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Abstract. In this paper we generalize the concept of geometrically uniform codes, formerly
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1 Introduction

The concept of geometrically uniform signal constellations was introduced by
Forney in [7]. This concept has been shown to be the most appropriate in the
context of Euclidean signal constellations and spaces in the sense of unifying
processes such as Ungerboeck set partitioning [14] and generalized concatena-
tion [1].

One of the main objectives of geometrically uniform codes is related to the
construction of geometrically uniform partitions and in particular the construc-
tion of generalized coset codes.

The objective of this paper is to extend the concepts of signal sets, lattices
and set partitioning to the hyperbolic plane by making use of the associated hy-
perbolic regular tessellations and its corresponding full symmetry groups. In
particular, we consider the concept of geometric uniformity for joint modulation
and coding processes. Although the hyperbolic isometry groups have greater
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174 GEOMETRICALLY UNIFORM HYPERBOLIC CODES

complexity than the Euclidean isometry groups the procedures and concepts
related to the geometrically uniform partitions can be extended to the former.
An interesting aspect is that the fundamental regions of the Euclidean regular
tessellations always have an Abelian subgroup of order 4 belonging to the cor-
responding symmetry groups even if the they are not Abelian, whereas in the
hyperbolic case more general groups have to be considered. In other words,
the existence of regular tessellations in the hyperbolic plane of the{tyg,

see Definition 2.1, generating signal sets justify the search for subgroups and
quotient of groups associated with the full symmetry groufoig} which will
provide relevant information about the structure of these groups.

The problem that motivated us to consider geometrically uniform codes in
the hyperbolic plane is related to the results shown in [5] and [6] with respect
to the better performance achieved by a binary communication system using
soft-decision decoding (an 8-level quantizer leading to a binary input, 8-ary
output symmetric channel, denoted By g[8, 2]) when compared to the hard-
decision decoding (a 2-level quantizer leading to a binary-input binary-output
symmetric channel, denoted B ,[2, 2]), when viewed in this context. More
specifically, assume that an 8-level quantizer is used in the demodulator output,
leading to aC; g[8, 2] channel having the complete bipartite gragphs as the
associated graph. TI@ »[2, 2] channel is associated with the gragh, which
is embedded on a sphere with two regions, denote8(By, thus on a surface of
genus zero. In[5] itis shown that tki g[8, 2] channel may be embedded on the
following surfaces: sphere with 8 regions, denote®l§§); torus with 6 regions
(genus 1), denoted by (6); two torus with 4 regions (genus 2), denoted by
2T (4); and three torus with 2 regions (genus 3), denotedbyZ. Since both
channels have binary inputs it follows that the signal space has to be partitioned
into two decision regions. As a consequence@he{2, 2] channel is embedded
on S(2), and theC, g[8, 2] channel is embedded oM32). The most evident
topological difference is the genus of the surface.

A greatdeal of discrete memoryless channels of practical interest are embedded
on compact surfaces with gengs= 2, 3, see [5].

Onthe other hand, in [6] it is shown that the error probability associated with a
signal constellation (a set of points) depends on the curvefyrey;, equivalently,
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on the genus of a surface (surface where the signal constellation lies), and that the
best performance is achieved when considering surfaces with constant negative
curvature among the possible values taking onkhy(K < 0, K > 0, and

K =0).

To the best of our knowledge this approach was not considered previously
in the context of designing signal sets for digital communication systems. The
design of signal constellations is strongly dependent on the existence of regular
tessellations in the Euclidean or any other homogeneous space. The homogene-
ous spaces are important for they have rich algebraic structures and geometric
properties so far not fully explored in the context of communication and coding
theory. The algebraic structures provide the means for systematic devices im-
plementations whereas the geometric properties are relevant mainly with respect
to the efficiency of demodulation and decoding processes.

2 Hyperbolic tessellations

One of the important algebraic structures in communication theory is the vector
space, that is, a space whose metric is compatible with a norm (Euclidean spa-
ces). Itis by use of this structure that it is possible to model and to analyze new
communications systems, new modulation schemes, signal processing techni-
gues, signal constellations, and so on. On the other hand, the hyperbolic space,
locally (K < 0) may be seen as a vector space and since the hyperbolic space is
complete, simply connected and of constant negative curvature, the vector space
structure holds globally. However, the important difference from the Euclidean
space is that there is no norm compatible with the Riemannian metric.

In this section, we consider the hyperbolic pldfieas a space where we may
design signal constellations froragular tessellationsOne advantage of these
tessellations is that they can be analyzed from its associated groups, [2] and [3].

Definition 2.1. Aregular tessellatiorof the hyperbolic plang&l? is a partition
of H? by non-overlapping regular polygons with the same number of sides which
intersect entirely on edges or vertices. A regular tessellation in whiggular
p-gons meet at each vertex is denoted pyq}.

Since the sum of the internal angles of a hyperbolic triangle is lesssthan
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176 GEOMETRICALLY UNIFORM HYPERBOLIC CODES

it follows that there exists a hyperbolic tessellatipp, q} if and only if
(p—2)(g—2) > 4,[3, pp. 154-156]. Associated with each tessellatipng}
there exists a group callddll symmetry group of { p, g}, and denoted byp, q].
This group is the isometry group B, denoted by som(H?), generated by re-
flections in the hyperbolic lines in which the tessellatippsq} self-reflects, [2],
that is[p, q] consists of the isometries & leaving{p, g} invariant [3]. From
[2], the group[p, q] is generated by the reflections r, andrz on the edges of
the hyperbolic triangle with angle%,, z, Z_ Consequently, the presentation of

the group[ p, q] associated with the tessellatiop, q} is given by
(rirarsirf=ri=ri=(@r)P = (rarp) = (rra)® =e). (1)

Given a tessellatiofip, g} with group[ p, q], its dual tessellation igy, p} with
group[q, p]. Itisimmediate thakp, q] and[q, p] are isomorphic, however the
tessellationgp, q} and{q, p} coincide if and only ifp = q. The casep = q is
calledself-dual and if p = q = 4g for an integerg > 2, then the tessellation
{4q, 49}, by a suitable identification of its edges, yields a universal covering for
H? as an oriented compact surface of gegusnd its group4g, 4g] has as a
normal subgroup, the fundamental group of this surface, defined by

g
g = <a1, . 8g, by, .., by n[a, b]= 1>.
i1

From this we have thaty < [4g, 49] and

where x denotes the semidirect product, abg, denotes the dihedral group
with 8g elements. The groufp, q] can be obtained as a subgroup of indgx 2
of the groupl™* (2, p, q), called thetriangle group which has a triangle\* with
angles%, z, T as the fundamental region. Associated with the triangle group

is the Fuchsian group, [11] and [12],
'@ p,q=rI"2 p,qNPSL2R),
with signaturg(0; 2, p, q) and fundamental region* U ri(A*).
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Regular tessellations of the forffg, 49} can be obtained as sub-tessellations
of the tessellation associated with a triangle grdtpor its Fuchsian parT’,
with fundamental regiom\ or (A = A* Uryi(A*)) from the determination of
the 49-gons formed by the union of copies afor A* and such that its sides are
identified to form an oriented surface of gergisThis procedure is equivalent
to determining a subgroup &f isomorphic targ, the fundamental group of the
compact oriented surface of gengisHence, the triangle groups are important
groups to be employed in the search for relevant tessellations for the purpose of
designing signal constellations.

3 Signal sets matched to groups

Definition 3.1. A signal set is a discrete subset of the Euclidean or hyperbo-
lic spaces. For each poirg € S the Voronoi region of is the setRy (s) =

{x e E: d(X,s) = miniesd(x,t)}. A signal setS is matched to a groufs

if there exists a surjective mam: G — S, such that for allg, g’ € G,
d(m(g), m(g)) = d(m(g~*- g), m(e)). Such amm is called amatched map-
ping. In addition to that, ifmis injective, them~! is called amatched labelling

If m: G — Sis a matched mapping, thad = m~1(m(e)) is a subgroup
of G andg = g modH if, and only if, m(g) = m(g’). Thus, any matched
mappingm corresponds to a bijectiopH — m(g) of the left cosets oH in
G inthe elements o86. It immediately follows that ifH < G, then the quotient
mapm: % — Sis a matched labelling. We say that a labellimg G — Sis
an effective labellingif H does not contain a non-trivial normal subgroup of
G. In this case, we say th&is effectively matchedto G. This is the most
general situation for ifSis not effectively matched t&, then consideringd’
as the greatest normal subgroup®fin H, results that the mam: Hﬁ —- S
is well-defined, equivalentlyn(g) = m(g’) if and only if gH’ = g’H’ and
ggle H CH.

Example 3.1. Let A be a metric space with a left (right) invariant mettig
andG a group with a group metridg such that there exists a map G — A
which is an isometry. Then for arg, h € G we have

da(m(g), m(h)) = ds(g, h) = ds(g-h™*, € = da(m(g- h™"), m(e))
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resulting thaim is a matched labelling.

Theorem 3.1. [8] There exists a matched labelling between a sighabsatd
a groupG if, and only if,G is isomorphic to a transitive subgroup B{S), the
isometry group of.

In [10] it is shown that certain nonlinear binary codes are the image of linear
codes over,,, allowing in this way more effective decoding procedures. In[9] it
is considered the possible extensions ofAldinearity to theG-linearity, where
G is a group.

The next definition ofG-linear codes encompasses the definition presented
in [9], and it fits nicely with the purposes of this paper.

Definition 3.2. A codeC < $' is G-linear if there exists an isometry
nw: G — S, agroup codeD < G', and a permutationr € S' such that
o(C) = u(D), u also denotes the extensipn G' — S'.

D <G
Y <
ccs — s

Considering the mapm=o"to u: G' — S' we have:
ds (M(9), M(@)) = ds (0 (w(@)), 0 (1(9)))
= dg (1(9), u(@)) = dai (9. 9) = dei(g-g7 @)
= dg ((9g ™), w(€) = dg (o '1(gg ™), o u(e)
= dg (m(gg™™), m(e)),
implying thatm: G' — S' is a matched labelling, and sos: D — C.
From Theorem 3.1D is isomorphic to the transitive group of symmetriesaf
denoted by"(C).

4 Geometrically uniform signal sets

Definition 4.1. [7] A signal sefSis called geometrically uniform if the action
of the group of symmetries 8fI"(S) on Sis transitive. More explicitly, for every
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pair X,y € S, there exists an isometry € I'(S) such thatu(x) = y leaving
S={uX): u e I'(S)} invariant. A groupU that is minimal for the property
that S= {u(x): u € U} is called the generator group @&.

Example 4.1. Consider the tessellatiof8, 8} in the hyperbolic planed?,
Then the se§ consisting of the center of mass of the octagons of the tessellation
(or equivalently, the vertices of the octagons of the dual tessellation) is geome-
trically uniform, since for each fixed € S, we haveS = {T(X): T < [8, 8]}.
Since[8, 8] = g ix Dg, wheredg = Zgx Z,, itfollows thatDg(x) = {T(X): X €
Dg} = P is an octagon (dual), an® is itself geometrically uniform with
I'(P) = Dg. Note that|P| = 8 and|Dg| = 16. Thus,I'(P) has more ele-
ments than needed to generBteHowever, considering the subgroups = Zg
andG; = Z4 x Z, in Dg then, we haveP = G;(X) = G5 (X). SinceG; and
G, are not isomorphics and they are proper subgroufi3gpfve conclude that
either a signal set may have a group of symmetries with more elements than that
of the signal set itself, or may have a symmetry group with the same number of
elements, however with non-isomorphic groups.

Slepian, [13], has provided an example of a signalSseaith 10 signals inR>
that is not the orbit of any subgroup of symmetriesRSf Therefore, not all
signal sets, even Euclidean ones, is geometrically uniform.

Definition 4.2. Given a signal se§, a subgrougJ (S) of I'(S) is agenerator
groupof S, if S= {u(s): u € U(S)}, for afixedsy in S, andU (S) is minimal
for the generation oS in the sense that the map: U(S) — S m(u) = u(sy)
is a bijection.

Clearly,m induces inS a group structure isomorphic to the oned bfS).
Theorem 4.1. LetSbe a signal set, then the following statements are equiva-
lents:

(i) Sis geometrically uniform;

(i) There exists a matched labelling betwekandU (S);

(i) SisU(9)-linearwithm: U(S) — S.
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Proof. (i) = (ii) follows from Theorem 3.1, and) <= (iii) follows
immediately from the remark just after Definition 3.2. O

Lemma4.l. LetSbe a geometrically uniform signal set, aré&ndy any two
signals inS. Then there exists an isometye T'(S) such thatu(x) = y, and
u(Ry (x)) = Ry (y). In other words, the Voronoi regions are all congruents.

Proof. v € Ry (x) if, and only if, d(X, v) = min,s{d(z, v)} but

du(),y) =dU), ux)) =d(v, x) = Min.s{d(v, 2)}

= MiNzes{d(U(v), u(2))} = Minyes{d(u(v), w)}.

Henceu(v) € Ry(y) andu(Ry (X)) € Ry(y). Consideringi~*, we obtain the
inequality in the reverse order, andsRy (X)) = Ry (y). O

If a hyperbolic signal set is designed from the tessellafipig}, then it is
immediate that each polygon is a Voronoi region. In the general case of a
Fuchsian groud” (a subgroup of the automorphisms I, is the universal
covering ofH?/I"), a Voronoi region is the Dirichlet region, [12].

The congruence of the Voronoi regions is responsible for establishing the rele-
vant properties associated with the signal sets, namely: the global distance profile
and the error probability of each signal in the constellation is locally determined.

5 Hyperbolic geometrically uniform partitions

The concept of geometrically uniform partitions was introduced by Forney [7],
in the context of Euclidean signal sets. As previously mentioned, although the
hyperbolic isometry groups have a greater complexity when compared to the
Euclidean isometry groups, it is possible to extend to the former the concept of
geometrically uniform partitions, as we show in this and in the next sections.
For a detailed exposition, we refer the reader to [4].

Definition 5.1. Let Sbe a geometrically uniform signal set, s8y= {u(s):
u € U(9)}, for some fixedy in S. LetU’ be a normal subgroup dfl (S),
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generator group of the signal s& Denoting the orbit oU’ by S, where
S = {u(s): u € U’}, it follows that if

U=U'uUauU’bu...
is a decomposition dfl in cosets otJ’, then the partition oSis given by
S=U'syuU’amyuUU’bs....,

denoted byS/S, and it is called a geometrically uniform partition. We denote
U(S) byU’.

Definition 5.2. We call a geometrically uniform partition of a signal s8t
which is geometrically uniform with a generator groljaS) to any partition
S/S induced by a normal subgroup’ of U (S).

The concept of geometrically uniform partition is important when we take into
account the next fundamental result.

Theorem 5.1. [7] If S/S is a geometrically uniform partition, then the ele-
ments ofS/S are geometrically uniform, mutually congruent and héVes the
common generator group.

Proof. LetA bedenotedbyd =U(S)/U’. Ifa e A,thena =U'uy = uU’
for someu, € U(S). Let the corresponding element of the partitinS be
denoted byS(a). Thus,

S(a) = uaU'(s0) = | UalU(s0)] = Ua [U u(s@} = Ua(S).

uel’ ueU’

Therefore,S(a) ~ S and for evena € A, the S(a) are all congruents.
On the other hand,

S(a) = U'ua(s0) = | ulua(so)]

uelU’

is the orbit ofu, (s9) by U’. Hence, allS' (a) are geometrically uniform with a
common generator group’. (Il

From Theorem 5.1 it makes sense to use the notéati@i) for U’.
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Example 5.1. The Ungerboeck partitions [14] are Euclidean geometrically
uniform binary partitions associated wilh-PSK signal sets wittM = 2¥ and
subgroups (not necessarily normal) of the fortAPSK determining a partition
sequence. The polygorssassociated with the hyperbolic tessellations (regular
p-gons) haveD, as their group of symmetries. Hence, they are constellations
generated by-PSK (U (S) = p-PSK< Dy).

Theorem 5.1 generalizes in a natural way Ungerboeck’s construction, by re-
peated application in a chain

LUS) aU(S) aU(S).
This leads naturally to a geometrically uniform chain partition
S/S/S'/...,

where in each level the partition sets are congruents and have a common generator
group.

Example 5.2. In the Euclidean case, i is a lattice andA’ is a sublattice
of A of finite index, then any signal s& = A + a is partitioned injA/A’|
geometrically uniform subsets a + v with v € [A/A'] for some complete set
of representativeA /A'] of A moduloA’.

In the hyperbolic case we have some points to consider: Since the dual tessel-
lation is generated by translations, then an equivalent conditidndo = A,
whereT denotes translation, is exactly the fact that the tessellation be self-dual.
This is equivalent to being of the tyd®, p}. In general, the group generated
by translations may have elements of finite order other than the neutral element.
In the self-dual case, since the grauphas only the relation] [[&, bi] = 1), it
follows thatry has only the neutral element with finite order.

6 Isometric labelling
Definition 6.1. LetS/S be a geometrically uniform partition. We say that a
group A is alabel groupfor S/S' if there exists an isomorphism

U

m:ﬂ—)ﬁ,
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m is called alabelling isomorphism The bijective map

m: A — S
' S

defined by the composition of the labelling isomorphism with the bijection

ues S

—_— % JR—
u(s) S

is called anisometric labellingof the subsets of belonging to the partition

S/S.

The previous definition may be visualized in the next diagram:
u(s S
H —_—
u(s) S
a r— uU > m(@ =uy(S) ={uau(s): ue U’}

A

The fact thatm is a well-defined function is a consequence of the fact that if
usU’ = vU’ thenujv=t € U’ = U(S). Henceu,v=1(S) = S. Therefore,
Ua(S) = v(S).

The following properties are immediate:

(i) m(ea) = S, wheree, denotes the identity element of;

u(S
u(s)

= | Al

o |||
A partition S/S admits an isometric labelling by a group if
(a) Sis geometrically uniform;

(b) The subsets of the geometrically uniform partitions are mutually congru-
ents;

(c) There exist isometry groups$(S) andU (S) such that) (S) generates,
U (S) generates,U(S") < U (S andA ~

u(es)

Theorem 6.1. A bijective labelling mapn: A — S/S'is an isometric la-
belling if and only if for evernya € A there exists an isometny,: A — A
such that for everp € A, m(ab) = us(m(b)).
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Proof. If m: A — S/S is an isometric labelling, from the isomorphism

A ~ % we haveab —> uyU’ and ab —> uaU’upU’ = uaupU’ where

we obtain

UabU’ = UaupU’ = {(Ualp)U(Sp): u € U' = U(S)}
= {Ua[UpU(SH)]: U € U(S)} = ua[m(b)].

Conversely, iim(ab) = u,(m(b)), foreverya, b € A, thenu,p(S) = uaup(S).
This implies thaim(ab) = m(a)ym(b), wherem is a homomorphism. O

7 Geometrically uniform signal space codes

The next definition establishes what we mean by a geometrically uniform signal
space code.

Definition 7.1. Let(A, x) be agroup and C Z (eventually finite). Consider
the sequence spacel! = {{a ke : & € A, VK € |}, whereA denotes the
alphabetand| anindex set Consider the natural group structureja'. Givena
signal setS, a geometrically uniform partitio®/ S, and a label sefd, we extend
in a natural way the isometric labelling map t: A' — (S/S)'. We call a
labelling codeto any subsetD € A'. With these notations, thgeneralized

coset codgsignal space code) is established@&S/S, D) = | m(c).
ceD
Since

C(s/S, D) = Jm©) = [ Jim@)lker,
ceD ceD

we haveC(S/S, D) € S is a signal sequencs,e S' is acode sequencer
an element oC(S/S, D), if there exists some € D such thats, € m(cy) for
allk e I. If SC R", thenC(S/S, D) < (R"'. SinceH is not a vector space,
there is no definite form for the product.

The next results describe how should an encoder be designed for the hyperbolic
signal space codes.

Let S/S be a geometrically uniform partition generated by a partition whose
group generators aké(S) andU (S), andA ~ U (S)/U(S) is the label group.
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Definition 7.2. LetS/S be a geometrically uniform partition with label group
AandD < A' be a normal subgroupD < A'), then ageneralized coset
codeis the subset

C(S/S,D)={m(c):ceD}C S
The next theorem provides a connection betw@elimearity and the genera-

lized coset codes.

Theorem 7.1. Under the hypothesis of Definition 7.2, a generalized coset code
is aU (S)-linear code.

Proof. SinceSis geometrically uniform, let the labelling be given by

nu:G=US — S
umr— u(sp)

for some fixeds, in S. Denoting

G
~0S = {uu(s)}
and the well-defined labelling by
m: A — §

uu(S) — u(S)

(in fact, if uU(S) = vU(S), thenu=tv € U(S). Hence,uv(S) = S.
Thereforeu(S) = v(S)). LetH = {u € G: uU(S) € D}. Thus, ifu, v € H,
uU ’,vU’ € D and sinceD < A, it follows thatuv=U’ € D anduv~! € H.
Sincee € H, it follows thatH < G. On the other hand, since

p(H) ={u(s): ue Hy = [ us) =[Jme) =c(s/s, m),
ul’eD
this shows tha€C(S/S, D) is U (S)-linear. O

In the hyperbolic context, a generalization of the Euclidean definition of geo-
metrically uniform codes, where the label gradpmust be Abelian, we impose
the condition that cod® be a normal subgroup of the label gradp
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Lemma7.1. If C(S/S, D) is a generalized coset code, then
S (S
s/ \S

. . . ” s\'. . :
is a geometrically uniform partition anch: A' — (§) is an isometric

labelling for this partition.

Proof.

(@) U(S) =U(9'. Infact, we haveJ (S') C U(S'. Now, if H < U(9)',

thenH = [] Hqx whereHy < U(S) forallk, andifu(S') = H S U(S)'
kel
we haveHy < U(S) for anyk € | , but thenS = Hsp, contrary to the

minimality of U (S). ThereforeJ (S") =U(9)';
(b) U(S)' <« U(9)' follows fromU(S) < U(S);

| s\' . u' | :
(c) m: A" —» g is an isometry, where——— vyields a geometrically

u(es)
s u(es'
uniform partitiong with label spacea' ~ T ((8))' . ]

Lemma 7.2. With the previous notations, i < A' then with the induced
structures(S)' < C(S/S, D) < S', we have the isomorphisms:

S _A C(§/S,D) D S Nﬂl' A

CSSD) D (S ey Gy Ten o
that is, the chain partitions of the grou®/C(S/S, D)/(S)' andA' /D /e,
are isomorphics.

Proof. We consider the casg| = 1. For the general case, it follows by
considering the coordinates.

ues — s
| |
V  — C(S/S,D)

| |
ueEs) — S
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(@) C(S/S,D) <S.Ifgp,y € C(S/S, D), then there existy, ¢, € D such
that¢ € m(cy) andyr € m(cy). If f: U(S) — Sisabijectionthatinduces
the group structure i, then there exist, w € U (S) such thatf (v) = ¢
and f (w) = . Thenvw € ugU’ - u,U’" = ugu, U’ = ug,U’, and
f(vw) = ¢y € m(cicp). Thereforegpy € C(S/S, D). SincevU’ =
u,U’, we have(wU’)™! = (ug,U) ™t or v U’ = u U’ = ucI1U’.
Thereforep € m(c;!) € C(S/S, D) andC(S/S, D) < S.

(b) S < C(S/S,D). SinceC(S/S,D) = |J m(c), we defineV :=

ceD
f~1(C(S/S, D)). This implies,V < U(S) and

VvV = f1C(S/S, D))

= f! (U m(c)) = U f1(m(c)) = U ucU’.

ceD ceD ceD

In particular,m(l) = U(S) = U = 1-U" C V, and it follows that
S CC(S/S,D)orS <C(S/S, D).

(©) % ~ WSS@) SinceV = f 1(C(S/S, D)), we have
ue© _ S
V T C(S/S,D)
Considering

b A — U%S) ar— uVv
(@ is well-defined fou;U’ = u,U’ impliesulugl e U’ C V. Therefore,
uiV = uxV.), we haveKer ® = D (u, € V if, and only if, f (uy) € m(c)
for somec € D if, and only if,a € D). Therefore,

A _U®S S

DV  C(S/8,D)

f

ues —--» s
| |
g U f s
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@ D~ 2 ~ C&/S, D)

=) —g Considering,
ca_ YO
v ucs)
and the label isomorphism ggc) = u.U’, we have
(D) = v
I =0

(in fact, if ucU’ € g(D), by definitionu,U’ < V, and soucU’ € S
thenuU’ = wU’ and so

w e UuCU’ or w=ug for ce D andu; e U'.
ceD

Thus,g (D) =

U(S{))and

0s) (2)

Vv
H ,weh isthe i € by the labelling i hism,
en.ce we avw is the image ot” by the labelling isomorphism, or
equivalently,

V=] uw={Jo®).

ueg(D)

Letting f |V and taking quotients, we have

V. C(S/S.D)
us)- s ®)

from (2) and (3) we have then thap ~ ©S2.0)

The right cosets oD in A (recall thatD < A) are written in the forn®D -
wherea € A is arbitrary. For such a clag® - a, the labellingm: A — g
defines a subsé&(S/S, D - a) of S' called alabel translate of C(S/S, D),
that is,

C(s/S.D-a) = Jm(c-a).

ceD

a,
E}

O
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Lemma7.3. The labeltranslates & (S/S, D) are the right cosets € (S/S,
D) in S' under the induced group structure.

Proof. We consider the casg| = 1. For the general case, it follows by
considering the coordinates. Let

f1(C(S/S,D-a) = f! (U m(c - a)) = J ' mc-a) = Jucal’
ceD

ceD ceD

= [JucuaU’ = [U uCU/} Ua = {U fl(m(C))} FH(F (Ua))

ceD ceD ceD

= [f‘%U(m(c))} FH(F (ug)) = £ HU(m(C)} f(ug}

ceD ceD
= f[C(S/S. D - a)] f(ua)].

It follows thatC(S/S, D -a) =C(S/S, D) - f(uy). O

The previous results assure us the validity of the following version of Forney’s
Theorem on the generalized coset codes.

Theorem7.2. If C(S/S, D)isageneralized coset code, th8y C(S/S, D)/
(S)! is a geometrically uniform partition chain and the label transl&tes/ S,

D - a) of C(S/S, D) are geometrically uniform, mutually congruent and have
common symmetry group(C(S/S, D)) = V.

Corollary 7.1. If C(S/S, D) is a(translate of a) generalized coset code, then:
(a) The Voronoi regions associated with two code sequesi®s C(S/S, D)

are congruents; (b) The distance profidP (s) = {||s— s'| : s € C(S/S, D)}
from a given signal poins € C(S/S, D) to the remaining points’ € C
(S/S, D) is independent .

Example 7.1. With the notations introduced in Theorem 7.1, we define, for an
arbitrarysy in H?, the signal se® = [15, 3](S) and the subse® = P(s). As a
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consequence, we hally(S) = [15, 3], andU (S) = P. From Theorem 7.1, the

label group
ue

= @ =
where we denot&, = {1, r1} . With the notations introduced in Definitions 6.1
and 7.2, the labelling

{P;11P} >~ Zs,

m A — S
' S

have the forrm(l) = s mod P, andm(ry) = ri(s) mod P. Now, taking
I = {1, 2}, we have the natural extension for the labelling

S 2
m: A? — .
— (9>
DenotingA? = {(1, 1); (1,r1); (r1, 1); (r1, r1)}, and considering the label code

D, = {(1,1); (1,ry)}, we have the signal space code:

C(s/S, Do) = [ Jimeeo)),

ceD
s0s = (s1, &) € C(S/S, D,) if, and only if, there existécs ; ¢;) € D; such that
s e m(g) fori = 1, 2. For the case in consideratian,= 1, and it follows that
se S x Sorse S xry(S). ThereforeC(S/S,D1) =S x SUS xry(S).
In the same way, definingp, = {(1, 1); (r1, 1)} andD3 = {(1, 1); (r1,r1)}, we
obtain the signal space codesS/ S, D,) =S x SUr1(S)x S andC(S/S, Ds)
=S x SUry(S) x ri(S), respectively.
Example 7.2. Considering the group
A = {(L1D; @ 1ry): (L, D (Lrer);
(r1, 1, 1) (re, 1,ra); (ra, 1, 1): (P, e, 1),
and the label group
D= {1 11; @ 1r): A r,D; (Lry,ry},

similarly to the previous procedure, the following signal space code is obtained

C(S/S,D1) = SxSxSUSxSxri(SHUSxri(S)x SUS xr1(S) xr.(S).
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8 Conclusions

Since there are discrete memoryless communication channels of practical inte-
rest which may be embedded on surfaces with genas 0, 1, 2, and 3, and

in addition to this, the design of geometrically uniform signal sets and codes
were extensively considered only for the cages 0 and 1. Hence, comes the
guestion: What should be the conditions to be followed in order to design geo-
metrically uniform signal sets and codes whes 2 and 3? The answer to this
guestion was the aim of this paper where we considered both the concepts of re-
gular tessellation§gp, q} and the corresponding full symmetry groym q] and

its subgroups in the hyperbolic plane which are necessary to the establishment
of the extension of the concept of geometrically uniform signal sets, partitions
and signal space codes to the hyperbolic plane.
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