensional surface foundation interacting with a viscoelastic

layer resting on a half-space. Figure 10 shows the Finite Element modeling of

the problem. It can be seen that the foundation can be made rigid or flexible,

by modifying its constitutive parameters, the layer can also be represented by

changing the properties of the corresponding elements. Figure 10 also depicts

the horizontal and vertical infinite elements at the soil boundary. The FE mesh

has 16 × 8 Lagrangean quadratic elements with 9 nodes (L/B = 4.0) and 64

mapping Infinite Elements with 6 nodes (see fig. 8) [40]. The layer depth is

H/B = 2.0. The parameter B is half of the foundation width.
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E2, 2, 2, 2

foundation

Figure 9 – A rigid foundation on a stratified soil model.
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9 Nodes

Infinite

Elements

6 Nodes

interface

Figure 10 – Modeling of stratified soil with Finite and Infinite Elements.

In this problem the decay parameter for the compression and shear waves are

adjusted to αp = αs = 0.2. For the Rayleigh wave component the parameter is

αr = 0.01. The coefficients λj were given values related to the energy carried by

each type of wave in the homogeneous half-space [21], λp = 0.08, λs = 0.25,

λr = 0.67.

Figure 11 shows the Real part of the rigid foundation horizontal displacement

due to a horizontal unit excitation (the compliance) Re(Cvv) as a function of

the dimensionless frequency parameter A0 = ωB/c2. The shear wave velocity

of the layer and half-space are, respectively, c1 and c2. The results for three

distinct values of c1/c2 are compared to those obtained by Romanini [8] using a

Green’s function approach. The reported result shows that with the proper setting

of parameters and coefficients, the Infinite Elements may be able to reproduce

accurately the complex dynamics of a structure interacting with a stratified soil.
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Figure 11 – Real part of rigid foundation vertical compliance Re
[
Cvv(A0)

]
,

H/B = 2.0, ν = 0.25.

Limitations and Drawbacks of the IE. In spite of the good results reported

in this article the application of IEs presents a series of limitations:

1) The inclusion of the IE requires the development and implementation of

special numerical integration techniques, which may be time consuming;

2) For monochromatic wave propagation phenomena, like linear acoustics,

the IE requires the choice of a decay parameter for the shape function. The

value of the decay parameter may be obtained from the asymptotic solution

of the operator in unbounded domains. For colored wave propagation

phenomena, where compression, shear, Rayleigh and Love waves may be

present in the displacement field, a decay parameter αi for each wave type

is necessary. Another set of parameters λi , describing the distribution of

energy among the several waves must be assigned to the IE shape functions.

These parameters must be determined empirically or resort must be made

to existing analytical solutions;

3) The application of IE, up to the present time, is restricted to the stationary

analysis of the continua. There is no transient FE applications involving

IE;
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12 NUMERICAL METHODS FOR THE DYNAMICS OF UNBOUNDED DOMAINS

4) The inclusion of IE in the FE codes requires involved variables to be

extended to the complex case, increasing the amount of necessary storage.

4 The Dirichlet-to-Neumann (DtN) Mapping and its incorporation in the
FEM

Initial remarks. The so called Dirichlet-to-Neumann (DtN) mapping is an-

other strategy developed to incorporate de SRC into a FEM procedure. The

method was first presented by Givoli and his co-workers [18, 5]. The basic idea

is to divide the unbounded region in two domains by an artificial boundary. The

first domain is a bounded one and is governed by a non-homogeneous operator.

The second domain is unbounded and its corresponding operator is homoge-

neous. This second domain is subjected to Dirichlet boundary conditions at the

artificial interface and the SRC (1) at infinity. An auxiliary analytical or numeri-

cal solution must exist for the problem posed on the second domain. The method,

which, in the sequence, will be outlined based on the Helmholtz operator, has

been intensively investigated [13, 14, 15, 16, 17, 25, 6, 7, 28, 29].

Formulation of the DtN mapping. The DtN procedure will be shown for a

typical operator. Let us consider a body B immersed in an infinite

two-dimensional fluid F as shown in Figure 12. The stationary behavior of

the inviscid fluid F is given in terms of the velocity potential ψ governed by

the Helmholtz operator. At the fluid-body interface, Dirichlet (g on �g) and

Neumann (h on �h) boundary conditions are prescribed, with � = �g ∪ �h. At

infinity the SRC (1) is prescribed. Mathematically the problem can be stated as:

�2ψ + k2ψ + f = 0 on F

ψ = g on �g

∂ψ

∂η
= ikh on �h

lim
r→∞

[
r1/2

(
∂ψ

∂r
− ikψ

)]
= 0

(7)

In equations (7) r is the distance to the origin, k is the wave number. Now,

in the problem shown in Figure 12, the domain F will be divided into two

Comp. Appl. Math., Vol. 24, N. 1, 2005
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Figure 12 – Unbounded Fluid Domain F surrounding a body B at interface �.

distinct domains F = D ∪ � connected by an artificially introduced boundary

∂BR. The first domain � is bounded and is governed by the non-homogeneous

operator, whereas the domain D is unbounded and the corresponding operator

is homogeneous, see figure 13. The problem on domain D is a Dirichlet type

problem and can be stated as:

�2ψ + k2ψ = 0 on D

ψ = ψ(R, θ) on ∂BR

lim
r→∞

[
r1/2

(
∂ψ

∂r
− ikψ

)]
= 0

(8)

Figure 13 –Division of the problem in two domains by the artificial boundary ∂BR .

The two-dimensional problem stated by (8) has an analytical solution as a

series sum over n harmonics [36, 28]:

ψ(r, θ) = 1

π

∞′∑
n=0

∫ 2π

0

H(1)
n (kr)

H
(1)
n (kR)

cos n(θ − θH )ψ(R, θH )dθH (9)

Comp. Appl. Math., Vol. 24, N. 1, 2005



14 NUMERICAL METHODS FOR THE DYNAMICS OF UNBOUNDED DOMAINS

In expression (9) r is the radius of the point where the solution is being evaluated,

θ is the angle related to the evaluating point, θH is a reference angle, R is the

radius of the artificial boundary, H(1)
n is the Hankel function of order n and

type 1. The prime ′ indicates that the first term of the series (n = 0) should

be multiplied by a factor 1/2. Using expression (9) it is possible to establish a

relation between the Dirichlet variable ψ and its derivative with respect to the

direction r , the Neumann variable ∂ψ/∂r:

∂ψ

∂r
= Mψ on ∂BR (10)

This relation is called the Dirichlet to Neumann (DtN) mapping. Using equation

(9) the DtN operator may be expressed as:

Mψ = − k

π

∞′∑
n=0

H(1)′
n (kR)

H
(1)
n (kR)

∫ 2π

0
cos n(θ − θH )ψ(R, θH )dθH (11)

Once the problem on the unbounded domain D is solved, the counterpart on

the bounded domain � may be formulated as a DtN problem. The DtN name

stems from the fact the Neumann and Dirichlet conditions are related to each

other on ∂BR.

�2ψ + k2ψ + f = 0 on �

ψ = g on �g

∂ψ

∂n
= ikh on �h

∂ψ

∂n
= Mψ on ∂BR

(12)

The problem described by equations (12) is restricted to a bounded domain and

can be subjected to a classical FE formulation, as outlined in the sequence.

Incorporating the DtN mapping into the FE discretization. The Neumann

BCs of the problem are included in the weak FE formulation through a boundary

integral. Considering w a weight function and the mapping in (10), the integral

over the artificial boundary ∂BR may be written∫
∂BR

w
∂ψ

∂n
d� = −

∫
∂BR

wMψd� (13)

Comp. Appl. Math., Vol. 24, N. 1, 2005
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Applying the Galerkin Method and the standard FE shape functions Ni as the

weighting function for the approximation of the velocity potential ψ , a discrete

form of the integral (13) can be stated in matrix notation

−
[ ∫

∂BR

NiMNjd�

]
{ψj } = [D]{ψ∂BR } (14)

After matrix [D] is numerically determined, it can be incorporated in the dis-

cretized FE equations, representing the unbounded domain dynamics. Designat-

ing [S] and [H], respectively, the compressibility and volumetric matrices, the

FE system may be written

[S]{ψ̈} + ([H ] + [D]){ψ} = {F } (15)

Numerical examples. The described formulation has been implemented into a

FE code to solve the problem of a harmonically vibrating cylinder of radius r = a.

At the fluid-cylinder interface the Dirichlet boundary conditionψ = cos(4θ)was

applied. The bounded � domain (a < r < 2a) was discretized by three rows

of 32 quadrilateral bi-linear elements, as shown in Figure 14. The artificial

boundary ∂BR was place at R = 2a. The excitation frequency parameter was

ka = π , and 6 finite elements were used for each wavelength.

Figure 14 – FE mesh for an harmonically vibrating cylinder in unbounded fluid.

Figure 15 shows the imaginary part of the radiating harmonic field, compared

to the exact solution given in [14]. For this problem only the first harmonic of the
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DtN operator (n = 0) needs to be implemented. The presented results indicate

that the DtN mapping is an accurate tool to represent the stationary Sommerfeld

radiation condition in unbounded domains.

Figure 15 – Imaginary part of the radiating field from a harmonic vibrating cylinder:

—– Numerical, - - - - Analytical.

Final remarks. Although accurate results have been obtained [28] and re-

ported in the literature [13, 14] for the DtN mapping, some important aspects of

procedure should be stressed:

1) The implementation of the DtN mapping requires a numerical or

analytical solution of a Dirichlet type problem, in order to synthesize the

DtN operator M;

2) The M operator is a non-local operator and every node on the bound-

ary ∂BR is connected to all other nodes. This leads to a block of fully

populated matrix, which breaks the sparse and banded character of the

original FE matrices;

3) The DtN operator introduces complex variables in the analysis increasing

the need for storage and computing resources;

4) There are two parameters, the determination of which requires either nu-

merical studies or empirical practice: a) the distance of the radius R on

which the artificial boundary ∂BR is placed and b) the number of terms n
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which must be calculated for the series solution (11). The greater R, the

larger the number of FE in the bounded mesh. High values of n imply

computing intensive matrices [D];

5) The wave number is explicitly present in the block matrix of the operatorM

and it is not possible to formulate the problem as a standard FE eigenvalue

problem.

5 The Boundary Element Method

Describing the BEM. The Boundary Element Method (BEM) is another nu-

merical tool available to approximate the solution of boundary value problems.

It is based on the discretization of Boundary Integral Equations (BIEs). One of

its great advantages is that only the boundary of the domain under consideration

needs to be discretized. The implication of this fact is that three-dimensional do-

mains require a surface discretization, whereas two-dimensional domains lead to

a line elements. Thus the algebraic systems stemming from the BEM are smaller

than its FEM counterpart [24].

From the dynamics point of view the BEM is very inviting since it can naturally

account for the SRC [19]. For completely unbounded domains or full-spaces,

only the boundary containing the radiating source needs to be discretized. The

BEM can also be applied very effectively to fracture mechanic problems. It can

handle accurately high stress gradients and crack propagation can be modeled

without domain remeshing [27].

The BEM has also some limitations or drawbacks when compared to the FEM:

1) The BEM leads to smaller algebraic systems than the FE discretization,

but the systems are usually fully-populated and non-symmetrical;

2) The boundary integral involves singular kernels and methods to deal with

these singularities must be implemented;

3) The BEM is a superposition method and thus well suited to linear problems,

and special techniques required to deal with non-linear problems[24, 27];
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4) The BEM is best applied to homogeneous continua. If non-homogeneity

or inclusions are present, then resort to sub-domain techniques must be

made [24];

5) To solve dynamic problems in unbounded domains by a boundary-only

integral equation, the BEM requires an auxiliary state which fulfills the

SRC.

In spite of this, there is growing evidence that the BEM is the most versatile

numerical tool available to describe the stationary and transient behavior of

homogeneous unbounded continua [3, 4]. The first dynamic formulation of

the BEM was published by Cruse [41]. The transient BE formulation is due to

Mansur and Brebbia [44, 45]. The method has been developed by many authors

and is a mature technique to deal with acoustics and elastodynamic problems

[11, 19, 3, 4, 12].

Formulating and developing the BEM. The first step in the mathematical for-

mulation of the BEM is to convert the differential equation (DE) governing the

problem into a boundary integral equation (BIE). The Navier equations for fre-

quency domain (ω) linear elastodynamics in terms of the Cartesian displacement

component ui is:

μui,jj + (μ+ λ)uj,ji + ρω2ui = 0 (16)

In equations (16) ρ is the continuum density and μ, λ, are Lame’s constants.

Using an auxiliary elastodynamic state, expressed in terms of displacement and

traction field components u∗
ij , t

∗
ij , and resorting to a reciprocal work theorem or

Green’s second vector identity, the domain equations (16) may be transformed

into a boundary-only (�) integral equation [19]

ui =
∫
�

t∗ij ujd� −
∫
�

u∗
ij tj d� (17)

The key issue on this transformation is the auxiliary state u∗
ij , t

∗
ij . It is only

possible to transform the DE (16) into the BIE (17) if the auxiliary state satisfies

the differential operator. In other words, to synthesize a BIE for a transient,
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viscoelastic and anisotropic problem a corresponding transient, anisotropic and

viscoelastic auxiliary state is needed. Further, the BIE will only satisfy the

Sommerfeld radiation condition if the auxiliary state also fulfills this requirement.

These auxiliary states, also called “Fundamental Solutions” in the BEM context,

do exist for classical operators. The Navier equations for stationary and transient

linear elastodynamics [2] and the Helmholtz operator [36] possess a fundamental

solution in closed analytical form.

A research area that has received attention in the last years is related to the

synthesis of auxiliary states for more complex or involved operators, including

anisotropy [33, 38, 39, 34, 26] poroelasticity [42], stratification [43] and transient

viscoelastic behavior [23, 9]. These auxiliary states may synthesized analytically

or numerically. In the sequence typical advances in the synthesis of auxiliary

states will be briefly addressed.

Auxiliary states for transient viscoelastic continua. This section will de-

scribe, exemplarily, the numerical synthesis of a transient viscoelastic half-space

Green’s function, which represents a necessary auxiliary state to analyze tran-

sient viscoelastic half-spaces by boundary integral procedures. The Green’s

function will, initially, be synthesized in the Fourier frequency domain. The

transient solution is determined by an accurate numerical inverse Fourier trans-

form. The viscoelastic effects in the continua may be completely characterized

by the complex Lame constants

u∗(ω) = μ∗
1(ω)

[
1 + iημ(ω)

]
, λ∗(ω) = λ∗

1(ω)
[
1 + iηλ(ω)

]
,

where μ∗
1(ω), λ

∗
1(ω) are the storage moduli and ημ(ω), ηλ(ω) are the damping

factors. The corresponding viscoelastic version of Navier equation (16) is:

μ∗(ω)ui,jj + [
μ∗(ω)+ λ∗(ω)

]
uj,ji + ρω2ui = 0 (18)

The boundary conditions of the problem can be been in figure 16. The half-

space surface is excited at the origin by a Dirac’s delta at t = 0, δ(0). The

frequency domains displacement solutions ui(ω) are determined numerically by

performing an improper integration over the wave number domain k [34]

ui(ω) =
∫ ∞

0
Hij (ω, k)tj (k) exp(iωk)dk (19)
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Figure 17 shows a typical frequency domain displacement Green’s function

uz, synthesized for large values of the frequency parameter Ao and for distinct

values of the hysteretic damping coefficient η. The viscoelastic effects are clearly

depicted in the figure. These frequency domain solutions will now be transformed

into time domain solutions by means of the inverse Fourier transform. Details

of the numerical inversion process may be found in [9].

, , , uz Point 1

X

Z

tx= (0)ex

tz= (0)ez

Figure 16 – Boundary Conditions for the half-space Green’s function.
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Figure 17 – Frequency domain solution for various damping parameters.

Figure 18 show the transient vertical displacement behavior uz(t) of an internal

half-space point with coordinates (x = 1m, z = 1.73m) due to a vertical Dirac’s

impulse δ(x, z, t) applied at the origin (x = 0, z = 0) at the instant t = 0. This

transient auxiliary state was obtained by inverse Fourier transformation of the

solution presented in figure 17.
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The figure 18 also shows the influence of the viscoelastic constitutive param-

eter η. The viscoelastic transient auxiliary state was compared to the transient

elastic solution presented by Richter [35]. The viscoelastic solutions tend to

approach the elastic case as the damping factor η is decreased. The arrival of

the compression, shear and Rayleigh waves can be clearly seen in the transient

result.

0,4 0,6 0,8 1,0 1,2 1,4 1,6
-1,6
-1,4
-1,2
-1,0
-0,8
-0,6
-0,4
-0,2
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0

=0.005
=0.01
=0.05
=0.1
=0.2

 Richter

Uz(t)

t [seconds]

Figure 18 – Transient vertical displacement response uz(t, x = 1m, z = 1.73m), due a

vertical impulsive loading.

Figures 19 show a typical sequence of snapshots for the transient displace-

ment field uz(t) at various time instants. An analysis of the obtained solutions

show clearly that all wave propagation phenomena consists of outgoing and non-

reflected waves. This auxiliary states clearly satisfy the Sommerfeld Radiation

Condition.

This numerically synthesized transient viscoelastic solution may be incorpo-

rated into the BIE to render the transient viscoelastic solution of unbounded

continua. It should be stressed that there is no general Fundamental Solution

describing the transient behavior of viscoelastic continua. The reported results

are original contributions to the implementation of the BEM to model transient

behavior of viscoelastic continua.
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a) t=0.34515s b) t=0.62125s

c) t=0.86296s d) t=1.24250s

e) t= 2.0594s f) t=2.9798s

Figure 19 – A snapshots of the transient viscoelastic auxiliary state uz(x, z, t).
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6 Concluding Remarks

The Sommerfeld Radiation Condition for unbounded domains and its relation

to Boundary Conditions has been discussed. The main features, advantages

and drawbacks of three numerical strategies, able to simulate the Sommerfeld

Radiation Condition underlying the dynamics of unbounded domains, were de-

scribed. Examples for the Helmholtz and Navier operator, satisfying the SRC

were presented. A list of pertinent literature was furnished for each addressed

methodology.
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