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1 Introduction

The concept of geometrically uniform signal constellations was introduced by

Forney in [7]. This concept has been shown to be the most appropriate in the

context of Euclidean signal constellations and spaces in the sense of unifying

processes such as Ungerboeck set partitioning [14] and generalized concatena-

tion [1].

One of the main objectives of geometrically uniform codes is related to the

construction of geometrically uniform partitions and in particular the construc-

tion of generalized coset codes.

The objective of this paper is to extend the concepts of signal sets, lattices

and set partitioning to the hyperbolic plane by making use of the associated hy-

perbolic regular tessellations and its corresponding full symmetry groups. In

particular, we consider the concept of geometric uniformity for joint modulation

and coding processes. Although the hyperbolic isometry groups have greater
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complexity than the Euclidean isometry groups the procedures and concepts

related to the geometrically uniform partitions can be extended to the former.

An interesting aspect is that the fundamental regions of the Euclidean regular

tessellations always have an Abelian subgroup of order 4 belonging to the cor-

responding symmetry groups even if the they are not Abelian, whereas in the

hyperbolic case more general groups have to be considered. In other words,

the existence of regular tessellations in the hyperbolic plane of the type{p,q},

see Definition 2.1, generating signal sets justify the search for subgroups and

quotient of groups associated with the full symmetry group of{p,q} which will

provide relevant information about the structure of these groups.

The problem that motivated us to consider geometrically uniform codes in

the hyperbolic plane is related to the results shown in [5] and [6] with respect

to the better performance achieved by a binary communication system using

soft-decision decoding (an 8-level quantizer leading to a binary input, 8-ary

output symmetric channel, denoted byC2,8[8, 2]) when compared to the hard-

decision decoding (a 2-level quantizer leading to a binary-input binary-output

symmetric channel, denoted byC2,2[2, 2]), when viewed in this context. More

specifically, assume that an 8-level quantizer is used in the demodulator output,

leading to aC2,8[8, 2] channel having the complete bipartite graphK2,8 as the

associated graph. TheC2,2[2, 2] channel is associated with the graphK2,2 which

is embedded on a sphere with two regions, denoted byS(2), thus on a surface of

genus zero. In [5] it is shown that theC2,8[8, 2] channel may be embedded on the

following surfaces: sphere with 8 regions, denoted byS(8); torus with 6 regions

(genus 1), denoted byT (6); two torus with 4 regions (genus 2), denoted by

2T (4); and three torus with 2 regions (genus 3), denoted by 3T (2). Since both

channels have binary inputs it follows that the signal space has to be partitioned

into two decision regions. As a consequence, theC2,2[2, 2] channel is embedded

on S(2), and theC2,8[8, 2] channel is embedded on 3T (2). The most evident

topological difference is the genus of the surface.

A great deal of discrete memoryless channels of practical interest are embedded

on compact surfaces with genusg = 2, 3, see [5].

On the other hand, in [6] it is shown that the error probability associated with a

signal constellation (a set of points) depends on the curvature,K , or equivalently,

Comp. Appl. Math., Vol. 24, N. 2, 2005



“main” — 2005/10/10 — 15:37 — page 175 — #3

HENRIQUE LAZARI and REGINALDO PALAZZO JR. 175

on the genus of a surface (surface where the signal constellation lies), and that the

best performance is achieved when considering surfaces with constant negative

curvature among the possible values taking on byK , (K < 0, K > 0, and

K = 0).

To the best of our knowledge this approach was not considered previously

in the context of designing signal sets for digital communication systems. The

design of signal constellations is strongly dependent on the existence of regular

tessellations in the Euclidean or any other homogeneous space. The homogene-

ous spaces are important for they have rich algebraic structures and geometric

properties so far not fully explored in the context of communication and coding

theory. The algebraic structures provide the means for systematic devices im-

plementations whereas the geometric properties are relevant mainly with respect

to the efficiency of demodulation and decoding processes.

2 Hyperbolic tessellations

One of the important algebraic structures in communication theory is the vector

space, that is, a space whose metric is compatible with a norm (Euclidean spa-

ces). It is by use of this structure that it is possible to model and to analyze new

communications systems, new modulation schemes, signal processing techni-

ques, signal constellations, and so on. On the other hand, the hyperbolic space,

locally (K < 0) may be seen as a vector space and since the hyperbolic space is

complete, simply connected and of constant negative curvature, the vector space

structure holds globally. However, the important difference from the Euclidean

space is that there is no norm compatible with the Riemannian metric.

In this section, we consider the hyperbolic planeH2 as a space where we may

design signal constellations fromregular tessellations. One advantage of these

tessellations is that they can be analyzed from its associated groups, [2] and [3].

Definition 2.1. A regular tessellationof the hyperbolic planeH2 is a partition

ofH2 by non-overlapping regular polygons with the same number of sides which

intersect entirely on edges or vertices. A regular tessellation in whichq regular

p-gons meet at each vertex is denoted by{p,q}.

Since the sum of the internal angles of a hyperbolic triangle is less thanπ ,

Comp. Appl. Math., Vol. 24, N. 2, 2005



“main” — 2005/10/10 — 15:37 — page 176 — #4

176 GEOMETRICALLY UNIFORM HYPERBOLIC CODES

it follows that there exists a hyperbolic tessellation{p,q} if and only if

(p − 2)(q − 2) > 4, [3, pp. 154-156]. Associated with each tessellation{p,q}

there exists a group calledfull symmetry group of {p,q}, and denoted by[p,q].

This group is the isometry group ofH2, denoted byI som(H2), generated by re-

flections in the hyperbolic lines in which the tessellations{p,q} self-reflects, [2],

that is[p,q] consists of the isometries ofH2 leaving{p,q} invariant [3]. From

[2], the group[p,q] is generated by the reflectionsr1, r2 andr3 on the edges of

the hyperbolic triangle with angles
π

2
,
π

p
,
π

q
. Consequently, the presentation of

the group[p,q] associated with the tessellation{p,q} is given by

〈
r1, r2, r3 : r 2

1 = r 2
2 = r 2

3 = (r2r1)
p = (r3r2)

q = (r1r3)
2 = e

〉
. (1)

Given a tessellation{p,q} with group[p,q], its dual tessellation is{q, p} with

group[q, p]. It is immediate that[p,q] and[q, p] are isomorphic, however the

tessellations{p,q} and{q, p} coincide if and only ifp = q. The casep = q is

calledself-dual and if p = q = 4g for an integerg ≥ 2, then the tessellation

{4g, 4g}, by a suitable identification of its edges, yields a universal covering for

H2 as an oriented compact surface of genusg and its group[4g, 4g] has as a

normal subgroup, the fundamental group of this surface, defined by

πg =

〈

a1, ..., ag, b1, ..., bg :
g∏

i =1

[ai , bi ] = 1

〉

.

From this we have thatπg C [4g, 4g] and

[4g, 4g] = πg nD4g,

wheren denotes the semidirect product, andD4g denotes the dihedral group

with 8g elements. The group[p,q] can be obtained as a subgroup of index 2p

of the group0∗(2, p,q), called thetriangle group which has a triangle1∗ with

angles
π

2
,
π

p
,
π

q
as the fundamental region. Associated with the triangle group

is the Fuchsian group, [11] and [12],

0(2, p,q) = 0∗(2, p,q) ∩ PSL(2,R),

with signature(0; 2, p,q) and fundamental region1∗ ∪ r1(1
∗).
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Regular tessellations of the form{4g, 4g} can be obtained as sub-tessellations

of the tessellation associated with a triangle group0∗ or its Fuchsian part0,

with fundamental region1 or (1 = 1∗ ∪ r1(1
∗)) from the determination of

the 4g-gons formed by the union of copies of1 or1∗ and such that its sides are

identified to form an oriented surface of genusg. This procedure is equivalent

to determining a subgroup of0 isomorphic toπg, the fundamental group of the

compact oriented surface of genusg. Hence, the triangle groups are important

groups to be employed in the search for relevant tessellations for the purpose of

designing signal constellations.

3 Signal sets matched to groups

Definition 3.1. A signal set is a discrete subset of the Euclidean or hyperbo-

lic spaces. For each points ∈ S the Voronoi region ofs is the setRV (s) =

{x ∈ E : d(x, s) = mint∈S d(x, t)} . A signal setS is matched to a groupG

if there exists a surjective mapm: G −→ S, such that for allg, g′ ∈ G,

d(m(g),m(g′)) = d(m(g−1 ∙ g′),m(e)). Such anm is called amatched map-

ping. In addition to that, ifm is injective, thenm−1 is called amatched labelling.

If m: G → S is a matched mapping, thenH = m−1(m(e)) is a subgroup

of G andg ≡ g′ mod H if, and only if, m(g) = m(g′). Thus, any matched

mappingm corresponds to a bijectiongH 7−→ m(g) of the left cosets ofH in

G in the elements ofS. It immediately follows that ifH C G, then the quotient

mapm: G
H → S is a matched labelling. We say that a labellingm: G → S is

an effective labelling if H does not contain a non-trivial normal subgroup of

G. In this case, we say thatS is effectively matchedto G. This is the most

general situation for ifS is not effectively matched toG, then consideringH ′

as the greatest normal subgroup ofG in H , results that the mapm: G
H ′ → S

is well-defined, equivalently,m(g) = m(g′) if and only if gH′ = g′H ′ and

g′g−1 ∈ H ′ ⊆ H .

Example 3.1. Let A be a metric space with a left (right) invariant metricdA

andG a group with a group metricdG such that there exists a mapm: G → A

which is an isometry. Then for anyg, h ∈ G we have

dA(m(g),m(h)) = dG(g, h) = dG(g ∙ h−1, e) = dA(m(g ∙ h−1),m(e))
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resulting thatm is a matched labelling.

Theorem 3.1. [8] There exists a matched labelling between a signal setSand

a groupG if, and only if,G is isomorphic to a transitive subgroup of0(S), the

isometry group ofS.

In [10] it is shown that certain nonlinear binary codes are the image of linear

codes overZ4, allowing in this way more effective decoding procedures. In [9] it

is considered the possible extensions of theZ4-linearity to theG-linearity, where

G is a group.

The next definition ofG-linear codes encompasses the definition presented

in [9], and it fits nicely with the purposes of this paper.

Definition 3.2. A codeC ⊆ SI is G-linear if there exists an isometry

μ : G → S, a group codeD ≤ GI , and a permutationσ ∈ SI such that

σ(C) = μ(D), μ also denotes the extensionμ : GI → SI .

D ≤ GI

m
↙

μ

↘

C ⊆ SI σ
−→ SI

Considering the mapm = σ−1 ◦ μ : GI → SI we have:

dSI (m(g),m(g′)) = dSI (σ−1(μ(g)), σ−1(μ(g′)))

= dSI (μ(g), μ(g′)) = dGI (g, g′) = dGI (g ∙ g′−1, e)

= dSI (μ(gg′−1), μ(e)) = dSI (σ−1μ(gg′−1), σ−1μ(e))

= dSI (m(gg′−1),m(e)),

implying that m: GI → SI is a matched labelling, and so ism: D → C.

From Theorem 3.1,D is isomorphic to the transitive group of symmetries ofC ,

denoted by0(C).

4 Geometrically uniform signal sets

Definition 4.1. [7] A signal setS is called geometrically uniform if the action

of the group of symmetries ofS,0(S) onSis transitive. More explicitly, for every

Comp. Appl. Math., Vol. 24, N. 2, 2005
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pair x, y ∈ S , there exists an isometryu ∈ 0(S) such thatu(x) = y leaving

S = {u(x) : u ∈ 0(S)} invariant. A groupU that is minimal for the property

that S= {u(x) : u ∈ U } is called the generator group ofS.

Example 4.1. Consider the tessellation{8, 8} in the hyperbolic planeH2.

Then the setSconsisting of the center of mass of the octagons of the tessellation

(or equivalently, the vertices of the octagons of the dual tessellation) is geome-

trically uniform, since for each fixedx ∈ S, we haveS = {T(x) : T ∈ [8, 8]}.

Since[8, 8] = π8nD8, whereD8 = Z8nZ2, it follows thatD8(x) = {T(x) : x ∈

D8} = P is an octagon (dual), andP is itself geometrically uniform with

0(P) = D8. Note that|P| = 8 and|D8| = 16. Thus,0(P) has more ele-

ments than needed to generateP. However, considering the subgroupsG1 = Z8

andG2 = Z4 n Z2 in D8 then, we haveP = G1(x) = G2 (x). SinceG1 and

G2 are not isomorphics and they are proper subgroups ofD8, we conclude that

either a signal set may have a group of symmetries with more elements than that

of the signal set itself, or may have a symmetry group with the same number of

elements, however with non-isomorphic groups.

Slepian, [13], has provided an example of a signal setSwith 10 signals inR5

that is not the orbit of any subgroup of symmetries ofR5. Therefore, not all

signal sets, even Euclidean ones, is geometrically uniform.

Definition 4.2. Given a signal setS, a subgroupU (S) of 0(S) is a generator

group of S, if S = {u(s0) : u ∈ U (S)}, for a fixeds0 in S, andU (S) is minimal

for the generation ofS in the sense that the mapm: U (S) → S, m(u) = u(s0)

is a bijection.

Clearly,m induces inSa group structure isomorphic to the one ofU (S).

Theorem 4.1. Let Sbe a signal set, then the following statements are equiva-

lents:

(i) Sis geometrically uniform;

(ii) There exists a matched labelling betweenSandU (S);

(iii) Sis U (S)-linear withm: U (S) → S.

Comp. Appl. Math., Vol. 24, N. 2, 2005
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Proof. (i ) ⇐⇒ (i i ) follows from Theorem 3.1, and(i ) ⇐⇒ (i i i ) follows

immediately from the remark just after Definition 3.2. �

Lemma 4.1. Let Sbe a geometrically uniform signal set, andx andy any two

signals inS. Then there exists an isometryu ∈ 0(S) such thatu(x) = y, and

u(RV (x)) = RV (y). In other words, the Voronoi regions are all congruents.

Proof. v ∈ RV (x) if, and only if,d(x, v) = minz∈S{d(z, v)} but

d(u(v), y) = d(u(v), u(x)) = d(v, x) = minz∈S{d(v, z)}

= minz∈S{d(u(v), u(z))} = minw∈S{d(u(v), w)}.

Hence,u(v) ∈ RV (y) andu(RV (x)) ⊆ RV (y). Consideringu−1, we obtain the

inequality in the reverse order, and sou(RV (x)) = RV (y). �

If a hyperbolic signal set is designed from the tessellation{p,q}, then it is

immediate that each polygon is a Voronoi region. In the general case of a

Fuchsian group0 (a subgroup of the automorphisms ofH2, is the universal

covering ofH2/0), a Voronoi region is the Dirichlet region, [12].

The congruence of the Voronoi regions is responsible for establishing the rele-

vant properties associated with the signal sets, namely: the global distance profile

and the error probability of each signal in the constellation is locally determined.

5 Hyperbolic geometrically uniform partitions

The concept of geometrically uniform partitions was introduced by Forney [7],

in the context of Euclidean signal sets. As previously mentioned, although the

hyperbolic isometry groups have a greater complexity when compared to the

Euclidean isometry groups, it is possible to extend to the former the concept of

geometrically uniform partitions, as we show in this and in the next sections.

For a detailed exposition, we refer the reader to [4].

Definition 5.1. Let S be a geometrically uniform signal set, sayS = {u(s0) :

u ∈ U (S)}, for some fixeds0 in S. Let U ′ be a normal subgroup ofU (S),

Comp. Appl. Math., Vol. 24, N. 2, 2005
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generator group of the signal setS. Denoting the orbit ofU ′ by S′, where

S′ = {u(s) : u ∈ U ′}, it follows that if

U = U ′ ∪ U ′a ∪ U ′b ∪ ....

is a decomposition ofU in cosets ofU ′, then the partition ofS is given by

S = U ′s0 ∪ U ′as0 ∪ U ′bs0....,

denoted byS/S
′
, and it is called a geometrically uniform partition. We denote

U (S′) byU ′.

Definition 5.2. We call a geometrically uniform partition of a signal setS

which is geometrically uniform with a generator groupU (S) to any partition

S/S
′
induced by a normal subgroupU

′
of U (S).

The concept of geometrically uniform partition is important when we take into

account the next fundamental result.

Theorem 5.1. [7] If S/S′ is a geometrically uniform partition, then the ele-

ments ofS/S′ are geometrically uniform, mutually congruent and haveU ′ as the

common generator group.

Proof. LetA be denoted byA = U (S)/U ′. If a ∈ A, thena = U ′ua = uaU ′

for someua ∈ U (S). Let the corresponding element of the partitionS/S′ be

denoted byS′(a). Thus,

S′(a) = uaU ′(s0) =
⋃

u∈U ′

ua[u(s0)] = ua

[
⋃

u∈U ′

u(s0)

]

= ua(S
′).

Therefore,S′(a) ' S′ and for everya ∈ A, theS′(a) are all congruents.

On the other hand,

S′(a) = U ′ua(s0) =
⋃

u∈U ′

u[ua(s0)]

is the orbit ofua (s0) by U ′. Hence, allS′(a) are geometrically uniform with a

common generator groupU ′. �

From Theorem 5.1 it makes sense to use the notationU (S′) for U ′.
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Example 5.1. The Ungerboeck partitions [14] are Euclidean geometrically

uniform binary partitions associated withM-PSK signal sets withM = 2k and

subgroups (not necessarily normal) of the form 2j -PSK determining a partition

sequence. The polygonsS associated with the hyperbolic tessellations (regular

p-gons) haveDp as their group of symmetries. Hence, they are constellations

generated byp-PSK(U (S) = p-PSK≤ Dp).

Theorem 5.1 generalizes in a natural way Ungerboeck´s construction, by re-

peated application in a chain

...U (S′′) C U (S′) C U (S).

This leads naturally to a geometrically uniform chain partition

S/S′/S′′/...,

where in each level the partition sets are congruents and have a common generator

group.

Example 5.2. In the Euclidean case, if3 is a lattice and3
′

is a sublattice

of 3 of finite index, then any signal setS = 3 + a is partitioned in|3/3
′
|

geometrically uniform subsets3
′
a + v with v ∈ [3/3

′
] for some complete set

of representatives[3/3
′
] of 3 modulo3

′
.

In the hyperbolic case we have some points to consider: Since the dual tessel-

lation is generated by translations, then an equivalent condition toT(3) = 3,

whereT denotes translation, is exactly the fact that the tessellation be self-dual.

This is equivalent to being of the type{p, p}. In general, the group generated

by translations may have elements of finite order other than the neutral element.

In the self-dual case, since the groupπg has only the relation(
∏

[ai , bi ] = 1), it

follows thatπg has only the neutral element with finite order.

6 Isometric labelling

Definition 6.1. Let S/S′ be a geometrically uniform partition. We say that a

groupA is a label groupfor S/S′ if there exists an isomorphism

m: A →
U (S)

U (S′)
,

Comp. Appl. Math., Vol. 24, N. 2, 2005
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m is called alabelling isomorphism. The bijective map

m: A →
S

S′

defined by the composition of the labelling isomorphism with the bijection

U (S)

U (S′)
→

S

S′

is called anisometric labellingof the subsets ofS belonging to the partition

S/S′.

The previous definition may be visualized in the next diagram:

A −→
U (S)

U (S′)
−→

S

S′

a 7−→ uaU ′ 7−→ m(a) = ua(S′) = {uau(s0) : u ∈ U ′}.

The fact thatm is a well-defined function is a consequence of the fact that if

uaU ′ = vU ′ thenu′
av

−1 ∈ U ′ = U (S′). Hence,uav
−1(S′) = S′. Therefore,

ua(S′) = v(S′).

The following properties are immediate:

(i) m(eA) = S′, whereeA denotes the identity element ofA;

(ii)

∣
∣
∣
∣

S

S′

∣
∣
∣
∣ =

∣
∣
∣
∣
U (S)

U (S′)

∣
∣
∣
∣ = |A|.

A partition S/S′ admits an isometric labelling by a groupA if

(a) S is geometrically uniform;

(b) The subsets of the geometrically uniform partitions are mutually congru-

ents;

(c) There exist isometry groupsU (S) andU (S′) such thatU (S) generatesS,

U (S′) generatesS′, U (S ′) C U (S) andA '
U (S)

U (S′)
.

Theorem 6.1. A bijective labelling mapm: A −→ S/S′ is an isometric la-

belling if and only if for everya ∈ A there exists an isometryua : A −→ A

such that for everyb ∈ A, m(ab) = ua(m(b)).

Comp. Appl. Math., Vol. 24, N. 2, 2005



“main” — 2005/10/10 — 15:37 — page 184 — #12

184 GEOMETRICALLY UNIFORM HYPERBOLIC CODES

Proof. If m: A −→ S/S′ is an isometric labelling, from the isomorphism

A ' U (S)
U (S′)

we haveab 7−→ uabU ′ and ab 7−→ uaU ′ubU ′ = uaubU ′ where

we obtain

uabU
′ = uaubU

′ = {(uaub)u(s0) : u ∈ U ′ = U (S′)}

= {ua[ubu(s0)] : u ∈ U (S′)} = ua[m(b)].

Conversely, ifm(ab) = ua(m(b)), for everya, b ∈ A, thenuab(S′) = uaub(S′).

This implies thatm(ab) = m(a)m(b), wherem is a homomorphism. �

7 Geometrically uniform signal space codes

The next definition establishes what we mean by a geometrically uniform signal

space code.

Definition 7.1. Let (A, ∗) be a group andI ⊆ Z (eventually finite). Consider

the sequence spaceAI = {{ak}k∈I : ak ∈ A, ∀k ∈ I }, whereA denotes the

alphabetandI anindex set. Consider the natural group structure inAI . Given a

signal setS, a geometrically uniform partitionS/S′, and a label setA, we extend

in a natural way the isometric labelling map tom: AI → (S/S′)I . We call a

labelling codeto any subsetD ⊆ AI . With these notations, thegeneralized

coset code(signal space code) is established asC(S/S′,D) =
⋃

c∈D
m(c).

Since

C(S/S′,D) =
⋃

c∈D

m(c) =
⋃

c∈D

{m(ck)}k∈I ,

we haveC(S/S′,D) ⊆ SI is a signal sequence,s ∈ SI is a code sequenceor

an element ofC(S/S′,D), if there exists somec ∈ D such thatsk ∈ m(ck) for

all k ∈ I . If S ⊆ Rn, thenC(S/S′,D) ⊆ (Rn)I . SinceH is not a vector space,

there is no definite form for the product.

The next results describe how should an encoder be designed for the hyperbolic

signal space codes.

Let S/S′ be a geometrically uniform partition generated by a partition whose

group generators areU (S) andU (S′), andA ' U (S)/U (S′) is the label group.

Comp. Appl. Math., Vol. 24, N. 2, 2005
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Definition 7.2. Let S/S′ be a geometrically uniform partition with label group

A andD ⊆ AI be a normal subgroup(D C AI ), then ageneralized coset

codeis the subset

C(S/S′,D) = {m(c) : c ∈ D} ⊆ SI .

The next theorem provides a connection betweenG-linearity and the genera-

lized coset codes.

Theorem 7.1. Under the hypothesis of Definition 7.2, a generalized coset code

is aU (S)-linear code.

Proof. SinceS is geometrically uniform, let the labelling be given by

μ : G = U (S) −→ S

u 7−→ u(s0)

for some fixeds0 in S. Denoting

A =
U (S)

U (S′)
=

{
uU(S′)

}

and the well-defined labelling by

m: A −→ S
S′

uU(S′) 7−→ u(S′)

(in fact, if uU(S′) = vU (S′), thenu−1v ∈ U (S′). Hence,u−1v(S′) = S′.

Therefore,u(S′) = v(S′)). Let H = {u ∈ G : uU(S′) ∈ D}. Thus, ifu, v ∈ H ,

uU ′, vU ′ ∈ D and sinceD ≤ A, it follows thatuv−1U ′ ∈ D anduv−1 ∈ H .

Sincee ∈ H , it follows thatH ≤ G. On the other hand, since

μ(H) = {u(s0) : u ∈ H} =
⋃

uU′∈D

u(S′) =
⋃

m(c) = C(S/S′,D),

this shows thatC(S/S′,D) is U (S)-linear. �

In the hyperbolic context, a generalization of the Euclidean definition of geo-

metrically uniform codes, where the label groupAmust be Abelian, we impose

the condition that codeD be a normal subgroup of the label groupA.
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Lemma 7.1. If C(S/S′,D) is a generalized coset code, then
(

SI

S′I

)
'

(
S

S′

)

is a geometrically uniform partition andm: AI →
(

S

S′

)I

is an isometric

labelling for this partition.

Proof.

(a) U (SI ) = U (S)I . In fact, we haveU (SI ) ⊆ U (S)I . Now, if H ≤ U (S)I ,

thenH =
∏

k∈I
Hk whereHk ≤ U (S) for all k, and ifU (SI ) = H � U (S)I

we haveHk � U (S) for anyk ∈ I , but thenS = Hs0, contrary to the

minimality of U (S). Therefore,U (SI ) = U (S)I ;

(b) U (S′)I C U (S)I follows fromU (S′) C U (S);

(c) m: AI →
(

S

S′

)I

is an isometry, where
U (S)I

U (S′)I
yields a geometrically

uniform partition
SI

S′I
with label spaceAI '

U (S)I

U (S′)I
. �

Lemma 7.2. With the previous notations, ifD C AI then with the induced

structures,(S′)I ≤ C(S/S′,D) ≤ SI , we have the isomorphisms:

SI

C(S/S′,D)
'
A

D
;

C(S/S′,D)

(S′)I
'

D

eAI
' D;

SI

(S′)I
'
AI

eAI
' AI ,

that is, the chain partitions of the groupsSI /C(S/S′,D)/(S′)I andAI /D/eA
are isomorphics.

Proof. We consider the case|I | = 1. For the general case, it follows by

considering the coordinates.

U (S)
f

−→ S

| |

V −→ C(S/S′,D)

| |

U (S′) −→ S′
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(a) C(S/S′,D) ≤ S. If φ,ψ ∈ C(S/S′,D), then there existc1, c2 ∈ D such

thatφ ∈ m(c1)andψ ∈ m(c2) . If f : U (S) → Sis a bijection that induces

the group structure inS, then there existv,w ∈ U (S) such thatf (v) = φ

and f (w) = ψ . Thenvw ∈ uc1U
′ ∙ uc2U

′ = uc1uc2U
′ = uc1c2U

′, and

f (vw) = φψ ∈ m(c1c2). Therefore,φψ ∈ C(S/S′,D). SincevU ′ =

uc1U
′, we have(vU ′)−1 = (uc1U

′)−1 or v−1U ′ = u−1
c1

U ′ = uc−1
1

U ′.

Therefore,φ−1 ∈ m(c−1
1 ) ∈ C(S/S′,D) andC(S/S′,D) ≤ S.

(b) S′ ≤ C(S/S′,D). SinceC(S/S′,D) =
⋃

c∈D
m(c), we defineV :=

f −1(C(S/S′,D)). This implies,V ≤ U (S) and

V = f −1(C(S/S′,D))

= f −1

(
⋃

c∈D

m(c)

)

=
⋃

c∈D

f −1(m(c)) =
⋃

c∈D

ucU
′.

In particular,m(1) = U (S′) = U
′

= 1 ∙ U
′

⊆ V , and it follows that

S′ ⊆ C(S/S′,D) or S′ ≤ C(S/S′,D).

(c)
A

D
'

S

C(S/S′,D)
. SinceV = f −1(C(S/S′,D)), we have

U (S)

V
'

S

C(S/S′,D)
.

Considering

8 : A −→
U (S)

V
,a 7−→ uaV

(8 is well-defined foru1U ′ = u2U ′ impliesu1u
−1
2 ∈ U ′ ⊆ V . Therefore,

u1V = u2V .), we haveKer8 = D (ua ∈ V if, and only if, f (ua) ∈ m(c)

for somec ∈ D if, and only if,a ∈ D). Therefore,

A

D
'

U (S)

V
'

S

C(S/S′,D)

U (S)
f

−→ S

| |

A
g

−→ U (S)
U (S′)

_
f

−→ S
S′
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(d) D '
D

{e}
'

C(S/S′,D)

S′
. Considering,

g : A −→
U (S)

U (S′)

and the label isomorphism asg(c) = ucU ′, we have

g(D) =
V

U (S′)

(
in fact, if ucU ′ ∈ g(D), by definitionucU ′ ⊆ V , and soucU ′ ∈

V

U (S′)
thenuU ′ = wU ′ and so

w ∈
⋃

c∈D

ucU
′ or w = ucu1 for c ∈ D and u1 ∈ U ′.

Thus,g (D) =
V

U (S′)

)
and

D '
V

U (S′)
. (2)

Hence, we have
V

U (S′)
is the image ofC by the labelling isomorphism, or

equivalently,

V =
⋃

u∈g(D)

uU ′ =
⋃

g(D).

Letting f |V and taking quotients, we have

V

U (S′)
'

C(S/S′,D)

S′
, (3)

from (2) and (3) we have then that:D ' C(S/S′,D)
S′ .

The right cosets ofD inA (recall thatD CA) are written in the formD ∙ a,

wherea ∈ A is arbitrary. For such a classD ∙ a, the labellingm: A −→ S
S′

defines a subsetC(S/S′,D ∙ a) of SI called alabel translate of C(S/S′,D),

that is,

C(S/S′,D ∙ a) =
⋃

c∈D

m(c ∙ a). �
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Lemma 7.3. The label translates ofC(S/S′,D) are the right cosets ofC(S/S′,

D) in SI under the induced group structure.

Proof. We consider the case|I | = 1. For the general case, it follows by

considering the coordinates. Let

f −1(C(S/S′,D∙a)) = f −1

(
⋃

c∈D

m(c ∙ a)

)

=
⋃

c∈D

f −1(m(c ∙ a)) =
⋃

ceD

uc∙aU ′

=
⋃

c∈D

ucuaU ′ =

[
⋃

c∈D

ucU
′

]

ua =

[
⋃

c∈D

f −1(m(c))

]

f −1( f (ua))

=

[

f −1(
⋃

c∈D

(m(c))

]

f −1( f (ua)) = f −1

[[
⋃

c∈D

(m(c)

]

f (ua)

]

= f −1
[[

C(S/S′,D ∙ a)
]

f (ua)
]
.

It follows thatC(S/S′,D ∙ a) = C(S/S′,D) ∙ f (ua). �

The previous results assure us the validity of the following version of Forney’s

Theorem on the generalized coset codes.

Theorem 7.2. If C(S/S′,D) is a generalized coset code, thenSI /C(S/S′,D)/

(S′)I is a geometrically uniform partition chain and the label translateC(S/S′,

D ∙ a) of C(S/S′,D) are geometrically uniform, mutually congruent and have

common symmetry groupU (C(S/S′,D)) = V.

Corollary 7.1. If C(S/S′,D) is a (translate of a) generalized coset code, then:

(a) The Voronoi regions associated with two code sequencess, s′ ∈ C(S/S′,D)

are congruents; (b) The distance profileDP(s) =
{∥∥s − s′

∥
∥ : s′ ∈ C(S/S′,D)

}

from a given signal points ∈ C(S/S′,D) to the remaining pointss′ ∈ C

(S/S′,D) is independent ofs.

Example 7.1. With the notations introduced in Theorem 7.1, we define, for an

arbitrarys0 inH2, the signal setS = [15, 3](s0) and the subsetS′ = P(s0). As a
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consequence, we haveU (S) = [15, 3], andU (S′) = P. From Theorem 7.1, the

label group

A =
U (S)

U (S′)
= {P; r1P} ' Z2,

where we denoteZ2 = {1, r1} . With the notations introduced in Definitions 6.1

and 7.2, the labelling

m: A −→
S

S′

have the formm(1) = s0 mod P, andm(r1) = r1(s0) mod P. Now, taking

I = {1, 2}, we have the natural extension for the labelling

m: A2 −→
(

S

S′

)2

.

DenotingA2 = {(1, 1); (1, r1); (r1, 1); (r1, r1)}, and considering the label code

D1 = {(1, 1); (1, r1)}, we have the signal space code:

C(S/S′,D1) =
⋃

c∈D

{m(c)},

sos = (s1, s2) ∈ C(S/S′,D1) if, and only if, there exists(c1; c2) ∈ D1 such that

si ∈ m(ci ) for i = 1, 2. For the case in consideration,c1 = 1, and it follows that

s ∈ S′ × S′ or s ∈ S′ × r1(S′). Therefore,C(S/S′,D1) = S′ × S′ ∪ S′ × r1(S′).

In the same way, definingD2 = {(1, 1); (r1, 1)} andD3 = {(1, 1); (r1, r1)}, we

obtain the signal space codesC(S/S′,D2)= S′×S′∪r1(S′)×S′ andC(S/S′,D3)

= S′ × S′ ∪ r1(S′)× r1(S′), respectively.

Example 7.2. Considering the group

A3 =
{
(1, 1, 1); (1, 1, r1); (1, r1, 1); (1, r1, r1);

(r1, 1, 1); (r1, 1, r1); (r1, r1, 1); (r1, r1, r1)
}
,

and the label group

D1 =
{
(1, 1, 1); (1, 1, r1); (1, r1, 1); (1, r1, r1)

}
,

similarly to the previous procedure, the following signal space code is obtained

C(S/S′,D1) = S′×S′×S′∪S′×S′×r1(S
′)∪S′×r1(S

′)×S′∪S′×r1(S
′)×r1(S

′).
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8 Conclusions

Since there are discrete memoryless communication channels of practical inte-

rest which may be embedded on surfaces with genusg = 0, 1, 2, and 3, and

in addition to this, the design of geometrically uniform signal sets and codes

were extensively considered only for the casesg = 0 and 1. Hence, comes the

question: What should be the conditions to be followed in order to design geo-

metrically uniform signal sets and codes wheng = 2 and 3? The answer to this

question was the aim of this paper where we considered both the concepts of re-

gular tessellations{p,q} and the corresponding full symmetry group[p,q] and

its subgroups in the hyperbolic plane which are necessary to the establishment

of the extension of the concept of geometrically uniform signal sets, partitions

and signal space codes to the hyperbolic plane.
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