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Abstract. This paper considers the numerical simulation of incompressible viscous fluid flow

in an infinite strip. A mixed spectral method is proposed using the Legendre approximation in

one direction and the Legendre rational approximation in another direction. Numerical results

demonstrate the efficiency of this approach. Some results on the mixed Legendre-Legendre

rational approximation are established, from which the stability and convergence of proposed

method follow.
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1 Introduction

Spectral methods have been used successfully for numerical solutions of differ-

ential equations, due to their high accuracy, see, e.g., [2, 5, 6, 7, 9, 10]. The

usual spectral methods are available only for bounded domains. However it is
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also important to consider spectral methods for unbounded domains. Recently,

some spectral methods for unbounded domains were proposed, for instance, the

Hermite and Laguerre spectral methods, see [8, 11, 17, 23, 26, 29]. By using

these methods, we could approximate various differential equations directly. In-

deed the weight functionse−x ande−x2
used in these approximations are too

strong for some practical problems. We may also reformulate original problems

in unbounded domains to singular problems in bounded domains by variable

transformations, and then solve the resulting problems by the Jacobi spectral

method, see [12-15]. In this case, we can use more suitable weight functions

and obtain reasonable numerical results oftentimes. However, it is not easy to

generalize this approach to multiple-dimensional problems. Another effective

method is based on rational approximations, see, e.g., [3, 4, 18, 19, 20, 32]. So

far, all of existing work is only for differential equations of second order.

This paper is devoted to the mixed Legendre-Legendre rational spectral method

for the Navier-Stokes equation in an infinite strip. As is well known, this equation

plays an important role in studying incompressible viscous fluid flow, see

[25, 31]. We usually consider the primitive equation with the velocityu and the

pressurep. It is difficult to construct the base functions with free-divergence in

spectral methods, and impossible to deal with the boundary values of pressure

exactly. Therefore, it seems reasonable to construct numerical schemes based

on certain alternative formulations of the Navier-Stokes equation. Some authors

have used the vorticity-stream function form, see [25, 27]. However, there is no

physical boundary condition on the vorticity. This fact always brings troubles in

actual computation. Another way is to consider the stream function form as in

[16, 23], in which the incompressibility is fulfilled automatically and the pressure

does no longer appear. Moreover, it keeps the physical boundary conditions on

the stream function. Thus this form is more appropriate for numerical simulation.

In this work, we shall approximate the stream function form of the Navier-

Stokes equation in an infinite strip by using the Legendre approximation in one

direction, and the Legendre rational approximation in another direction. This

method has several advantages. Firstly, unlike the Jacobi approximation, we

approximate the Navier-Stokes equation directly. Next, we can use the existing

code of the Legendre approximation and so save a lot of work. Thirdly, we
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use the orthogonal approximation with the Legendre weight function as in the

original problem, and so the numerical solution has some conservation properties

as in the continuous case. This feature also simplifies actual computation and

theoretical analysis.

This paper is organized as follows. In the next section, we propose the mixed

Legendre-Legendre rational spectral scheme for the stream function form of

Navier-Stokes equation, and present the main results on its stability and con-

vergence. We also present some numerical results demonstrating the spectral

accuracy of this method in the spatial variables. In section 3, we first estab-

lish some basic results on the mixed Legendre-Legendre rational approximation,

which plays important role in numerical analysis of the related mixed spectral

methods for differential equations of fourth order in an infinite strip. Then we

prove the stability and convergence of the proposed scheme. The final section

gives some concluding remarks.

2 Mixed Legendre-Legendre Rational Spectral Method

In this section, we first propose the mixed Legendre-Legendre rational approx-

imation, and then construct a mixed scheme for the stream function form of

Navier-Stokes equation. We state the results on the stability and convergence

of the proposed scheme. We also present some numerical results showing the

efficiency of this new approach.

2.1 Mixed orthogonal approximation

We first recall the Legendre approximation. LetI = { y | |y| < 1} andχ(y)

be a certain weight function in the usual sense. Denote byN the set of all

nonnegative integers. For anyr ∈ N, we define the weighted Sobolev space

Hr
χ(I ) in the usual way, and denote its inner product, semi-norm and norm by

(u, v)r,χ,I , |v|r,χ,I and ‖v‖r,χ,I , respectively. In particular,L2
χ(I ) = H0

χ (I ),

(u, v)χ,I = (u, v)0,χ,I and‖v‖χ,I = ‖v‖0,χ,I . For anyr > 0, we defineHr
χ(I )

and its norm by interpolation as in [1]. The spaceHr
0,χ (I ) stands for the closure

in Hr
χ(I ) of the setD(I ) consisting of all infinitely differentiable functions with

compact support inI . Whenχ(y) ≡ 1, we omitχ in the notations as usual.

Comp. Appl. Math., Vol. 24, N. 3, 2005
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The Legendre polynomialsLl (y) are the eigenfunctions of the singular Sturm-

Liouville problem

∂y((1 − y2)∂yLl (y))+ λLl (y) = 0, y ∈ I , l = 0, 1, 2 ∙ ∙ ∙ . (2.1)

The corresponding eigenvaluesλ = l (l + 1). They satisfy the following recur-

rence relations

Ll+1(y) =
2l + 1

l + 1
yLl (y)−

l

l + 1
Ll−1(y), l ≥ 1, (2.2)

(2l + 1)Ll (y) = ∂yLl+1(y)− ∂yLl−1(y), l ≥ 1. (2.3)

The set of Legendre polynomials is the completeL2(I )−orthogonal system,

namely,
∫

I
Ll (y)Lm(y)dy =

(
l +

1

2

)−1

δl ,m (2.4)

whereδl ,m is the Kronecker symbol. By virtue of (2.1) and (2.4),

∫

I
∂yLl (y)∂yLm(y)(1 − y2)dy = l (l + 1)

(
l +

1

2

)−1

δl ,m. (2.5)

For anyN ∈ N, PN stands for the set of all algebraic polynomials of degree

at mostN. Moreover,

00PN = { v | v ∈ PN, v(−1) = ∂yv(−1) = 0},

P0,0
N = { v | v ∈ PN, v(±1) = ∂yv(±1) = 0}.

In actual computation and numerical analysis, we need two specific Jacobi

orthogonal projections. Letχ(α,β)(y) = (1 − y)α(1 + y)β, α, β > −1 and

00H2
χ(α,β)

(I ) = {v | v ∈ H2
χ(α,β)

(I ) and v(−1) = ∂yv(−1) = 0}.

The orthogonal projection00P̃2
N,α,β : 00H2

χ(α,β)
(I ) → 00PN is defined by

(∂2
y( 00P̃2

N,α,βv − v), ∂2
yφ)χ(α,β),I = 0, ∀φ ∈ 00PN .

We also define the orthogonal projectionP̃2,0
N,α,β : H2

0,χ(α,β)
(I ) → P0,0

N , by

(∂2
y(P̃

2,0
N,α,βv − v), ∂2

yφ)χ(α,β),I = 0, ∀φ ∈ P0,0
N . (2.6)
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We now turn to the Legendre rational approximation. Let

3 = { x | 0< x < ∞}.

The Legendre rational functions of degreel are defined by

Rl (x) =

√
2

x + 1
Ll

(
x − 1

x + 1

)
, l = 0, 1, 2, ∙ ∙ ∙ .

According to [18],Rl (x) are the eigenfunctions of the singular Sturm-Liouville

problem

(x + 1)∂x(x∂x((x + 1)v(x)))+ λv(x) = 0, x ∈ 3, l = 0, 1, 2, ∙ ∙ ∙ , (2.7)

with the corresponding eigenvaluesλl = l (l + 1). They satisfy the recurrence

relations

Rl+1(x) =
2l + 1

l + 1

x − 1

x + 1
Rl (x)−

l

l + 1
Rl−1(x), l ≥ 1, (2.8)

and
2(2l + 1)Rl (x) = (x + 1)2(∂x Rl+1(x)− ∂x Rl−1(x))

+ (x + 1)(Rl+1(x)− Rl−1(x)).
(2.9)

It can be shown that

lim
x→∞

(x + 1)Rl (x) =
√

2, lim
x→∞

x∂x((x + 1)Rl (x)) = 0. (2.10)

The set of Legendre rational functions is the completeL2(3)−orthogonal

system, i.e.,
∫

3

Rl (x)Rm(x)dx =
(

l +
1

2

)−1

δl ,m. (2.11)

For anyN ∈ N, we set

RN = span{R0, R1, ∙ ∙ ∙ , RN}, R0,0
N = RN ∩ H2

0 (3).

In order to provide a reasonable algorithm and analyze its convergence prop-

erly, we need a specific mapping. To this end, for anyv ∈ H2
0 (3), let

v∗(y) =
1

2
(x + 1)v(x)|x= 1+y

1−y
=

1

1 − y
v

(
1 + y

1 − y

)
. (2.12)
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A simple calculation showsv∗(y) ∈ 00H2(I ). Moveover, (2.10) implies that

Rl (x) → 0 and∂x Rl (x) → 0, as x → ∞. Therefore, by the definition of

00P̃2
N,2,0 and the properties of the Legendre polynomials, we can verify that

(1 − y) 00P̃2
N,2,0v

∗(y)|y= x−1
x+1

∈ R0,0
N .

Accordingly, we define the mapping52,0
N : H2

0 (3) → R0,0
N by

5
2,0
N v(x) = (1 − y) 00P̃2

N,2,0v
∗(y)|y= x−1

x+1
. (2.13)

We now introduce the mixed Legendre-Legendre rational approximation. Let

� = 3 × I with the boundary∂� = {(x, y) | x = 0 or y = ±1}. The spaces

Hr (�)andHr
0 (�)with the semi-norm|v|Hr ,and norm‖v‖Hr have the meanings

as usual. In particular, we denote by(u, v) and‖v‖ the inner product and norm

of L2(�).

For anyv ∈ H2
0 (�), v(x, y) = ∂xv(x, y) = ∂yv(x, y) = 0 on ∂�.Therefore,

we can use the Poincare inequality in one dimension to derive that

‖v‖ ≤ c‖∇v‖ ≤ c|v|H2. (2.14)

Moreover, by integration by parts, we assert that forv ∈ H2
0 (�), ‖1v‖

2 ∼ |v|2
H2.

The previous statements tell us that we may take(1u,1v) as the inner product

of H2
0 (�).

For any

M, N ∈ N,VN,M = RN(3)
⊗

PM(I ) andV0,0
N,M = R0,0

N (3)
⊗

P0,0
M (I ).

The orthogonal projectionPN,M : L2(�) → VN,M is defined by

(PN,Mv − v, φ) = 0, ∀φ ∈ VN,M .

The orthogonal projectionP2,0
N,M : H2

0 (�) → V0,0
N,M is defined by

(1(P2,0
N,Mv − v),1φ) = 0, ∀φ ∈ V0,0

N,M .

In actual computation and numerical analysis of the mixed spectral method

for an infinite strip, we shall also use the mappingQ2,0
N,M : H2

0 (�) → V0,0
N,M ,

defined by

Q2,0
N,Mv = 5

2,0
N P̃2,0

M,0,0v.

Comp. Appl. Math., Vol. 24, N. 3, 2005
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2.2 Mixed spectral scheme

As discussed in Section 1, it is reasonable to use the stream function form of

Navier-Stokes equation in numerical simulation of incompressible flow. In order

to do this, Guo Ben-yu and coauthors developed the Legendre spectral method

for a square and the mixed Legendre-Laguerre spectral method for an infinite

strip, see [16, 23, 33]. We now construct the mixed Legendre-Legendre rational

spectral method for an infinite strip, which has several advantages in actual

computation and theoretical analysis, as described in Section 1.

We denote byU (x, y, t), U0(x, y), ν andF(x, y, t) the stream function, the

initial state, the kinetic viscosity and the body force, respectively. The stream

function form of Navier–Stokes equation is as follows,





∂t1U + ∂yU∂x(1U )− ∂xU∂y(1U )− ν12U = ∇ × F, in �× (0, T],

U =
∂U

∂n
= 0, on ∂�× (0, T],

lim
x→∞

U = lim
x→∞

∂xU = 0, y ∈ [−1, 1], t ∈ (0, T],

U (x, y, 0) = U0(x, y), in �.

(2.15)

Let f = −∇× F and the operatorJ(u, v, w) = (1v, ∂yu∂xw−∂xu∂yw). The

weak formulation of (2.15) is to findU ∈ L∞(0, T; H1
0 (�))∩ L2(0, T; H2

0 (�))

such that





(∂t∇U,∇v)+ ν(1U,1v)+ J(U,U, v) = ( f, v),

∀v ∈ H2
0 (�), t ∈ (0, T],

U (0) = U0, in �.

(2.16)

Clearly,

J(u, v, w)+ J(w, v, u) = 0, J(u, v, u) = 0. (2.17)

It was shown in [22] that ifU0 ∈ H1
0 (�) and f ∈ L2(0, T; H−2(�)), then

(2.16) has a unique solution inL∞(0, T; H1
0 (�)) ∩ L2(0, T; H2

0 (�)).

The mixed Legendre-Legendre rational spectral scheme for (2.16) is to find

uN,M(t) ∈ V0,0
N,M such that






(∂t∇uN,M (t),∇φ)+ ν(1uN,M (t),1φ)

+J(uN,M (t), uN,M (t), φ) = ( f, φ), ∀φ ∈ V0,0
N,M (�), t ∈ (0, T],

uN,M (0) = u0,N,M , in �.

(2.18)

Comp. Appl. Math., Vol. 24, N. 3, 2005
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We can takeu0,N,M = PN,MU0, P2,0
N,MU0 or Q2,0

N,MU0.

In the sequel, we denote byc a generic positive constant independent of any

function andN, M.

By takingφ = 2uN,M(t) in (2.18) and using (2.17), we obtain that

d

dt
‖∇uN,M(t)‖

2 + 2ν‖1uN,M(t)‖
2 ≤ 2‖ f (t)‖H−2‖uN,M(t)‖H2

≤ ν‖1uN,M(t)‖
2 +

c

ν
‖ f (t)‖2

H−2.

Hence,
‖uN,M‖2

L∞(0,T;H1(�))
+ ν‖uN,M‖2

L2(0,T;H2(�))

≤ c‖∇u0,N,M‖2 +
c

ν
‖ f ‖2

L2(0,T;H−2(�))
.

(2.19)

2.3 The stability and convergence

In this subsection, we state the results on the stability and convergence of scheme

(2.18), which will be proved in section 3.

Theorem 2.1. Assume thatu0,N,M and f have the errors̃u0,N,M and f̃ , re-

spectively, which induce the error ofuN,M , denoted bỹuN,M . Then there exists a

positive constantd∗ depending only on‖uN,M‖L2(0,T;H2(�)), ν andT such that

‖ũN,M‖L∞(0,T;H1(�)) + ‖ũN,M‖L2(0,T;H2(�))

≤ d∗(‖ũ0,N,M‖H1(�) + ‖ f̃ ‖L2(0,T;L2(�))).
�

In order to describe the numerical accuracy properly, we introduce the space

Hr
A(3). For any integerr ≥ 0, its norm is given by

‖v‖r,A,3 =

(
r∑

k=0

∫

3

(∂k
xv(x))

2(x + 1)2k+r dx

) 1
2

.

For anyr > 0, we define the spaceHr
A(3) by space interpolation. We also

introduce the non-isotropic space

Hr,s(�) = L2(I , Hr (3)) ∩ Hs(I , L2(3)), r, s ≥ 0,

Comp. Appl. Math., Vol. 24, N. 3, 2005
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equipped with the norms

‖v‖Hr,s(�) = (‖v‖2
L2(I ,Hr (3))

+ ‖v‖2
Hs(I ,L2(3))

)
1
2 .

Furthermore, we define the spaceMr,s(�). For any integerr, s ≥ 2, its norm is

given by

‖v‖Mr,s(�)

=

(
1∑

k=0

(∫

3

dx
∫

I
(∂s−2k

y ∂2k
x v)

2(1 − y2)s−2k−2dy + ‖∂2k
y v‖

2
L2(I ,Hr −2k

A (3))

)) 1
2

.

For anyr, s> 2,we define the spaceMr,s(�) by space interpolation. Especially,

Hr (�) = Hr,r (�) and Hr
0 (�) = L2(I , Hr

0 (3)) ∩ Hr
0 (I , L2(3)).

For the sake of simplicity, we also denote the norms‖ ∙ ‖Hr,s(�) and‖ ∙ ‖Mr,s(�)

by ‖ ∙ ‖Hr,s and‖ ∙ ‖Mr,s, respectively.

Theorem 2.2. Let U anduN,M be the solutions of(2.16) and (2.18), respec-

tively. If for integersr, s ≥ 2, U ∈ H1(0, T; Mr,s(�)), then for0 ≤ t ≤ T,

‖U − uN,M‖L∞(0,T;H1(�)) + ‖U − uN,M‖L2(0,T;H2(�)) ≤ d∗(N
2−r + M2−s),

whered∗ is a positive constant depending only onν, �, T and the norms of

U in the mentioned spaces. �

2.4 Numerical results

We first choose the base functions ofV0,0
N,M suitably. As in [28], let

φ j (x) = Rj (x)−
2(2 j + 5)

2 j + 7
Rj +2(x)+

2 j + 3

2 j + 7
Rj +4(x), 0 ≤ j ≤ N − 4,

and

ψk(y) = dk(Lk(y)−
2(2k + 5)

2k + 7
Lk+2(y)+

2k + 3

2k + 7
Lk+4(y)),

dk =
1

√
2(2k + 3)2(2k + 5)

, 0 ≤ k ≤ M − 4.

Comp. Appl. Math., Vol. 24, N. 3, 2005
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Obviously,

R0,0
N = {φ j , 0 ≤ j ≤ N − 4}, P0,0

M = {ψk, 0 ≤ k ≤ M − 4}.

Therefore, we take the base functions ofV0,0
N,M as

9 j,k = φ j (x)ψk(y), 0 ≤ j ≤ N − 4, 0 ≤ k ≤ M − 4.

The numerical solution is expanded as

uN,M(x, y, t) =
N−4∑

j =0

M−4∑

k=0

ûN,M(t)φ j (x)ψk(y).

Inserting the above expression into (2.18), we obtain a system of ordinary dif-

ferential equation with unknown function̂uN,M(t). For temporal discretization,

we use the standard Runge-Kutta method of fourth-order, with step sizeτ.

Next, for description of numerical errors, letζN, j andσM,k the distinct roots

of RN+1(x) andL M+1(y), respectively. The corresponding weights are denoted

byωN, j andρM,k, see [2, 18]. The error

EN,M(t) =




N∑

j =0

M∑

k=0

(U (ζN, j , σM,k, t)− uN,M(ζN, j , σM,k, t))
2ωN, jρM,k





1
2

.

Take the test function

U (x, y, t) =
x2(1 − y2)2 sin(kt)

(2 + x + y)h
.

We use (2.18) withu0,N,M = P2,0
N,MU0 to solve (2.16) numerically.

In Table 1, we present the errorEN,M(t) at t = 1 for various values ofN, M

andτ. Clearly, the proposed scheme (2.18) provides very accurate numerical

solution even for smallν and moderate values ofN, M andτ. They also demon-

strate that the error decays fast asN and M increase andτ decreases. This

coincides well with theoretical analysis.

In Table 2, we present the errorEN,M(t) at various values oft. Clearly, the

calculation is quite stable.

Comp. Appl. Math., Vol. 24, N. 3, 2005
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τ N=12, M=12 N=16, M=16 N=24,M=16

0.01 6.780e-07 2.098e-08 2.371e-09

0.005 6.779e-07 2.097e-08 1.276e-09

0.001 6.778e-07 2.096e-08 1.212e-09

Table 1 – The errorsEN,M (1), ν = 10−3, k = 0.2 andh = 6.

t EN,M(t)

1 2.098e-08

2 4.258e-08

3 7.919e-08

4 1.780e-07

Table 2 – The errorsEN,M (t), ν = 10−3, k = 0.2,
h = 6, N = M = 16 andτ = 10−2.

Table 3 is for the errorEN,M(t) at t = 1 with various values ofh. It indicates

that the errors decay fast ash increases. In fact, the exact solution is smoother for

largerh. Therefore, as predicted by Theorem 2.2, the numerical result is more

accurate for smoother solution.

In Table 4, we present the errorEN,M(t) at t = 1 for various values ofν. We

find that scheme (2.18) is very efficient even for very smallν.

To compare our results with the results in [23], we take the test function

U (x, y, t) =
x2(1 − y2)2 sin(kxt + kyt)

(2 + x + y)h
e− x

2 ,

which corresponds to the functionW(x, y, t) in (3.1) of [23]. In Table 5, we

present the errorEN,M(t) of scheme (2.18) att = 1 and the corresponding results

h EN,M(t)

4 2.945e-04

5 2.831e-06

6 1.091e-06

7 2.043e-07

Table 3 – The errorsEN,M (t), ν = 10−2, k = 0.2,
h = 6, N = M = 12 andτ = 10−2.

Comp. Appl. Math., Vol. 24, N. 3, 2005
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ν N=8, M=8 N=10, M=10 N=12,M=12

10−2 1.159005e-05 2.313422e-061.091073e-06

10−3 1.156591e-05 2.212567e-066.780100e-07

10−4 1.156556e-05 2.212266e-066.777824e-07

10−5 1.156553e-05 2.212258e-066.777821e-07

Table 4 – The errorsEN,M (1), k = 0.2, h = 6 andτ = 10−2.

N=8, M=8 N=20, M=12 N=40, M=16 N=68,M=20

Scheme(2.18) 8.047e-03 4.662e-04 3.138e-06 4.142e-07

Scheme in[23] 1.652e-03 1.056e-04 2.745e-05 2.517e-06

Table 5 – The errorsEN,M (1), ν = 10−5, k = 0.2, h = 4 andτ = 10−2.

in Table 1 of [23]. Clearly, the proposed scheme (2.18) provides more accurate

numerical results for larger values ofN, M .

It is noted that the values ofN andM in Table 5 correspond to the values of

N + 4 andM + 4 in Table 1 of [23], respectively.

3 Analysis of stability and convergence

In this section, we first establish some basic results on the mixed Legendre-

Legendre rational approximation which form the mathematical foundation of

the related spectral methods for various differential equations in an infinite strip.

Then we use these results to prove the stability and convergence of scheme (2.18),

stated in Theorems 2.1 and 2.2.

3.1 Some approximation results

Let α, β, γ, δ, σ, λ > −1, and introduce the spaceHμ
α,β,γ,δ,σ,λ(I ), 0 ≤ μ ≤ 2.

Forμ = 0, H0
α,β,γ,δ,σ,λ(I ) = L2

χ(σ,λ)
(I ). Forμ = 2,

H2
α,β,γ,δ,σ,λ(I ) =

{
v | v is measurable and‖v‖2,α,β,γ,δ,σ,λ < ∞

}

with the norm

‖v‖2,α,β,γ,δ,σ,λ, I =
(
|v|22,χ(α,β),I + |v|21,χ(γ,δ),I + ‖v‖2

χ(σ,λ),I

) 1
2
.
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For 0< μ < 2, the spaceHμ
α,β,γ,δ,σ,λ(I ) is defined by the space interpolation as

in [1]. Its norm is denoted by‖v‖μ,α,β,γ,δ,σ,λ, I .

For description of approximation results, we also define the spaceHr
χ(α,β),∗

(I ).

For any integerr ≥ 2, its norm and semi-norm are given by

‖v‖r,χ(α,β),∗,I =

(
r −2∑

k=0

‖∂k+2
y v‖2

χ(α+k,β+k),I

) 1
2

,

|v|r,χ(α,β),∗,I = ‖∂r
yv‖χ(α+r −2,β+r −2),I .

For anyr > 2, we define the spaceHr
χ(α,β),∗

(I ) by space interpolation.

Lemma 3.1. If α ≤ min(γ + 2, σ + 4), β ≤ 0 and δ, λ ≥ 0, then for any

v ∈ 00H2
χ(α,β)

(I ) ∩Hr
χ(α,β),∗

(I ), r ∈ N andr ≥ 2,

‖ 00P̃2
N,α,βv − v‖2,α,β,γ,δ,σ,λ, I ≤ cN2−r |v|r,χ(α,β),∗,I . (3.1)

If, in addition,α ≤ σ + 2 andβ ≤ λ+ 2, then for0 ≤ μ ≤ 2,

‖ 00P̃2
N,α,βv − v‖μ,α,β,γ,δ,σ,λ, I ≤ cNμ−r |v|r,χ(α,β),∗,I . (3.2�)

Lemma 3.2. If −1 < α, β < 1, α ≤ γ + 2 and β ≤ δ + 2, then for any

v ∈ H2
0,χ(α,β)

(I ) ∩ Hr
χ(α,β),∗

(I ), r ∈ N andr ≥ 2,

||P̃2,0
N,α,βv − v||2,α,β,γ,δ,σ,λ, I ≤ cN2−r |v|r,χ(α,β),∗,I . (3.3)

In particular, forα = β = 0 and0 ≤ μ ≤ 2,

||P̃2,0
N,α,βv − v||μ,α,β,γ,δ,σ,λ, I ≤ cNμ−r |v|r,χ(α,β),∗,I . (3.4�)

Lemmas 3.1 and 3.2 come from Theorems 2.3 and 2.5 of [21], respectively.

Lemma 3.3. For anyv ∈ H2
0 (3) ∩ Hr

A(3) and0 ≤ μ ≤ 2 ≤ r ,

‖52,0
N v − v‖μ,3 ≤ cNμ−r ‖v‖r,A,3. (3.5)
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Proof. By using (2.12), (2.13) and (3.2), a direct calculation leads to that

‖52,0
N v − v‖L2(3) =

√
2

(∫

I
( 00P̃2

N,2,0v
∗(y)− v∗(y))2dy

) 1
2

≤ cN−r |v∗|Hr
χ(2,0),∗

(I ).

Moreover, we use induction to show that fork ∈ N,

∂k
yv

∗(y) =
k∑

j =0

cj (1 + x)k+ j +1∂ j
xv(x)|x= 1+y

1−y
,

cj being certain positive constants. Hence,|v∗|Hr
χ(2,0),∗

(I ) ≤ c‖v‖r,A,3, and so

‖52,0
N v−v‖L2(3) ≤ cN−r ‖v‖r,A,3. Forμ = 2,we use (2.13) and (3.1) to deduce

that

‖52,0
N v − v‖2,3 ≤ c

( ∫

I
( 00P̃2

N,2,0v
∗(y)− v∗(y))2dy

+
∫

I
(∂y( 00P̃2

N,2,0v
∗(y)− v∗(y)))2(1 − y)4dy

+
∫

I
(∂2

y( 00P̃2
N,2,0v

∗(y)− v∗(y)))2(1 − y)8dy

) 1
2

≤ c

( ∫

I
( 00P̃2

N,2,0v
∗(y)− v∗(y))2dy

+
∫

I
(∂y( 00P̃2

N,2,0v
∗(y)− v∗(y)))2(1 − y)4dy

+
∫

I
(∂2

y( 00P̃2
N,2,0v

∗(y)− v∗(y)))2(1 − y)2dy

) 1
2

≤ cN2−r |v∗|Hr
χ(2,0),∗

(I ) ≤ cN2−r ‖v‖r,A,3.

The result with 0< μ < 2 follows from the previous statements and space

interpolation. �

We now state the main approximation results of this section.

Lemma 3.4. For anyv ∈ Mr,s(�) ∩ H2
0 (�) and integersr, s ≥ 2,

‖v − Q2,0
N,Mv‖H2(�) ≤ c(N2−r + M2−s)‖v‖Mr,s. (3.6)
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Proof. For simplicity of statements, we use the notations

B1 = ‖∂2
x(v −5

2,0
N P̃2,0

M,0,0v)‖,

B2 = ‖∂2
y(v −5

2,0
N P̃2,0

M,0,0v)‖,

B3 = ‖∂x∂y(v −5
2,0
N P̃2,0

M,0,0v)‖.

By virtue of (3.4) and (3.5), we deduce that

B1 ≤ ‖∂2
x(v −5

2,0
N v)‖ + ‖∂2

x5
2,0
N v − P̃2,0

M,0,0(∂
2
x5

2,0
N v)‖

≤ cN2−r ‖v‖L2(I ,Hr
A(3))

+ cM2−s

(∫

3

dx
∫

I
(∂s−2

y (∂2
x5

2,0
N v))2(1 − y2)s−4dy

) 1
2

≤ c(M2−s + N2−r )‖v‖Mr,s.

(3.7)

Similarly,

B2 ≤ ‖∂2
y(v − P̃2,0

M,0,0v)‖ + ‖∂2
y P̃2,0

M,0,0v −5
2,0
N (∂2

y P̃2,0
M,0,0v)‖

≤ cM2−s

( ∫

3

dx
∫

I
(∂s

yv)
2(1 − y2)s−2dy

) 1
2

+ cN2−r ‖∂2
y P̃2,0

M,0,0v‖L2(I ,Hr −2
A (3))

≤ c(M2−s + N2−r )‖v‖Mr,s.

(3.8)

By integration by parts,

B3 =
(∫

3

∫

I
∂2

x(v −5
2,0
N P̃2,0

M,0,0v)∂
2
y(v −5

2,0
N P̃2,0

M,0,0v)dydx

) 1
2

≤
1

2
(B1 + B2).

(3.9)

Thus, by using (3.7)–(3.9) and the Poincare inequality (2.14), we obtain the

desired result (3.6). �
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Lemma 3.5. For anyv ∈ Mr,s(�) ∩ H2
0 (�) and integersr, s ≥ 2,

‖v − P2,0
N,Mv‖H2(�) ≤ c(N2−r + M2−s)‖v‖Mr,s. (3.10)

Proof. By projection theorem,

‖1(v − P2,0
N,Mv)‖ ≤ ‖1(v − φ)‖, ∀φ ∈ V0,0

N,M .

Takingφ = Q2,0
N,Mv, we have from (3.6) and the Poincare inequality (2.14) that

‖v − P2,0
N,Mv‖H2(�) ≤ c‖1(v − P2,0

N,Mv)‖

≤ c‖1(v − Q2,0
N,Mv)‖

≤ c(N2−r + M2−s)‖v‖Mr,s.

3.2 Proofs of stability and convergence

We are now in position of proving Theorems 2.1 and 2.2. We shall use two

embedding inequalities. In fact, for anyu, v, w ∈ H2
0 (�) (see [22]),

|J(u, v, w)| ≤ 2‖1u‖ ‖1v‖ ‖1w‖, (3.11)

|J(u, u, v)| = |J(v, u, u)| ≤ 2‖∇u‖ ‖1u‖ ‖1v‖. (3.12)

We first prove Theorem 2.1. According to (2.18), the errorũN,M satisfies the

following equation,

(∂t∇ũN,M(t),∇φ) + ν(1ũN,M(t),1φ) + J(uN,M(t), ũN,M(t), φ)

+ J(ũN,M(t), uN,M(t), φ)+ J(ũN,M(t), ũN,M(t), φ) = ( f̃ , φ).
(3.13)

Takeφ = 2ũN,M in (3.13). It follows from (2.17) that

d

dt
‖∇ũN,M‖2+2ν‖1ũN,M‖2+2J(uN,M , ũN,M , ũN,M) = 2( f̃ , ũN,M). (3.14)

Thanks to (2.17), (3.12) and the Cauchy inequality,

|J(uN,M , ũN,M , ũN,M)| = |J(ũN,M , ũN,M , uN,M)|

≤ 2‖∇ũN,M‖ ‖1ũN,M‖ ‖1uN,M‖

≤
ν

2
‖1ũN,M‖2 +

2

ν
‖∇ũN,M‖2 ‖1uN,M‖2.
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By the Poincare inequality (2.14),

2|( f̃ , ũN,M)| ≤ 2‖ f̃ ‖ ‖ũN,M‖ ≤ ‖∇ũN,M‖2 + c‖ f̃ ‖2.

Consequently, (3.14) reads

d

dt
‖∇ũN,M‖2 + ν‖1ũN,M‖2 ≤

(
1 +

4

ν
‖1uN,M‖2

)
‖∇ũN,M‖2

+ c‖ f̃ ‖2.

(3.15)

Finally, integrating (3.15) with respect tot and using the Gronwall inequality,

we reach the desired result in Theorem 2.1.

We next prove Theorem 2.2. For simplicity, we focus on the caseu0,N,M =

P2,0
N,MU0. Let UN,M = P2,0

N,MU. We have from (2.16) that

(∂t∇UN,M(t),∇φ) + ν(1UN,M(t),1φ) + J(UN,M(t),UN,M(t), φ)

+
3∑

j =1

G j (φ, t) = ( f (t), φ)
(3.16)

where

G1(φ, t) = (∂t∇(U (t)− UN,M(t)),∇φ),

G2(φ, t) = J(U (t)− UN,M(t),UN,M(t), φ),

G3(φ, t) = J(U (t),U (t)− UN,M(t), φ).

Further, letŨN,M = uN,M − UN,M . Then subtracting (3.16) from (2.18) yields

that

(∂t∇ŨN,M(t),∇φ) + ν(1ŨN,M(t),1φ)

+ J(ŨN,M(t),UN,M(t)+ ŨN,M(t), φ) =
4∑

j =1

G j (φ, t),
(3.17)

whereG4(φ, t) = −J(UN,M(t), ŨN,M(t), φ). In addition,ŨN,M(0) = 0. Take

φ = 2ŨN,M in (3.17). Then we use (2.17) to deduce that

d

dt
‖∇ŨN,M(t)‖

2 + 2ν‖1ŨN,M(t)‖
2 = 2

4∑

j =1

G j (ŨN,M , t). (3.18)
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Next, we estimate|G j (ŨN,M , t)|, 1 ≤ j ≤ 4. By the Cauchy inequality and

integration by parts, we deduce that

|G1(ŨN,M , t)| = (∂t(U (t)− UN,M(t)),1ŨN,M(t))

≤
ν

8
‖1ŨN,M(t)‖

2 +
c

ν
‖∂t(U (t)− UN,M(t))‖

2.
(3.19)

By using (3.11) and the Cauchy inequality,

|G2(ŨN,M , t)| ≤ 2‖1(U (t)− UN,M(t))‖ ‖1UN,M(t)‖ ‖1ŨN,M(t)‖

≤
ν

8
‖1ŨN,M(t)‖

2 (3.20)

+
c

ν
‖1UN,M(t)‖

2‖1(U (t)− UN,M(t))‖
2.

Similarly,

|G3(ŨN,M , t)| ≤ 2‖1U‖ ‖1(U (t)− UN,M(t))‖ ‖1ŨN,M(t)‖

≤
ν

8
‖1ŨN,M(t)‖

2

+
c

ν
‖1U (t)‖2‖1(U (t)− UN,M(t))‖

2.

(3.21)

Also, using (3.12) gives that

|G4(ŨN,M , t)| ≤ 2‖1ŨN,M(t)‖ ‖1UN,M(t)‖ ‖∇ŨN,M(t)‖

≤
ν

8
‖1ŨN,M(t)‖

2

+
c

ν
‖1UN,M(t)‖

2‖∇ŨN,M(t)‖
2.

(3.22)

Furthermore, due to (3.10), we assert that

‖1UN,M(t)‖ ≤ ‖1U (t)‖ + ‖1(U (t)− UN,M(t))‖ ≤ c‖U (t)‖M2,2, (3.23)

‖1(U (t)− UN,M(t))‖ ≤ c(N2−r + M2−s)‖U (t)‖Mr,s, (3.24)

‖∂t(U (t)− UN,M(t))‖ ≤ c(N2−r + M2−s)‖∂tU (t)‖Mr,s, r, s ≥ 2. (3.25)

Substituting (3.19)–(3.25) into (3.18), we obtain that

d

dt
‖∇ŨN,M(t)‖

2 + ν‖1ŨN,M(t)‖
2 ≤

c

ν
‖U (t)‖2

M2,2‖∇ŨN,M(t)‖
2

+ V(t),
(3.26)
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where

V(t) =
c

ν
(N2−r + M2−s)2

(
‖∂tU (t)‖

2
Mr,s + ‖U (t)‖2

M2,2‖U (t)‖2
Mr,s

)
.

Integrating the above with respect tot and using the Gronwall inequality, we

obtain that

‖∇ŨN,M(t)‖
2 + ν

∫ t

0
‖1ŨN,M(ξ)‖

2dξ ≤ e
c
ν
‖U‖2

L2(0,T;M2,2(�))

∫ t

0
V(ξ)dξ.

This leads to the desired result in Theorem 2.2.

Remark 3.1. If we takeu0,N,M = PN,MU0 or Q2,0
N,MU0, then we can follow

the same line of proof as in the above to obtain similar results.

4 Concluding remarks

In this paper, we consider numerical simulation of the Navier-Stokes equation

which plays an important role in studying incompressible viscous fluid flow.

Since we use a numerical algorithm based on the stream function form, the nu-

merical solution fulfills the incompressibility automatically. Moreover, it keeps

the physical boundary condition on the stream function. Therefore, we do not

need to construct free-divergence base functions. Indeed, this is not an easy

job for spectral methods. Additionally, we have avoided non-physical bound-

ary conditions on the pressure or the vorticity, which usually creates numerical

boundary layers.

In this paper, we use the mixed Legendre-Legendre rational spectral method

for the incompressible fluid flow in an infinite strip. The main characters are the

followings:

• We approximate the stream function form directly. This fact simplifies

actual computation and numerical analysis. It is also easier to generalize

the proposed method to multi-dimensional problems.

• We take the Legendre rational functions as the base functions, which are

mutually orthogonal with the same weight function as in the continuous

Comp. Appl. Math., Vol. 24, N. 3, 2005



“main” — 2006/3/9 — 16:07 — page 362 — #20

362 INCOMPRESSIBLE VISCOUS FLUID FLOW IN AN INFINITE STRIP

version. Thus, the corresponding numerical solution keeps the same con-

servation as the exact solution. This feature leads to more appropriate

numerical results, and simplifies computation and theoretical analysis.

• Since the base functions are derived from the Legendre polynomials, we

can use the existing code for the Legendre approximation with a slight

modification, and so save a lot of work. In particular, we can use Fast

Legendre Transformation.

• Due to the orthogonality of Legendre polynomials and Legendre ratio-

nal functions, we provide simple implementation for this mixed spectral

method.

• Benefiting from the rapid convergence of Legendre and Legendre rational

approximations, we obtain very accurate numerical results even for small

nodesN andM.The numerical experiments demonstrate the high accuracy

of the proposed method.

In this paper, we establish some basic results on the mixed Legendre-Legendre

rational approximation, which form the mathematical foundation of the spec-

tral method for an infinite strip. We may also consider the mixed Legendre-

Legendre rational interpolation which leads to the mixed Legendre-Legendre

rational pseudospectral method for an infinite strip. Clearly this is preferable for

actual computations.

In this paper, we use the base functionsRl (x) =
√

2
x+1 Ll

(
x−1
x+1

)
. But we may

apply the scaling base functions

R̃l (x) =

√
2β

x + β
Ll

(
x − β

x + β

)
, β > 0.

In this case, the adjustable parameterβ will offer great flexibility for match-

ing asymptotic behaviors of the exact solutions at infinity. Furthermore, we

could also consider Legendre irrational approximation or other mapped Legendre

rational approximation, so that the numerical solutions fit the exact solutions

more precisely in the region where the exact solutions vary rapidly. We note

that the mapped Legendre approximation can also be used for bounded domains,

see [30].
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