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1 Introduction

A well-known algorithm, for the unconstrained minimization of a functionf (x)

in n variables

f : Rn → R, (1)

having Lipschitz continuous first partial derivatives, is the steepest descent

method (Fiacco, 1990, Polak, 1997, [8, 17]). The iterations correspond to the

following equation

xk+1 = xk − αk∇ f (xk), k = 0, 1, 2, ..., (2)

#620/04. Received: 29/XI/04. Accepted: 16/V/05.



“main” — 2006/3/9 — 16:37 — page 400 — #2

400 STEP-SIZE ESTIMATION FOR UNCONSTRAINED OPTIMIZATION METHODS

whereαk is the smallest nonnegative value ofα that locally minimizesf along

the direction−∇ f (xk) starting fromxk. Curry (Curry, 1944, [5]) showed that

any limit point x∗ of the sequence{xk} generated by (2) is a stationary point

(∇ f (x∗) = 0).

The iterative scheme (2) is not practical because the step-size rule at each

step involves an exact one-dimensional minimization problem. However, the

steepest descent algorithm can be implemented by using inexact one-dimensional

minimization. The first efficient inexact step-size rule was proposed by Armijo

(Armijo, 1966, [1]). It can be shown that, under mild assumptions and with

different step-size rules, the iterative scheme (2) converges to a local minimizer

x∗ or a saddle point off (x), but its convergence is only linear and sometimes

slower than linear.

The steepest descent method is particularly useful when the dimension of the

problem is very large. However, it may generate short zigzagging displacements

in a neighborhood of a solution (Fiacco, 1990, [8]).

For simplicity, we denote∇ f (xk) by gk, f (xk) by fk and f (x∗) by f ∗, respec-

tively, wherex∗ denotes a local minimizer off . In the algorithmic framework

of steepest descent methods, Goldstein (Goldstein, 1962, 1965, 1967, [10, 11,

12]) investigated the iterative formula

xk+1 = xk + αkdk, k = 0, 1, 2, ..., (3)

wheredk satisfies the relation

gT
k dk < 0, (4)

which guarantees thatdk is a descent direction off (x) at xk (Cohen, 1981, No-

cedal and Wright, 1999, [4], [14]). In order to guarantee the global convergence,

it is usually required to satisfy the descent condition

gT
k dk ≤ −c‖gk‖

2, (5)

wherec > 0 is a constant. The angle property

cos〈−gk, dk〉 = −
gT

k dk

‖gk‖ ∙ ‖dk‖
≥ η0, (6)
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is often used in many situations, withη0 ∈ (0, 1].

Observe that, if‖gk‖ 6= 0 thendk = −gk satisfies (4), (5) and (6) simultane-

ously. Throughout this paper, we takedk = −gk.

There are many alternative line-search rules to chooseαk along the raySk =

{xk + αdk| α > 0}. Namely:

(a) Minimization Rule. At each iteration,αk is selected so that

f (xk + αkdk) = min
α>0

f (xk + αdk). (7)

(b) Approximate Minimization Rule. At each iteration,αk is selected so that

αk = min{α|g(xk + αdk)
Tdk = 0, α > 0}. (8)

(c) Armijo Rule. Set scalarssk, γ, L andσ with sk = −
gT

k dk

L‖dk‖2 , γ ∈ (0, 1),

L > 0 andσ ∈ (0, 1
2). Let αk be the largestα in {sk, γ sk, γ

2sk, ..., } such that

fk − f (xk + αdk) ≥ −σαgT
k dk. (9)

(d) Limited Minimization Rule. Setsk = −
gT

k dk

L‖dk‖2 whereαk is defined by

f (xk + αkdk) = min
α∈[0,sk]

f (xk + αdk), (10)

andL > 0 is a given constant.

(e) Goldstein Rule. A fixed scalarσ ∈ (0, 1
2) is selected, andαk is chosen in

order to satisfy

σ ≤
f (xk + αkdk) − fk

αkgT
k dk

≤ 1 − σ. (11)

(f) Strong Wolfe Rule. At thek-th iteration,αk satisfies simultaneously

fk − f (xk + αkdk) ≥ −σαkgT
k dk (12)

and

|g(xk + αkdk)
Tdk| ≤ −βgT

k dk, (13)

whereσ ∈ (0, 1
2) andβ ∈ (σ, 1).
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(g) Wolfe Rule. At thek-th iteration,αk satisfies (12) and

g(xk + αkdk)
Tdk ≥ βgT

k dk. (14)

Some important global convergence results for methods using the above men-

tioned specific line search procedures have been given in the literature ([25, 15,

16, 23, 24]).

This paper is organized as follows. In the next section we describe some

descent algorithms without line search. In Sections 3 and 4 we analyze their

global convergence and convergence rate respectively. In Section 5 we give

some numerical experiments and conclusions.

2 Descent Algorithm without Line Search

We assume that

(H1). f (x) is bounded below. We denoteL(x0) = {x ∈ Rn| f (x) ≤ f (x0)}.

(H2). The gradientg(x) is uniformly continuous on an open convex set B that

containsL0.

We sometimes further assume that the following condition holds.

(H3). The gradientg(x) is Lipschitz continuous on an open convex set B that

contains the level setL(x0), i.e., there existsL such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ B. (15)

Obviously,(H3) implies(H2).

We shall implicitly assume that the constantL in (H3) is easy to estimate.

Algorithm (A).

Step 0.Choosex0 ∈ Rn, δ ∈ (0, 2) andL0 > 0 and setk := 0;

Step 1. If ‖gk‖ = 0 then stop; else go to Step 2;

Step 2. EstimateLk > 0;

Step 3. xk+1 = xk − δ
Lk

gk;

Step 4. Setk := k + 1 and go to Step 1.
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Note. In the above algorithm, line search procedure is avoided at each iteration,

which may reduce the cost of computation. However, we must estimateLk at

each iteration. Certainly, if the Lipschitz constantL of the gradient of objective

functions is known a priori, then we can takeLk ≡ L in the algorithm. In many

practical problems, the Lipschitz constantL is not known a priori and we must

estimate it and find an approximationLk to L at each step.

For estimatingLk we define

Lk = max

(
Lk−1,

‖gk − gk−1‖

‖xk − xk−1‖

)
, k ≥ 1. (16)

We can also estimateLk in Algorithm (A) by solving the following minimiza-

tion problem

min
L∈R1

‖Lδk−1 − yk−1‖, (17)

whereδk−1 = xk − xk−1, yk−1 = gk − gk−1 and‖ ∙ ‖ denotes Euclidean norm.

In this case,

Lk = max

(
Lk−1,

yT
k−1δk−1

‖δk−1‖2

)
, k ≥ 1. (18)

Similarly, Lk can be found by solving the problem

min
L∈R1

∥
∥yk−1 −

1

Lk
δk

∥
∥ (19)

and set

Lk = max

(
Lk−1,

‖yk−1‖2

yT
k−1δk−1

)
, k ≥ 1. (20)

The last two formulae are useful because they arise from the classical quasi-

Newton condition (e.g. [14]) and from Barzilai and Borwein’s idea (1988, [2]).

Some recent observations on Barzilai and Borwein’s method are very exciting

(Fletcher, 2001, [7], Raydan 1993, 1997, [20, 21], Dai and Liao, 2002, [6]).

If the Hessian matrix∇2 f (xk) is easy to evaluate then we can take

Lk = max{Lk−1, ‖∇
2 f (xk)‖}, k ≥ 1. (21)

3 Convergence Analysis

The following lemma can be found in many text books. See, for example, [14].
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Lemma 3.1 (mean value theorem). Suppose that the objective functionf (x)

is continuously differentiable on an open convex set B, then

f (xk + αdk) − fk = α

∫ 1

0
dT

k g(xk + tαdk)dt, (22)

wherexk, xk + αdk ∈ B and dk ∈ Rn. Further, if f (x) is twice continuously

differentiable on B, then

g(xk + αdk) − gk = α

∫ 1

0
∇2 f (xk + tαdk)dkdt (23)

and

f (xk + αdk) − fk = αgT
k dk + α2

∫ 1

0
(1 − t)dT

k ∇2 f (xk + tαdk)dkdt. (24)

3.1 Convergence of Algorithm (A)

Theorem 3.1. If (H1) and (H3) hold, Algorithm (A) generates an infinite

sequence{xk}, and

ρ ∈
(

δ

2
, 1

)
, Lk ≥ ρL ,

+∞∑

k=0

1

L2
k

= +∞, (25)

then

lim inf
k→+∞

‖gk‖ = 0. (26)

Proof. By Lemma 3.1 and(H3) we have

f (xk + αdk) − fk = α

∫ 1

0
dT

k g(xk + tαdk)dt

= αgT
k dk + α

∫ 1

0
dT

k (g(xk + tαdk) − gk)dt

≤ αgT
k dk + α

∫ 1

0
‖dk‖ ∙ ‖g(xk + tαdk) − gk‖dt

≤ αgT
k dk + α2L

∫ 1

0
t‖dk‖

2dt

= αgT
k dk +

1

2
α2L‖dk‖

2.
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Takingdk = −gk andα = δ
Lk

in the above formula, we have

f (xk − αgk) − fk ≤ −αk‖gk‖
2 +

1

2
α2

k L‖gk‖
2

= −
δ‖gk‖2

Lk
+

δ2L

2L2
k

‖gk‖
2

≤ −(
δ

Lk
−

δ2L

2L2
k

)‖gk‖
2.

Noting thatLk ≥ ρL, we obtain

δ

Lk
−

δ2L

2L2
k

=
2δLk − δ2L

2L2
k

≥
(2ρ − δ)δL

2L2
k

> 0.

Therefore,{ fk} is a monotone decreasing sequence. So, by(H1), { fk}has a lower

bound and, thus,{ fk} has a finite limit. It follows from the above inequality that

∞∑

k=0

(2ρ − δ)L

2L2
k

‖gk‖
2 < +∞. (27)

By (25) we have
∞∑

k=0

(2ρ − δ)L

2L2
k

= +∞.

The above inequality and (27) show that (26) holds. The proof is finished.�

Corollary 3.1. If the conditions in Theorem 3.1 hold andρL ≤ Lk ≤ M

(M > 0 is a fixed large integer) for allk, then

∞∑

k=0

‖gk‖
2 < +∞, (28)

and, thus,

lim
k→∞

‖gk‖ = 0. (29)
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Remark. The above theorem shows that we can set a largeLk to guarantee the

global convergence. However, ifLk is very large thenαk will be very small and

will slow the convergence rate of descent methods. On the other hand, very small

values ofLk may fail to guarantee the global convergence. Thus, it is better to

set an adequate estimationLk at each iteration.

3.2 Comparing with other step-sizes

Theorem 3.2. Assume that the hypotheses of Theorem 3.1 hold. Denote the

exact step-size byα∗
k (including exact line search rules (a) and (b)). Then

α∗
k ≥

ρ

δ
αk. (30)

Proof. For the line search rules (a) and (b),(H3) and Cauchy-Schwartz in-

equality, we have:

α∗
k L‖gk‖

2 ≥ ‖gk+1 − gk‖ ∙ ‖gk‖

≥ −(gk+1 − gk)
T gk

= ‖gk‖
2.

Therefore,

α∗
k ≥

1

L
.

Noting thatLk ≥ ρL, we have

α∗
k ≥

1

L
≥

ρ

Lk
=

δ

Lk
∙
ρ

δ
= αk ∙

ρ

δ
. �

Theorem 3.3. Assume that the hypotheses of Theorem 3.1 hold. Denoteα∗
k the

step-size defined by the line search rule (c) with L being the Lipschitz constant

of ∇ f (x). Then,

α∗
k ≥

ρ

δ
αk, k ∈ K1; α∗

k ≥
ργ (1 − σ)

δ
αk, k ∈ K2, (31)

whereK1 = {k| α∗
k = sk} and K2 = {k| α∗

k < sk}.
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Proof. If k ∈ K1, then

α∗
k = sk =

1

L
=

ρ

ρL
≥

ρ

δ
∙

δ

Lk
=

ρ

δ
αk.

If k ∈ K2 thenα∗
k < sk and thusα∗

k/γ ≤ sk, by line search rule (c), we have

f (xk + α∗
kdk/γ ) − fk > σ(α∗

k/γ )gT
k dk.

Using the Mean Value Theorem on the left-hand side of the above inequality, we

see that there existsθk ∈ [0, 1] such that

(α∗
k/γ )g(xk + θkα

∗
kdk/γ )Tdk > σ(α∗

k/γ )gT
k dk,

and, thus,

g(xk + θkα
∗
kdk/γ )Tdk > σgT

k dk. (32)

By (H3), Cauchy-Schwartz inequality and (32) we obtain:

αkL‖dk‖/γ ≥ ‖g(xk + θkα
∗
kdk/γ ) − gk‖ ∙ ‖dk‖

≥ [g(xk + θkα
∗
kdk/γ ) − gk]

Tdk

≥ −(1 − σ)gT
k dk.

Sincedk = −gk, by the above inequality, we get:

α∗
k ≥

γ (1 − σ)

L
≥

ργ (1 − σ)

δ
αk. �

Theorem 3.4. Assume that the hypotheses of Theorem 3.1 hold. Denoteα∗
k the

step-size defined by the line search rule (d) with L being the Lipschitz constant

of ∇ f (x). Then,

α∗
k ≥

ρ

δ
αk, (33)

whereαk is yet the step-size of Algorithm (A).

Proof. If α∗
k = sk then

α∗
k =

1

L
=

ρ

ρL
≥

ρ

Lk
=

ρ

δ
αk.
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If α∗
k < sk thengT

k+1dk = 0 and, thus,

α∗
k L‖dk‖

2 ≥ ‖gk+1 − gk‖ ∙ ‖dk‖ ≥ −gT
k dk.

Sincedk = −gk, by the above inequality, we get:

α∗
k ≥

1

L
≥

ρ

ρL
≥

ρ

Lk
=

ρ

δ
αk. �

Theorem 3.5. Assume that the hypotheses of Theorem 3.1 hold and letα∗
k be

defined by the line search rule (e). Then,

α∗
k ≥

ρσ

δ
∙ αk, (34)

Proof. By the line search rule (e), we have

f (xk + α∗
kdk) − fk ≥ (1 − σ)α∗

k gT
k dk.

By the mean value theorem, there existsθk such that

α∗
k g(xk + θkα

∗
kdk)

Tdk ≥ (1 − σ)α∗
k gT

k dk.

So,

g(xk + θkα
∗
kdk)

Tdk ≥ (1 − σ)gT
k dk. (35)

By (H3), the Cauchy-Schwartz inequality and (36), we have:

α∗
k L‖dk‖

2 ≥ ‖g(xk + θkα
∗
kdk) − gk‖ ∙ ‖dk‖

≥ [g(xk + θkα
∗
kdk) − gk]

Tdk

≥ −σgT
k dk.

Sincedk = −gk, we get:

α∗
k ≥

σ

L
=

ρσ

ρL
≥

ρσ

Lk
=

ρσ

δ
αk. �

Theorem 3.6. Assume that the hypotheses of Theorem 3.1 hold and thatα∗
k is

defined by the line search rules (f) or (g). Then,

α∗
k ≥

ρ(1 − β)

δ
∙ αk, (36)
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Proof. By (13), (14) and the Cauchy-Schwartz inequality, we have:

α∗
k L‖dk‖

2 ≥ ‖gk+1 − gk‖ ∙ ‖dk‖

≥ [gk+1 − gk]
Tdk

≥ −(1 − β)dT
k dk.

Sincedk = −gk we get:

α∗
k ≥

1 − β

L
=

ρ(1 − β)

ρL
≥

ρ(1 − β)

Lk
=

ρ(1 − β))

δ
αk. �

4 Convergence Rate

In order to analyze the convergence rate of the algorithm, we make use of As-

sumption(H4) below.

(H4). {xk} → x∗(k → ∞), f (x) is twice continuously differentiable on

N(x∗, ε) and∇2 f (x∗) is positive definite.

Lemma 4.1. Assume that(H4) holds. Then,(H1), (H3) and thus(H2) hold

automatically for k sufficiently large, and there exists0 < m′ ≤ M ′ andε0 ≤ ε

such that

m′‖y‖2 ≤ yT∇2 f (x)y ≤ M ′‖y‖2, ∀x, y ∈ N(x∗, ε0); (37)

1

2
m′‖x − x∗‖2 ≤ f (x) − f (x∗) ≤

1

2
M ′‖x − x∗‖2, ∀x ∈ N(x∗, ε0); (38)

M ′‖x− y‖2 ≥ (g(x)−g(y))T (x− y) ≥ m′‖x− y‖2, ∀x, y ∈ N(x∗, ε0); (39)

and thus

M ′‖x − x∗‖2 ≥ g(x)T (x − x∗) ≥ m′‖x − x∗‖2, ∀x ∈ N(x∗, ε0). (40)

By (39) and (40) we can also obtain, from Cauchy-Schwartz inequality, that

M ′‖x − x∗‖ ≥ ‖g(x)‖ ≥ m′‖x − x∗‖, ∀x ∈ N(x∗, ε0), (41)

and

‖g(x) − g(y)‖ ≤ M ′‖x − y‖, ∀x, y ∈ N(x∗, ε0). (42)

The proof of this theorem results from Lemma 2.2.7 of [25]. See also Lemma

3.1.4 of [26].
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Lemma 4.2. If (H1) and (H3) hold and Algorithm (A) withLk ≤ M and

L < M generates an infinite sequence{xk}, then there existsη > 0 such that

fk − fk+1 ≥ η‖gk‖
2, ∀k. (43)

Proof. As in the proof of Theorem 3.1, we have:

fk − fk+1 ≥ (
δ

Lk
−

δ2L

2L2
k

)‖gk‖
2

≥
(2ρ − δ)δL

2M2
‖gk‖

2.

Taking

η =
(2ρ − δ)δL

2M2
,

we obtain the desired result. �

Theorem 4.1. If the assumption(H4) holds, Algorithm (A) withρL ≤ Lk ≤ M

and L ≤ M generates an infinite sequence{xk}, then{xk} converges tox∗ at

least R-linearly.

Proof. By (H4), there existsk′ such thatxk ∈ N(x∗, ε0) for k ≥ k′. By (43)

and Lemma 4.1 we obtain

fk − fk+1 ≥ η‖gk‖
2

≥ ηm′2‖xk − x∗‖2

≥
2ηm′2

M ′
( fk − f ∗), k ≥ k′.

By (42) we can assume thatM ′ ≤ L and prove thatθ < 1. In fact, by the

definition ofη in the proof of Lemma 4.2, we obtain

θ2 =
2m′2η

M ′
≤

2m′2(2ρ − δ)δL

2M2M ′
≤

m′2(2σ − δ)δ

M ′2
≤ (2ρ − δ)δ

m′2

M ′2

≤ (2ρ − δ)δ = 2ρδ − δ2 = −δ2 − ρ2 + 2ρδ + ρ2 = ρ2 − (ρ − δ)2

≤ ρ2 < 1.
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Set

ω =
√

1 − θ2.

Since, obviously,ω < 1, we obtain from the above inequality that

fk+1 − f ∗ ≤ (1 − θ2)( fk − f ∗)

= ω2( fk − f ∗)

≤ ...

≤ ω2(k−k′)( fk′+1 − f ∗).

By Lemma 4.1 and the above inequality we have:

‖xk+1 − x∗‖2 ≤
2

m′
( fk+1 − f ∗)

≤ ω2(k−k′) 2( fk′+1 − f ∗)

m′
.

Thus,

‖xk − x∗‖ ≤ ωk

√
2( fk′+1 − f ∗)

m′ω2(k′+1)
.

This shows that{xk} converges tox∗ at least R-linearly. �

5 Numerical Experiments

We give an implementable version of this descent method.

Algorithm (A) ′.

Step 0.Choosex0 ∈ Rn, δ ∈ (0, 2) andM � L0 > 0 and setk := 0;

Step 1. If ‖gk‖ = 0 then stop; else go to Step 2;

Step 2.EstimateLk ∈ [L0, M];

Step 3.xk+1 = xk − δ
Lk

gk;

Step 4.Setk := k + 1 and go to Step 1.

The following formulae forαk = δ/Lk(k ≥ 1):

1.

Lk = min

(
M, max

{
Lk−1,

yT
k−1δk−1

‖δk−1‖2

})
(44)
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2.

Lk = min

(
M, max

{
Lk−1,

‖yk−1‖2

yT
k−1δk−1

})
(45)

3.

Lk = min

(
M, max

{
Lk−1,

‖yk−1‖

‖δk−1‖

})
(46)

4.

Lk = min

(
M,

2( fk − fk−1 + αk−1‖gk−1‖2)

α2
k−1‖gk−1‖2

)
(47)

are tried to compare the new algorithm against PR conjugate gradient method

with restart and BB method ([2]). In conjugate gradient methods one has:

dk =

{
−gk, if k = 0;

−gk + βkdk−1, if k ≥ 1,
(48)

where

βF R
k =

‖gk‖2

‖gk−1‖2
, β P R

k =
gT

k (gk − gk−1)

‖gk−1‖2
, βH S

k =
gT

k (gk − gk−1)

dT
k−1gk−1

.

The corresponding methods are called FR (Fletcher-Revees), PR (Polak-Ribiére)

and HS (Hestenes-Stiefel) conjugate gradient method respectively. Among them

the PR method is regarded as the best one in practical computation. However,

PR conjugate gradient method has no global convergence in many situations.

Some modified PR conjugate gradient methods with global convergence were

proposed (e.g., Grippo and Lucidi [9]; Shi [22], etc.). In PR conjugate gradient

method, ifgT
k dk ≥ 0 occurs, we setdk = −gk or setdk = −gk at everyn

iteration. This is called restart conjugate gradient method (Powell [18]).

We tested our algorithms with a termination criterion when‖gk‖ ≤ epswith

eps= 10−8. The number of iterations used to get that precision is calledI N .

The number of function evaluations for getting the same error is denoted byF N.

We chose 18 test problems from the literature, including More, Garbow and

Hillstrom, 1981, [13]; the BB gradient method combined with Raydan and

Svaiter’s CBB method [19]; and PR conjugate gradient algorithm with restart.

The Raydan and Svaiter’s CBB method is an efficient nonmonotone gradient
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method [2, 20, 21], which is sometimes superior to some CG methods [2]. The

initial iterative points were also from the literature [13].

For PR conjugate gradient method with restart, we use Wolfe rule (g) with

β = 0.75, σ = 0.125. For our descent algorithms without line search, we

choose the parametersδ = 1, M = 108 andLk defined by (44), (45), (46) and

(47) respectively. The corresponding algorithms are denoted by A1, A2, A3 and

A4 respectively.

Failures in the application of the new method may appear, mainly due to the

inadequate estimations ofLk and sometimes due to the roundoff errors. In order

to avoid failure, we checkf (xk − δ
Lk

gk) < fk in our numerical experiment. It

is obbserved thatδ ∈ (0, 2) is an adjustable parameter in the gradient method

without line search. We can adjustδ to satisfy the descent property of objective

functions and improve the performance of the new method. Iff (xk− δ
Lk

gk) < fk

holds then we continue the iteration. Otherwise, we may reduceδ by setting

δ = γ δ with γ ∈ (0, 1) until the descent property holds.

In numerical experiments, by Theorem 3.1,Lk may converge to+∞. Thus,

letting Lk ∈ [L0, M] seems to be unreasonable. In fact, we have no criteria to

determineL0 andM . Generally, a very largeL0 may lead to slow convergence

rate and a very large M may violate the global convergence. As a result, we

should choose carefullyL0 and M in practical computation in order to satisfy

both the global convergence and the fast convergence rate. Actually, we can

combine the step-size estimation and line search procedure to produce efficient

descent algorithms. For example, in Armijo’e line search rule,L > 0 is a

constant at each iteration, and we can take the initial step-sizes = sk = 1/Lk

at thek-th iteration. In this case, the steepest descent method has the same

numerical performance as our corresponding descent algorithm. Accordingly,

choosing an adequate initial step-size is very important for Armijo’s line search

and it is also the real aim of step-size estimation.

We use a Pentium IV portable computer and Visual C++ to implement our

algorithms and test the 18 problems. The numerical results are reported in

Table 1.

The computational results show that the new method in the paper is efficient in

practice. It needs much less iterative number and less function evaluations and
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P n A1 A2 A3 A4 PR CBB

1 2 18 21 25 24 23,35 25

2 2 22 26 22 24 28,54 23

3 2 12 14 10 15 16,48 13

4 2 18 25 21 23 32,38 22

5 2 15 18 16 19 38,56 17

6 2 13 11 7 15 16,24 12

7 3 36 38 34 26 37,38 35

8 3 34 36 32 35 36,47 35

9 3 19 22 15 26 16,35 23

10 3 19 18 13 15 23,32 21

11 3 28 39 37 44 49,53 37

12 3 26 42 27 34 52,59 26

13 4 23 19 17 25 26,48 24

14 4 39 43 38 45 46,78 46

15 4 36 35 27 73 42,47 43

16 4 38 42 47 45 55,62 43

17 5 58 52 45 53 52,86 42

18 6 37 32 37 39 41,67 35

CPU – 45 32 28 42 49 29

Table 1 – Numerical results of algorithms onI N/F N(eps= 10−8).

then less CPU time (seconds) than PR conjugate gradient with restart and CBB

method in some situations. This also shows that CBB method is a promising

method because it is superior to the new algorithms A1, A2 and A4 for these test

problems.

The gradient method withLk defined by (45) seems to be the best algorithm for

these test problems. Thereby, to estimateLk is the key to constructing gradient

methods without line search. If we take

αk =
1

Lk
=

‖δk−1‖2

δT
k−1yk−1

,
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or

αk =
δT

k−1yk−1

‖yk−1‖2
,

whereδk−1 = xk − xk−1 and yk−1 = gk − gk−1, we can obtain Barzilai and

Borwein’s method ([2]) which is an effective method for solving large scale

unconstrained minimization problems.

Conclusion

In future research we should seek more approaches for estimating the step-size

as exactly as possible and find some available technique to guarantee both the

global convergence and quick convergence rate of gradient methods. We can

also use some step estimation approaches to improve the original BB method

and conjugate gradient methods, for example, [19].
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