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Abstract. We consider the optimal scheduling of hydropower plants in a hydrothermal inter-

connected system. This problem, of outmost importance for large-scale power systems with a

high proportion of hydraulic generation, requires a detailed description of the so-called hydro unit

production function. In our model, we relate the amount of generated hydropower to nonlinear

tailrace levels; we also take into account hydraulic losses, turbine-generator efficiencies, as well

as multiple 0-1 states associated with forbidden operation zones. Forbidden zones are crucial

to avoid nasty phenomena such as mechanical vibrations in the turbine, cavitation, and low effi-

ciency levels. The minimization of operating costs subject to such detailed constraints results in a

large-scale mixed-integer nonlinear programming problem. By means of Lagrangian Relaxation,

the original problem is split into a sequence of smaller and easy-to-solve subproblems, coordi-

nated by a dual master program. In order to deal better with the combinatorial aspect introduced

by the forbidden zones, we derive three different decomposition strategies, applicable to various

configurations of hydro plants (with few or many units, which can be identical or different). We

use a Sequential Quadratic Programming algorithm to solve nonlinear subproblems. We assess

our approach on a real-life hydroelectric configuration extracted from the south sub region of the

Brazilian hydrothermal power system.
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1 Introduction

The optimal generation scheduling is an important daily activity for electric

power generation companies. The goal is to determine which units are to be

used in order to generate enough power to satisfy demand requirements and

various technological constraints, with minimum operating cost. In particular,

hydrothermal systems must consider the stream-flow equations for reservoirs.

These equations couple all the reservoir along a hydro-valley, because the amount

of outflow water1 released by one power plant affects water volumes in all the

plants downstream. Furthermore, water travel times and alternative uses of water,

such as irrigation or flood control, for example, must also be taken into account.

The optimal scheduling of hydropower plants is called the Hydro Unit Commit-

ment (HUC) problem. To solve the HUC problem, a highly sophisticated mod-

eling for the operation of hydro plants is required. Specifically, a hydropower

plant may be composed of several turbine-generator groups, referred to in this

work as “units”. The amount of power generated by one hydro unit depends on

the efficiency of both the turbine and the generator, as well as on the net head

and the unit turbined outflow. In turn, the net head is a nonlinear function of the

storage and of the reservoir outflow. The joint turbine-generator efficiency varies

with the net water head and the unit turbined outflow. In addition, the existence

of forbidden operation regions prevents the unit from generating power in a wide

and continuous range. These regions, modeled by 0-1 variables, aim at avoid-

ing vibrating modes that may produce unwanted power oscillations, cavitation

phenomena, and low levels of efficiency. Thermal power plants have simpler

production functions, but they need start-up and shut-down times and they often

present nonlinear operating costs.

As a result, the hydrothermal unit commitment problem is a large-scale mixed-

integer nonlinear programming problem which can only be effectively solved by

1Turbined and spilt water flow.
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applying decomposition techniques. Lagrangian Relaxation (LR) is particularly

suitable for this type of problems, [1-5], although some other methodologies

have also been proposed [6]. However, so far none of the works in the area

has considered a modeling as comprehensive as ours, with representation of

hydraulic losses, nonlinear tailrace levels, turbine-generator efficiencies, and

forbidden operation zones.

With respect to the solution method, our contribution consists in a thorough

analysis of three different decomposition schemes, all derived from LR. The first

strategy relies on a complete enumeration of all possible 0-1 operating states of

the units composing a hydropower plant. This approach is suitable for plants with

a low number of identical units. The second strategy, requiring less computation

effort, is applicable for plants with many units that are different and have many

forbidden regions. The third strategy combines the two other approaches, and

can be used in systems with both types of hydro plants.

Many of the subproblems resulting from our decomposition schemes are Non-

linear Programs (NLP) of small size. We solve them by a Sequential Quadratic

Programming (SQP) method [7,8], in a quasi-Newton variant [9,10], which

presents good convergence properties.

Our work is organized as follows. In Section 2 we give the hydro plants

and units modeling. Section 3 is devoted to the mathematical formulation of the

optimal scheduling problem. The solution strategy, with the three decomposition

schemes, is given in Section 4. In Section 5 we report numerical results on a

hydrothermal system corresponding to Brazil’s southern electric sub region. We

end in Section 6 with some concluding remarks.

2 Hydro generating units

For a unit j , the generated power,phj , expressed in [MW], depends on the unit

turbined outflow,qj , and on the net water head,hl j , and on joint turbine and

generator efficiency,η j :

phj = 9, 81′ 10−3h j hl j qj . (1)

The net water head has the expression:

hl j = f cm− f cj (Q, s) − kj q
2
j . (2)
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Here,fcmstands for the forebay level. For short term horizon problems, as in

our case, the forebay level remains practically constant, specially in the Brazilian

case, whose huge reservoirs have typical regularization levels of a couple of years.

Therefore, we considerfcm constant. By contrast, the downstream levelfcj(.)

varies abruptly in short times, mainly due to the plant turbined outflow,Q, given

by the addition of the outflows of all the units composing the plant. For some

power plant configurations,fcj also varies with the reservoir spillage,s. In (2),

the termkj q2
j represents hydraulic losses resulting from friction of the water in

penstock, wherekj is a constant expressed in s2/m5 [11].

The unit efficiency, depending onhl j andqj , is usually represented by hill

diagrams given by the factory; see Figure 1. We estimate it by interpolation;

see [12], using a polynomial function:

η j = ρ0 j + ρ1 j qj + ρ2 j hl j + ρ3 j hl j qj + ρ4 j q
2
j + ρ5 j hl2j , (3)

where the coefficientsρ0 j , . . . , ρ5 j have been computed beforehand.

Figure 1 also displays some important operating constraints on the turbine-

generator group. For example, for net head values smaller than the so-called

nominal level (41,5m), the turbine is unable to make the generator attain its

nominal power (120 MW). On the other hand, for values higher than 41,5m,

there is a limit of power limit imposed by the generator capabilities, because

the turbine could effectively reach power levels beyond 120 MW. Since at some

power levels cavitation phenomena and nasty mechanic vibrations may appear,

in order to extend the lifetime of the unit and to avoid power oscillations, such

power levels are forbidden. For example, Figure 1 shows a forbidden operation

region ranging from 70 to 90 MW.

By combining (1)–(3) we obtain our model for the hydro production function:

phj = 9, 81′ 10−3
(
ρ0 j +ρ1 j qj +ρ2 j hl j +ρ3 j hl j qj +ρ4 j q

2
j +ρ5 j hl2j

)
hl j qj . (4)

For the Brazilian case,f cj (Q, s) is represented by a fourth degree polynomial.

Therefore, from (4) we see thatphj is a polynomial2 of degree 12 on the variables

Q ands, and of order 7 in the variableqj .

2Sincehl j = f
(
q2

j , Q4, s4
)
, it follows thatη j = f

(
q4

j , Q8, s8
)

and, thus, by (1),phj =

f
(
q7

j , Q12, s12
)
.
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Figure 1 – Hill diagram.

At first sight our model may appear as “too complicated”; however, it is im-

portant to realize that only such a detailed description can accurately represent

the diverse amounts of power generated by a unit at different operating states.

3 Problem formulation

The objective function for the thermal-HUC problem has the expression:

T∑

t=1

I∑

i =1

cit (ptit ) + α . (5)

Here, the planning horizon is composed byT time steps, the thermal mix has

I plants,cit (.) represents the operating cost of thei-th thermal plant at time step

t , andα stands for the system expected future cost at the end of the planning

horizon; see (8) below. Frequentlycit (.) includes fixed costs as well as fuel costs

related to start-up and nominal generation of thermal units [2],[5].
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We formulate the thermal-HUC constraints by splitting them into three differ-

ent subsets, CH, CT and CHT, corresponding to the respective variables involved

namely, hydraulic, thermal, or both. Each subset is characterized by a specific

type of coupling, such as units in the same power plant along different time steps

(time coupling), or different power plants in a given time step (space coupling).

We now proceed to give each constraint in detail.

3.1 Constraints involving only hydraulic variables(CH)

• Stream-flow balance equation:

vr,t+1 + Qrt + srt −
∑

m∈<(r )
+

(
Qm,t−τmr + sm,t−τmr

)
− νr t = yrt . (6)

We use the indexr for reservoirs,v is the reservoir storage,y is the

incremental inflow,<(r )
+ is a set gathering all reservoirs upstream ther-th,

andτmr is the water travel time between reservoirsm andr .

• Maximumvmax
r and minimumvmin

r storage, and maximum spillagesmax
r

per reservoir:

vmin
r ≤ vr t ≤ vmax

r , 0 ≤ srt ≤ smax
r . (7)

• Expected future cost function, given by longer term planning models, and

estimating the cost of using today water that might become necessary (and

expensive) in the future; see [13]. It is a piecewise affine function that

depends on the final levels of stocked water,vrT :

α = f (vrT ) . (8)

• Penstock water balance equation per reservoir:

Qrt =
J(r )∑

j =1

qjrt , (9)

J(r ) is the number of generating units in reservoirr .

Comp. Appl. Math., Vol. 24, N. 3, 2005
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• Power limits, given for each operating region of the unit:

8 jr∑

k=1

phmin
jkr t zjkr t ≤ phjrt (qjrt , Qrt , srt ) ≤

8 jr∑

k=1

phmax
jkr t zjkr t , (10)

8 jr denotes the total number of non-forbidden regions of thej-th unit

in reservoirr ; k is the corresponding index, andphmin,max
jkr t stand for the

minimum and maximum power limits. The binary variablezjkrt is 1 if the

j-th unit in reservoirr is operating in thek-th region at time stept , and it

is set to 0 otherwise.

• Reservoir power balance:

P Hrt =
J(r )∑

j =1

phjrt (qjrt , Qrt , srt ) . (11)

• Reserve constraints:



J(r )∑

j =1

8 jr∑

k=1

phmax
j 1r t zjkr t − P Hrt



 ≥ rhrt , (12)

rhrt is the minimum reserve of reservoirr at time stept .

• Integrality constraints:

zjkrt ∈ {0, 1},
8 jr∑

k=1

zjkrt ≤ 1 . (13)

In the sequel, to alleviate notation, we write constraints CH above in the

abstract form

CH = CHH(Q, s, V) ∩ CHUC(z, q, Q, s, P H),

where the vectorsz,q, Q,s, P H andV gather the respective variables. The

set CHH represents constraints given by (6)-(8), modeling the reservoirs,

while CHUC represents the unit constraints, i.e., (9)-(13). In this abstract

formulation,α = α(V).

Comp. Appl. Math., Vol. 24, N. 3, 2005
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3.2 Constraints involving only thermal variables(CT)

• Power limit for each unit:

ptmin
i ui t ≤ ptit ≤ ptmax

i uit .

Hereptmin,max
i stand for the minimum and maximum power limits of unit

i . The binary variableuit is 1 if the unit is operating at time stept , and it

is set to 0 otherwise.

• Reserve constraints:

ptmax
i uit − ptit ≥ r ti t ,

r tr t is the reserve of uniti at time stept .

• Minimum up-time,t i up, and downtime,t i down, for each unit:

uit =






1 if 1 ≤ xit < tup
i

0 if − 1 ≥ xit > −tdown
i

0 or 1 otherwise,

xit =

{
max(xi,t−1, 0) + 1, if uit = 1,

min(xi,t−1, 0) − 1, if uit = 0,

where the state variablexit is equal to the number of time steps the unit

has been up/down until timet .

• Ramp constraints:

δi (ui,t−1, xit ) ≤ ptit − pti,t−1 ≤ 1i (ui,t−1, xit ) ,

δi (.) and1i (.) are the maximum allowed variations of generation of the

unit between two time steps.

In an abstract formulation, constraints in the set CT correspond to CT(u, pt),

whereu andpt are vectors gathering all binary and continuous thermal variables,

respectively.

Comp. Appl. Math., Vol. 24, N. 3, 2005
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3.3 Constraints involving both hydraulic and thermal variables(CHT)

• Satisfaction of demand, per time step and subsystem:

∑

i ∈Ie

pti t +
∑

r ∈Re

P Hrt +
∑

l∈�e

(I ntlet − I ntelt) = Det . (14)

The interconnected hydrothermal system is divided into subsystems, in-

dexed bye. Accordingly, all thermal units (reservoirs) of subsysteme

are gathered in the index setIe(Re). There are�e subsystems intercon-

nected with subsysteme; the exchange of energy at timet , is denoted by

I ntlet (I ntelt respectively) when it goes from subsysteml to e (from e to

l , respectively). Finally,Det is the demand of subsystem and at timet .

• Subsystems exchange limits, frome(l ) to l (e), at timet , I ntmax
elt , (I ntmax

let ):

0 ≤ I ntlet ≤ I ntmax
let , 0 ≤ I ntelt ≤ I ntmax

elt .

In our abstract notation, the set CHT is written as CHT(pt, P H, I nt), where

the vectorI nt gathers the subsystem exchanges.

The above description confirms the level of complexity of the optimization

problem to be solved. We now address the solution strategy adopted in

this work.

4 Solving the HUC problem

The economic impact of the optimal scheduling of power plants is undeniable.

Because of their solid theoretical background, LR techniques appear in this area

as the preferred solution method. In particular, multipliers associated to demand

constraints given by (14) are used to price energy.

Thedivide to conquerapproach of LR, also called price decomposition [9], is

well known. Essentially, coupling constraints are relaxed via Lagrange multipli-

ers whose corresponding dual problem is decomposable into simpler subprob-

lems (called local subproblems). The coordination of subproblems is then done

by a master program, which finds new multipliers by making one iteration of a

nonsmoth algorithm that maximizes the dual function.

Comp. Appl. Math., Vol. 24, N. 3, 2005
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There are many ways of relaxing coupling constraints. An important crite-

rion for deciding how to proceed is the resulting duality gap, which should be

the smallest possible. In this matter, the introduction of artificial variables to

uncouple constraints appears as a good choice; see [14], and also [5,15] for an

application to the thermal UC problem. For this reason, we apply a similar ap-

proach in this work, and derive three different decomposition schemes, adapted

to different unit configurations in the Brazilian hydrothermal system.

4.1 First decomposition strategy –D1

In the abstract notation, the thermal HUC problem becomes:

minimize
u,pt,z,q,Q,s,P H,I nt

c(pt) + a(V)

s.t.: CT(pt, u) ∩ CHT(pt, P H, I nt) ∩ CHH(Q, s, V)

∩ CHUC(z, q, Q, s, P H) .

(15)

To achieve decomposition, we introduce artificial variablespta and P Ha,

which duplicate, respectively,pt andP H. Variablespta andP Ha are used in

constraints CHT to replacept and P H. In addition, artificial variablesQa and

sa duplicateQ ands, respectively.Qa andsa replaceQ ands in CHH. With

these additional variables, (15) is rewritten as follows:

minimize
u,pt,pta,z,q,Q,Qa,s,sa,P H,P Ha,I nt

c(pt) + a(V)

s.t.: CT(pt, u) ∩ CHT(pta, P Ha, I nt) ∩ CHH(Qa, sa, V)

∩ CHUC(z, q, Q, s, P H)

pt = pta, P H = P Ha, Q = Qa, s = sa.

(16)

In (16) the newly introduced artificial constraints hold the coupling of the

problem. Hence, we relax them by associating Lagrange multipliersλPT, λP H ,

λQ, λS and writing the corresponding dual problem3:

3From now on, the Euclidean inner product of two vectors,λ and v, will be denoted by

λTv = 6i λi vi .

Comp. Appl. Math., Vol. 24, N. 3, 2005
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maximize
λPT,λP H ,λQ,λs

minimize
u,pt,pta,z,q,Q,s,P H,P Ha,I nt

[
c(pt) + α(V) + λT

PT(pt − pta)

+ λT
P H(P H − P Ha) + λT

Q(Q − Qa) + λT
S(s − sa)

]

s.t.: CT(pt, u) ∩ CHT(pta, P Ha, I nt) ∩ CHH(Qa, sa, V)

∩ CHUC(z, q, Q, s, P H).

(17)

Problem (17) can be rewritten as follows:

maximize
λ=[λPT ,λP H ,λQ,λS]

D1(λ) := D1T(λ) + D1HT(λ) + D1HH(λ) + D1HUC(λ) , (18)

where:
D1T(λ) = min

u,pt
c(pt) + λT

PT pt

s.t.: CT(pt, u) ,

(19)

D1HT(λ) = min
pta,P Ha,I nt

−
[
λT

PT pta + λT
P H P Ha

]

s.t.: CHT(pta, P Ha, I nt),
(20)

D1HH(λ) = min
Qa,sa

α(V) − λT
QQa − λT

s sa

s.t.: CHH(Qa, sa, V) ,

(21)

D1HUC(λ) = min
z,q,Q,s,P H

λT
P H P H + λT

QQ + λT
s s

s.t.: CHUC(z, q, Q, s, P H) .

(22)

In the LR approach, the primal problem (15) is replaced by the dual problem

(18) whose objective function D1(λ), can be split as the sum of four terms, corre-

sponding to subproblems (19)-(22). Subproblem (19) is a nonlinear optimization

problem with continuous and binary variables, coupled along time steps, but not

along plants. It can be solved by a classic Dynamic Programming method; as

in [1],[5]. Subproblem (20) is a standard linear programming (LP) problem,

coupled along plants, but not along times steps, which can be solved by any (LP)

commercial solver. Subproblem (21) is also an LP problem, coupled both in time

and space via the stream-flow constraints given by (6). Even though (21) can be

large-scale, an LP solver can still solve it efficiently. Finally, subproblem (22)

is a nonlinear mixed-integer optimization problem, uncoupled both in time and

Comp. Appl. Math., Vol. 24, N. 3, 2005
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units. This subproblem corresponds to the commitment of hydro units, for a

given reservoir and time step. The higherJ(r ) and8 jr (the number of units in

the reservoir and of operating zones, respectively) are, the bigger computational

effort will be required to solve (22).

Each sub-subproblem in (22), for each time step and for a given power plant, is

a mixed-integer NLP problem, with binary variables corresponding to different

operating modes in the plant. The total number of possible operating modes is

given by the product of all combinations of the operating modes of all the units

composing the plant. Each combination of a unit is a configuration where the

corresponding binary variables are fixed to one of the feasible values. Once the

binary values are fixed, the problem becomes a nonlinear program, whose size

is dependent onJ(r ).

Generally, hydropower plants have identical units, and each unit has a single

operating zone. In this case, the total number of modes is no longer 2J(r ), but

J(r ) + 1 and, thus, a complete enumeration of modes seems a good strategy.

Sometimes, however, there are power plants with many different types of units,

and several operating modes. For these configurations, an enumeration procedure

may become too expensive from the computational point of view. We now

introduce an alternative decomposition scheme, adapted to such situations.

4.2 Second decomposition strategy –D2

In order to avoid the enumerative process required to solve subproblem (22), we

eliminate the coupling between the binary variablezand the continuous variables

[q, Q, s] which appear in CHUC. Therefore, we rewrite (15) as follows:

minimize
u,pt,z,q,Q,s,P H,I nt

c(pt) + α(V)

s.t.: CT(pt, u) ∩ CHT(pt, P H, I nt) ∩ CHH(Q, s, V)

∩ CHUCa(q, Q, s, P H) ∩ CHUCb(z, q, Q, s)

∩ CHUCres(z, P H) .

(23)

Now the set CHUCa gathers constraints given by (9) and (11), CHUCb contains

(10) and (13) and CHUCres corresponds to the reserve constraint (12). Besides

the artificial variables used in (16), we usepha to replace the hydro production

Comp. Appl. Math., Vol. 24, N. 3, 2005
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function ph(q, Q, s) in the set CHUCb, and rewrite (23) as:

minimize
u,pt,pta,z,q,Q,Qa,s,sa,P H,P Ha,I nt

c(pt) + a(V)

s.t.: CT(pt, u) ∩ CHT(pta, P Ha, I nt) ∩ CHH(Qa, sa, V)

∩ CHUCa(q, Q, s, P H) ∩ CHUCb(z, pha)

∩ CHUCres(z, P H)

pt = pta, P H = P Ha, Q = Qa, s = sa, ph(q, Q, s) = pha.

Now not only the artificial constraints, but also the constraint set CHUCreskeep

the problem coupled. Hence, we relax these constraints by introducing multipli-

ersλPT, λP H, λQ, λS, λph andλResand writing the dual problem:

maximize
λPT,λP H ,λQ,λs

minimize
u,pt,pta,z,q,Q,Qa,s,sa,P H,P Ha,I nt

[
c(pt) + α(V) + λT

PT(pt − pta) + λT
P H(P H − P Ha)

+ λT
Q(Q − Qa) + λT

S(s − sa) + λT
ph[ph(q, Q, s) − pha]

+ λT
Res[P H − phmaxz + rh]

]

s.t.: CT(pt, u) ∩ CHT(pta, P Ha, I nt) ∩ CHH(Qa, sa, V)

∩ CHUCa(q, Q, s, P H)

∩ CHUCb(z, pha).

(24)

Here, phmax andrh are vectors corresponding to a unit’s maximum capacity

and to reserve levels for the plant, respectively. Separability in (24) has now the

expression:

maximize
λ=[λPT,λP H ,λQ,λS,λph,λRes]

D2(λ) := D1T(λ) + D1HT(λ) + D1HH(λ)

+ D2HUCa(λ) + D2HUCb(λ) + λT
Resrh

where D1T(λ), D1HT(λ), D1HH(λ) are the dual functions from (19), (20) and

(21). The remaining terms are:

D2HUCa(λ) = min
q,Q,s,P H

λT
ResP H + λT

ph ph(q, Q, s) + λT
QQ + λT

s s

s.t.: CHUCa(q, Q, s, P H) ,

(25)

D2HUCb(λ) = min
z,pha

−
[
λT

ph pha+ λT
Resphmaxz

]

s.t.: CHUCb(z, pha) .

(26)

Comp. Appl. Math., Vol. 24, N. 3, 2005
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Subproblem (25) is an NLP problem (with only continuous variables), for each

time step and power plant. Subproblem (26) is a mixed-integer linear program

on variables corresponding to a single unit, which can be solved by enumeration

of the operating zones.

4.3 Third decomposition strategy –D3

Our last decomposition combines D1 and D2. Accordingly, we employ D1 for

those plants with a reduced number of units and operating zones, while D2 is

applied for plants for which D1 would be too expensive. We split the hydro plants

index set into R(0) and R(4), corresponding, respectively, to plants where (22)

and (25)-(26) are applied:

minimize
u,pt,z,q,Q,s,P H,I nt

c(pt) + a(V)

s.t.: CT(pt, u) ∩ CHT(pt, P H, I nt) ∩ CHH(Q, s, V)

∩ Cr ∈R(0)

HUC (z, q, Q, s, P H) ∩ Cr ∈R(4)

HUCa (q, Q, s, P H)

∩ Cr ∈R(4)

HUCb (z, q, Q, s) ∩ Cr ∈R(4)

HUCres(z, P H) .

We proceed like for D1 and D2, but splitting the reservoir index sets:

minimize
u,pt,pta,z,q,Q,Qa,s,sa,P H,P Ha,I nt

c(pt) + a(V)

s.t.: CT(pt, u) ∩ CHT(pta, P Ha, I nt) ∩ CHH(Qa, sa, V)

∩ Cr ∈R(0)

HUC (z, q, Q, s, P H) ∩ Cr ∈R(4)

HUCa (q, Q, s, P H)

∩ Cr ∈R(4)

HUCb (z, q, Q, s) ∩ Cr ∈R(4)

HUCres(z, P H)

pt = pta, P H = P H A, Q = Qa, s = sa,

ph(q, Q, s) = pha, r ∈ 0(4) .

(27)

After relaxation, the dual problem of (27) is:

maximize
λ=[λPT,λP H ,λQ,λS,λph,λRes]

D3(λ) := D1T(λ) + D1HT(λ) + D1HH(λ)

+ D1HUC(λ) + D2HUCa(λ)

+ D2HUCb(λ)

(28)

The dual functions D1T(λ), D1HT(λ), D1HH(λ) are those in (19), (20) and (21),

respectively. The dual function D1HUC(λ) from (22) only applies for reservoirs
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with indexr ∈ R(0). The remaining dual functions in (28) apply to reservoirs

r ∈ R(4), and are given by subproblems (25)-(26).

4.4 Nonlinear programming subproblems

A crucial issue for an effective application of LR is the fast resolution of sub-

problems defining the dual function for a fixed multiplierλ. Since many of such

subproblems are nonlinear programs, we implemented a Sequential Quadratic

Programming (SQP) quasi-Newton method. More precisely, each iterationk of

the algorithm generates a directionpk by solving the quadratic programming

problem:

minimize
p

∇ f (xk)T p + 0.5(p)T Mk p

s.t.: ∇ce(x
k)T pk + ce(x

k) = 0, ∇ci (x
k)T pk + ci (x

k) ≤ 0.

(29)

Here, f (xk), ce(xk) andci (xk) represent, respectively, the objective and equality

and inequality constraint functions at a pointxk. The matrixMk estimates the

Lagrangian Hessian for the NLP,Lk. In order to avoid the calculation of second-

order derivatives, and to preserve positive definiteness of the sequence of quasi-

Newton matrices, we use a BFGS (Broyden-Fletcher-Goldfarb-Shanno) [16],

formula, appended with a Powell correction [17]:

Mk+1 = Mk −
Mksk(sk)T Mk

(sk)T Mksk
+

r k(zk)T

(sk)Tr k
,

where:

sk = xk+1 − xk, zk = ∇x Lk+1 − ∇x Lk, r k = θkzk + (1 − θk)Mksk,

θk =






1 if (sk)Tzk ≥ 0, 20(sk)T Mksk

0, 8(sk)T Mksk

(sk)T Mksk − (sk)Tzk
if (sk)Tzk < 0, 20(sk)T Mksk.

Globalization of the method is achieved by performing a line search on the

following function4:

φ(xk, σ ) = φ(xk) + σ k
∥
∥c(xk)#

∥
∥

∞ , (30)

4The symbol# is used to denote only active constraints atxk.
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known as Han’s merit function [9]. Sinceφ(xk,σ k) is an exact penalty function,

there is a finite positive valueσ k such that an unconstrained minimum ofφ(xk,σ k)

solves the original NLP for allσ k ≥ σ k. We update the parameterσ k accordingly.

More precisely, the directional derivative of the merit function along the direction

satisfies the relation:

D[φ(xk, σ k); pk] ≤ ∇ f (xk)T pk − σ k
∥
∥c(xk)#

∥
∥

∞

≤ (pk)T Mk pk + (ζ k)Tc(xk) − σ k
∥
∥c(xk)#

∥
∥

∞ ,
(31)

whereζ is the Lagrange multiplier associated with constraints in (29). For any

stationary point of (30), such aspk, it can be shown that the estimate in (31)

gives a descent direction forφ if Mk is positive definite andσ k is updated in

order to satisfy:

σ k ≥
∥
∥ζ k

∥
∥

∞ + δ, δ > 0.

We exit the line search when the Armijo [18] condition is satisfied:

φk(xk + αpk) ≤ φk(xk) + ωα1k, (32)

here,ω ∈]0, 1/2[ andα is the positive stepsize. Ideally,1k should be the exact

value of the directional derivative. We estimate it by the upper bound from (31):

1k := ∇ f (xk)T pk − σ k
∥
∥c(xk)#

∥
∥

∞ .

Finally, we add an extra term topk in order to avoid Maratos effect [19]. This

phenomenon may impair the superlinear local convergence rate by rejecting unit

stepsizes when close to a solution. The corrected directionpk, as shown in [9],

ensures that asymptotically there is enough constraint reduction; see 5.1 below

for more details.

5 Numerical Results

We assess the three decomposition schemes on a real-life hydroelectric config-

uration extracted from the Southern region of the Brazilian hydrothermal power

system. More precisely, we consider a system with 121 generating units whose

maximum installed capacity is 31.129,2 MW.5 Figure 2 reports the data for the

5This amount corresponds to about 49% of the total hydraulic capacity of Brazil.
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Figure 2 – Hydroelectric configuration.

system, where power plants numbered #3, #4, #6 and #14 have production func-

tions independent of spillage. Values between brackets in Fig. 2 correspond

to water travel times, expressed in hours. For this configuration, the biggest

power plants are #7 and #16, with 20 units each one, while the smallest plant,

#14, has only 2 units. The planning horizon of two days is discretized in hourly

time steps, yieldingT = 48. Initial reservoir volumes were taken at 50% of

the usable volumes, while the inflows were considered null. We do not address

here the dual solution in detail, we refer to [5] for this subject. Instead, we fixed

Lagrange multipliers for each reservoir and time step,λP Hrt , and use a proximal

quasi-Newton variant of a bundle method to optimize the remaining multipliers;

see Ch. 9 in [9]. The values forλP Hrt are chosen based on generation costs

associated with typical demand curves, i.e., with higher values for peak times

with high demand6.

6These costs presented values between 0 and 45 $/MW.
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We implemented the three dual subproblems D1UCH, D2UCH, D3UCH, corre-

sponding respectively to (22), (25)-(26) and (28). For the dual solution we use

N1CV2 code; see [20]. Subproblem D1UCH has(R+ Rv) × T variables, where

Rv denotes the number of reservoirs with production function depending on

spillage. SinceT = 48, R = 18 andRv = 14, subproblem (22) has 1536 vari-

ables. In (25)-(26) subproblem D2UCH has(2× R+ Rv + ngmix) × T = 8208

variables, wherengmix= 121 denotes the total number of units in the mix. The

size of subproblem D3UCH depends on the decomposition scheme. The LP given

by D1HH (21), as well as other LPs are solved using ILOG CPLEX 7.1 solver. For

D1UCH there are, in addition, 6288 NLP problems. Finally, for D2UCH there are

R × T = 864 NLP andT × ngmix= 5808 easy mixed-integer LP problems7.

For D1UCH we found an optimal value of $ –17.339.230,0, after 175 itera-

tions, that took 180 minutes of CPU times in a Pentium III 550 MHz com-

puter with 128 Mb of RAM memory. For D2UCH the optimal value found was

$ –17.450.168,0, after 325 iterations in 50 minutes. Since the dual value in

D2UCH is smaller than the one from D1UCH, and dual values give lower bounds

for the primal optimal value, we can conclude that primal variables associated

with D1UCH are better than those associated with D2UCH.

To further assess the previous remark, we now consider in more detail some

selected primal variables, for some specific reservoirs. Figures 3 and 4 show the

values forQ andQa obtained at the last iteration of both D1UCH and D2UCH for

Sobradinho #18 power plant. We also show the value ofλP Hrt (price) used to

solve the subproblems.

It can be seen in the figures thatQa takes mostly two values: 0 and 4278 m3/s

(maximum value). Thisbang-bangbehaviour is explained by the linear nature

of subproblem (21). The values forQ exhibit a different behaviour, closer to the

price profile, i.e., toλP Hrt . From the comparison of D1UCH and D2UCH we see

that the relaxed primal constraint8 is more violated for D2UCH, a problem that

contains a higher number of relaxed constraints. However, infeasibility becomes

smaller for time steps with biggerλP Hrt , i.e., for peaks of demand. For these

time steps, primal points obtained with D2UCH are good approximations to those

7These are indeed easy to solve problems, with only two variables (one integer, one

continuous), and two constraints.
8The difference betweenQ andQa.
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Figure 3 – Sobradinho Power Plant #18 D1UCH.
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Figure 4 – Sobradinho Power Plant #18 D2UCH.

from D1UCH, requiring a computational effort that can be up to 3 times bigger.

For lower prices, both problems give primal points that are even more infeasible,

the worse values being associated with D2UCH.

The results observed for Sobradinho power plant are typical for all the plants

in the mix, with variations in the computed primal infeasibility. In general, we

observed that for reservoirs downstream, that tend to operate with outflows near
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to the nominal values, primal points obtained from D2UCH were close to those

from D1UCH. We report this behaviour in Figures 5 and 6, with the results for

Ilha Solteira – 7 power plant.
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Figure 5 – Ilha Solteira Power Plant #7 D1UCH.
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Figure 6 – Ilha Solteira Power Plant #7 D2UCH.

We conclude from our experiments that, in terms of primal solutions, sub-

problem D1UCH is a better option. However, since average hourly CPU times

for D1UCH are 3.5 higher than D2UCH, the enumerative process required by
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D1UCH should not be used for power plants with complex configurations, such

as #7 and #16. In Table 1 we report the main results for the third decomposition

scheme, D3UCH, where for R4 = {7, 16} we applied the scheme corresponding

to (25)-(26). We also give, for comparison purposes, the previously obtained

values for D1UCH and D2UCH.

DualProblem D1UCH D2UCH D3UCH

Cost($) –17.339.230 –17.450.168 –17.359.077

Iteration 175 325 220

Time(minutes) 180 50 70

Variables 1536 8208 2592

Number of PNL9 6288 864 4560

Table 1 – Numerical results.

The computational effort required for solving subproblems involving the big

plants #7 and #16 (each one having 20 identical units , is clear in Table 1. Even

though D3UCH
10 needs to solve 27,50% NLP problems less than D1UCH, in terms

of CPU times the gain was of 61,11%. Another important matter shown by

Table 1 concerns dual optimal values: the (absolute value) difference between

D2UCH and D1UCH is of $ 110.938, while the difference between D3UCH and

D1UCH is $ 19.847, i.e., about 5.5 smaller.

After solving the dual problem, it is necessary to adjust the primal points

corresponding to the dual optimum in order to find a primal point that is fea-

sible, i.e., that satisfies the constraints. In order to recover primal feasibility, a

purification-like phase should be executed afterwards. Such processes are often

based on heuristics depending on the particular problem structure; see for exam-

ple [21,22]. In particular, for the Brazilian case, general-purpose combinatorial

optimization heuristics are not suitable. An augmented Lagrangian technique

seems in this case better. We refer to [5] for a description of this technique in a

similar context.

10Ilha Solteira #7 and Tucuruí #16 power plants are the only ones where (22), requiring the

enumerative process, was not employed; we use (25)-(26) instead.
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5.1 Sequential Quadratic Programming Algorithm

In our work, NLP problems haveng + 2 variables and 2ng + 2 constraints,

whereng is the number of generating units in the considered configuration

(in our exampleng ≤ 20). SQP algorithms do not need starting feasible

points; in our implementation starting points only satisfy constraints (6) and (10)

(i.e., both the penstock stream-flow equations and power limit constraints), but

not the reserve constraint (12). In addition, to prevent the starting quadratic pro-

gram (29) to be infeasible, we introduced additional constraints on the direction

obtained from (29), aimed at satisfying physical operating bounds. Such bounds

are related to each unit maximum turbined outflow, as well as maximum spillage

levels. We mention that more sophisticated alternatives would be possible, for

instance considering active constraints as [23], or introducing slack variables in

a trust-region SQP, as in [24].

To solve each quadratic program (29), we use the Fortran code PLCBAS, an

active set QP solver described in [25]. Once the direction is computed, the

algorithm checks validity of (32) and then performs, if needed, a correction

strategy to avoid Maratos effect. A remedy proposed by Maratos in [19] is to

move towards the feasible region by using a second order model of the constraints.

A more simple strategy is to use the corrected steppk as follows:

pk = pk − Akc(xk + pk) ,

whereAk is a right inverse for the Jacobian matrix whose rows are the transposed

gradients of the constraint functions atxk. The correction can be thought of as

a constraint restoration step fromxk + pk. It is called ‘second-order correction’

because c(xk + pk) =O(|pk|2). Although this modification preserves fast con-

vergence, it may no longer yield a descent direction for the merit function (30).

For this reason, instead of searching the stepsize along the linexk +αpk, we use

the arc

0 < α| → xk + αpk − α2Akc(xk + pk) .

Since pk is tangent to the arc atα = 0, Armijo condition (32), written with

pk replaced by the corrected steppk, is eventually satisfied wheneverpk is a

descent direction, and the “arc” search ends; see Prop. 15.7 in [9]. The additional

number of constraint evaluation required by our correction is compensated by
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the robustness and efficiency gained by the method. In our runs, at each NLP

solution, the second order correction was used in average 30% of the iterations.

We use the following stopping test:

opt_test=
∥
∥∇Lk

∥
∥

∞ +
∥
∥c(xk)#

∥
∥

∞ ≤ eps,

with eps= 1, 0×10−8. Emergency exits, after 300 iterations of 600 simulations

were also implemented. The observed average values for achieving convergence

were of 8 iterations and 10 simulations.

In order to assess our self-made algorithm, we compare its performances the

NLP solver Easy!, available for academic applications from the Optimization

Group at IME, University of Campinas, Brazil [26]. This solver uses the aug-

mented Lagrangian method described in [27]. We obtained identical results,

with inferior CPU times than those employed by Easy!. However, we did not

take advantage of all resources available in Easy! solver11. Furthermore, our

own implementation was tailored for the structure of our specific problem.

6 Concluding Remarks

We address in this work the problem of optimal commitment of hydraulic gen-

erating units in a hydrothermal power system. Two main topics were discussed,

namely the modeling and solution strategy for the hydraulic problem. We gave a

detailed modeling for the production function of each hydro unit, which takes into

account the effect of variable efficiency rates, hydraulic losses, tailrace levels, as

well as multiple operating zones. With respect to the solution methodology, we

gave an LR decomposition approach using variable duplication to uncouple dif-

ficult constraints. We assessed the decomposition method by implementing our

approach and testing it on a real-life hydraulic configuration, extracted from the

Brazilian system. Our implementation focused on the hydraulic subproblems.

We analyzed in detail the practical applicability of three decomposition schemes,

in terms of CPU times and obtained primal points. For our configuration, the

enumerative process appeared preferable for most power plants. For the whole

Brazilian system, double in size to our test, this approach might become too

11Easy! Solver is more efficient when analytic derivatives are available for the simulations;

otherwise a finite difference approximation needs to be estimated at each simulation.
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expensive and a combined strategy, like the one given in our third decomposition

scheme, may be preferable.
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