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Abstract. This paper reviews four variants of global Carleman weights that are especially

adapted to some singular controllability and inverse problems in partial differential equations.

These variants arise when studying: i) one measurement stationary source inverse problems

for the heat equation with discontinuous coefficients, ii) one measurement stationary potential

inverse problems for the heat equation with discontinuous coefficients, iii) null controllability for

fluid-structure problems in mobile domains and iv) recovering coefficients from locally supported

boundary observations for the wave equation. In all the case we explain how to explicitly construct

the Carleman weight.

Mathematical subject classification: 74G75, 76D05, 93B05.

Key words: Carleman inequalities, exact controllability, inverse problems, Navier-Stokes
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1 Introduction

Let � be a regular domain in Rn and let us consider a second order adjoint

operator of the form P∗
q z = f evolving in Q = �× I , where I is a time interval.

We suppose that Pq depends on some stationary parameter q ∈ L∞(�). Given
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some suitable weight function� defined in Q, we perform the following change

of variables or conjugation:

w = ρ z, ρ = exp (−s�(x, t)), s > 0, (1)

P∗
q z = f ⇔ ρP∗

q (ρ
−1w) = ρ f. (2)

For a given parameter λ > 0 and α larger enough, typical weights functions �

are of the form:

Heat equation: P∗
q = −δt −�+ q , Q = �× (0, T )

�(x, t) = exp(λα)− exp(λψ(x))

T − t
(3)

where ψ(x) is some suitable continuous function to be precised later (see for

instance Table 1 for some conditions on ψ and Figure 1 for typical shapes

of ψ).

Wave equation: P∗
q = δt t −�+ q, Q = �× (−T, T )

�(x, t) = − exp(λ(ψ(x)− β t2)), ψ(x) = |x − x0|2, (4)

where x0 is some given point outside � and β ∈ (0, 1) is suitably chosen.

Schrödinger equation: P∗
q = i∂t +�+ q , Q = �× (−T, T )

�(x, t) = exp(λα)− exp(λψ(x))

(T − t)(T + t)
, ψ(x) = |x − x0|2, (5)

where x0 is some given point outside �.

We also introduce a function ϕ(x, t) such that

∇� = −λ∇ψ ϕ.

We consider an internal observational or control regionω ⊂⊂ � and a boundary

observational or control region 
0 ⊂ ∂�. Under some assumptions, we will

work with global Carleman inequalities of the form

p1(s, λ)‖ϕ3/2ρ ∇z‖2
L2(Q)

+ p0(s, λ)‖ϕ1/2ρ z‖2
L2(Q)

≤ C
(
‖ρ f ‖2

L2(Q)
+ p1(s, λ)‖ϕ3/2ρ ∇z · n‖2

L2(
0×I )
+ p0(s, λ)‖ϕ1/2ρ z‖2

L2(ω×I )

)
,

(6)
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ω

p(·, ξ) = {p,�} = 0, ξ 	= 0 p(·,∇�) = 0 ⇒
⇒ {p, {p,�}} > 0 {{p,�}, p(·,∇�)} > 0
(cond. β < 1) (cond. |∇�| > 0)

Figure 1 – Graphical interpretation of pseudoconvexity for� = |x − x0|2 −βt2 (waves)

with increasing velocity from the outer to the inner levels of �. p = ξ2
0 − |ξ |2 is the

principal symbol of P∗. Left: rays are bicharacteristics, right: arrows are ∇�.

0

=ctΦ

Γ0
= ∂Ω

x

0

x
0

=ctΦ

Γ

∇� · n < 0 outside 
0 ∇� · n < 0 outside 
0


0 is the whole boundary 
0 is the exit/lateral part of the boundary

Figure 2 – Graphical interpretation of the strong Lopatinskii condition for

� = |x − x0|2 − βt2 (waves) in the cases that x0 is inside and outside of the domain.

The level sets of the weight � are represented by the dotted lines.

where n is the unit exterior normal to�, pi are polynomial weights (see Table 2)

and ρ is the weight function given by (1). Notice that ρ → 0 exponentially as

s� → +∞.
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The internal observational or control region ω appearing at the right hand side

of the global Carleman inequality is such that the pseudoconvexity of � with

respect to P∗
q holds outside ω (for pseudoconvexity notion see [20], [43]). The

boundary observational or control region 
0 is such that a strong Lopatinskii

condition holds outside 
0 (see Table 1). If the condition of pseudoconvexity

is satisfied in all � × I then ω can be empty. Also, if the strong Lopatinskii

condition holds on all ∂� then
0 can be empty (see [43] for a much more general

statement of global Carleman inequalities in this cases).

outside ω outside 
0

Condition |∇ψ(x)| > 0 ∇ψ(x) · n < 0

(necessary to pseudoconvexity) (strong Lopatinskii)

Table 1 – Pseudoconvexity and strong Lopatinskii conditions could not be satisfied in

the internal and boundary observational/control regions.

Equation p1 p0

Heat sλ2 s3λ4

Wave sλ s3λ3

Schrödinger sλ s3λ4

Table 2 – Polynomial weights in global Carleman inequalities.

Some variants we consider in this review appear when considering operators

with discontinuous coefficients in the principal part. In this case, the function ψ

has to be well adapted to this new situation and specific global Carleman estimates

can be derived. In both cases, some spatial monotonicity of the coefficients is

needed. As an application of these inequalities, we study one measurement

inverse problems for the heat and wave equations using the general Bukhgeim-

Klibanov approach [11]. The results explained here have been collected from

the articles [13], [6], [7] and the preprint [2].

Other interesting variants we consider here arise in the case of mobile domains

in fluid-structure problems, when studying the boundary null controllability of

an immersed solid into a viscous Navier-Stokes fluid. In this case, the functionψ

depends on time, and the global Carleman inequality is much more complicated

than (6) because on one hand of incompressibility in Navier-Stokes and on the
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other hand due to the presence of the structure. The results we present in this

review were adapted from the articles [9], [10].

The last variant is concerned with one measurement inverse problems from

local boundary observations for the wave equation. In this case, the function

ψ is modified in order to obtain some strong Lopatinskii condition of the form

(x − x0) · T n < 0, where T is some linear transformation of the normal field.

For further details we refer to the article [14] where the Carleman weights were

introduced for two dimensional domains. Here we explain how to deal with the

three dimensional case.

Although this is a reduced selection of variants, this collection of Carleman

weights and applications illustrate the wealth of the extent of Carleman inequal-

ities when they are applied to the study of some singular inverse and controlla-

bility problems.

2 Inverse source problem for heat transmission problems

Given� ⊂ R
n be a bounded and regular subset and let �1 be a subdomain such

that �1 ⊂ � and let us set �0 = � \ �1. Let S be the interface between �0

and �1 with unit normal n exterior to�1. Let us denote by S+ and S− the outer

and inner sides of the interface S with respect to n and �+ = S+ × (0, T ),

�− = S− × (0, T ).

Let us consider the heat transmission problem
yt − div (a0(x)∇ y) = f (x)g(x, t) in �0 × (0, T )

yt − div (a1(x)∇ y) = f (x)g(x, t) in �1 × (0, T )

y|�+ = y|�−, a0
∂y

∂n
|�+ = a1

∂y

∂n
|�−, y = 0 on ∂�× (0, T ) (∗)

(7)

with ai ≥ c0 > 0 a.e. in �. Let us introduce the space

V = {
y ∈ C2(�i × [0, T ]), i = 0, 1, y satisfies (∗)} . (8)

The inverse source problem consists in retrieving the source f (x) from the knowl-

edge of g(x, t), the local trace of the solution y in ω0 × (0, T ), where ω0 ⊂ �0

and from some time slice y(·, T0) for some T0 ∈ (0, T ), but without any knowl-

edge of the initial condition y(·, 0) of the system. We have to assume also that
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some isotopy type condition is satisfied (see Figure 2 and the details in the article

[13]). The inverse stability result is

Theorem 2.1 ([6], [7]). Let T0 ∈ (0, T ) andω0 ⊂ �0 and let us assume that�1

and �0 satisfy the isotopy type conditions of [13]. Assume that y solution of (7)

such that y, yt ∈ V . Assume that a1|S− −a0|S+ ≥ 0 and that g ∈ C2(�×[0, T ]),
|g(·, T0)| ≥ r0 > 0 a.e. in �. Then there exists a constant C = C(g, ω0, T0)

such that for all f ∈ L2(�)

‖ f ‖L2(�) ≤ C
(‖y(·, T0)‖H2(�0)

+ ‖y(·, T0)‖L2(�1)
+ ‖y‖H1(0,T ;L2(ω0))

)
. (9)

This result has as main ingredient a global Carleman estimate for the system

(7) stated in [13]. This inequality was firstly used in order to prove the exact

controllability to trajectories for a semilinear system similar to (7) that is con-

trolled in ω0 × (0, T ). In the general case when�1 is not simply connected, and

in order to construct the weight functions, an isotopy type condition between S

and the boundary of two disjoint open subsets Oi , i = 1, 2 of �1 is used. Two

weights similar to (3) are then constructed of the form

�i (x, t) = exp(λα)− exp(λψi (x))

T − t
, i = 1, 2, (10)

where ψi ∈ V and ∇ψ = 0 only in Oi (see Figure 1 left). Notice that you can

also consider the opposite case when �0 ⊂ � and �1 = � \ �0, and always

ω0 ⊂ �0. In this case, an isotopy type condition between ∂� and S is a sufficient

condition. See Figure 1 right).

3 Controllability problems in mobile domain for fluid-structure
interaction

Let � ⊂ R
2 be a fixed bounded connected open subset with regular boundary.

We denote respectively by �S(t) and �F(t) = � \�S(t) the domains occupied

by the structure (we consider here only one connected component of solid but

the results shown here are still valid for a finite number of solids) and by the fluid

respectively. Let n be the unit exterior normal to ∂�S(t). The time evolution

for t ∈ (0, T ) of the fluid eulerian velocity u and pressure p is governed by

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Figure 3 – Construction of the global Carleman weight (bottom curves) for the heat

equation with discontinuous coefficients such that a1(S−)−a0(S+) > 0 (middle curves).

In the case�0 ⊂ � (left) two combined weights are used and in the case�1 ⊂ � (right)

one weight suffices. In both cases the observation zone ω is represented by a black dot.

the incompressible Navier-Stokes equations where the Cauchy tensor σ(u, p) =
ν(∇u + ∇ut) − p Id with viscosity ν > 0 will appear. The movement of the

rigid solid with mass m > 0 and moment of inertia J > 0 is described by the

velocity of its center of mass a(t) ∈ R2 and by its angular velocity r(t) ∈ R.

The system is

∂t u + (u · ∇)u − div σ(u, p) = f 1ω, div u = 0 in �F(t)

mä =
∫
∂�S(t)

σ (u, p)ndσ, J ṙ =
∫
∂�S(t)

(σ (u, p)n) · (x − a)⊥dσ,

u = ȧ + r(x − a)⊥ on ∂�S(t), u = 0 on ∂�,

u(0, ·) = u0 in �F(0), a(0) = a0, ȧ(0) = a1, r(0) = r0,

(11)
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(e)(d)(c)(a) (b)

(e)(d)(b) (c)(a)

Figure 4 – In all the figures�0 is filled in gray and the observation regionω is represented

by a black dot. The interface S between �0 and �1 is represented by a dashed line and

the boundary ∂� by a solid line. In the lower line, all the examples except for (b) and

(d) satisfy the isotopy type condition of [13] between S and ∂�. In the upper line, all the

examples except for (e) satisfy the isotopy type condition between S and the boundaries

of two disjoints subsets O1 and O2 of �1. In all the exceptions, the Carleman weight

can not be constructed with the method of [13].

Here the function f is the control function which acts over a fixed small non-

empty open subset ω (with characteristic function 1ω). See Figure 5.

n

(t)
F

Ω
S
(t)

(a,a,r)
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(u,p)
δ

δ ω

Ω

Figure 5 – Notations of Section 3.
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We have used the notation x⊥ = (x1, x2)
⊥ = (−x2, x1). The total angle θ

associated to the angular velocity r is defined by θ(t) = θ0 + ∫ t
0 r(s) ds, where

θ0 ∈ R complements the initial data. The existence of solutions and regularity

for this system has been recently studied in several papers (see [39], [41] and the

references therein).

The controllability result is the following, saying that it is possible to drive the

structure and the fluid at rest and the immersed solid up to its reference position

in arbitrarily small time with a localized control f , provided the initial conditions

are sufficiently small.

Theorem 3.1 ([9]). Suppose that: i) the initial body solid shape satisfies

�S(0) ⊂ � \ ω, d(�S(0), ∂(� \ ω)) > 0,
∫
∂�S(0)

(y − a0) dσ = 0; (12)

i i) the initial conditions u0 ∈ H 3(�F(0))2, a0 ∈ R
2, a1 ∈ R

2, θ0 ∈ R and

r0 ∈ R satisfy the compatibility conditions

div u0 = 0 in �F(0),

u0 = a1 + r0(x − a0)
⊥ on ∂�S(0) and

u0 = 0 on ∂�;
(13)

i i i) the acceleration u1 of the fluid and the accelerations a2 and r1 of the

structure at initial time (determined by the equations of the motion (11) and by

the boundary conditions taken at initial time, well defined thanks to Helmholtz

decomposition) satisfy

u1 = 0 on ∂�,

u1 = a2 + r1(x − a0)
⊥ − r2

0 (x − a0)

− ∇u0
(
a1 + r0(x − a0)

⊥)
on ∂�S(0).

(14)

Under the above assumptions, for all T > 0 there exists ε > 0 and f ∈
L2((0, T )× ω)2 such that if

‖u0‖H3(�F (0))2 + |a0| + |a1| + |θ0| + |r0| ≤ ε

then

u(T, ·) = 0 in �F(T ), a(T ) = 0, ȧ(T ) = 0, θ(T ) = 0, r(T ) = 0.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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The last condition in (12) is a symmetry restriction over the shape of the solid

needed in the proof of the Carleman inequality satisfied by the adjoint problem

of the linearized system to get estimates on the structure motion from estimates

on the fluid velocity on the interface.

The result only holds for small initial data because we want to keep the non-

collision condition on the whole interval (0, T )

inf
t∈(0,T )

d(�S(t), ∂(� \ ω)) > 0.

The first result of this kind using global Carleman estimates was obtained in

[12] for a one-dimensional Burgers-particle system studied in [45]. Also, similar

results to the one presented here has been simultaneously and independently

obtained in the preprint [12] (see the preprint version of [10]).

The idea of the proof is the following and follows ideas for the controllability of

the Navier-Stokes equations recently used in [15], [21] and the ideas of [12]. We

first consider a linearized problem. Let (ã, r̃) be given in H 2(0, T )2 × H 1(0, T ).

We define θ̃ the angle associated to the rotation velocity r̃ defined up to a constant.

For any t ∈ (0, T ), we define the structure domain

�̃S(t) = {
ã(t)+ Rθ̃ (t)−θ0(y − a0), y ∈ �S(0)

}
.

We suppose that ã(0) = a0, θ̃ (0) = θ0 and inf t∈(0,T ) d(�̃S(t), ∂(� \ ω)) > 0.

Thus, we can define the fluid domain �̃F(t) = � \ �̃S(t). We also consider

a given velocity ũ satisfying regularity properties and compatibility conditions

with (ã, r̃). The linearized problem associated to (11) is the one where we have

replaced in (11)�S(t) by �̃S(t),�F(t) by �̃F(t) and the nonlinear term (u ·∇)u
in the first equation by (ũ · ∇)u. We prove a null controllability result for the

linearized problem with the help of a Carleman inequality shown on the adjoint

system associated to a linearized system. Finally, Theorem 3.1 is proved by

applying Kakutani’s fixed point theorem.

We will give the Carleman inequality here for two reasons. First, once Navier-

Stokes equations are involved, the corresponding global Carleman inequality

is different from (6) because of the pressure (or because of incompressibility).

Indeed, the exponential weights appearing at the left and right hand sides of the

inequality are no more the same. Secondly, since we are working with variable

domains, this is in fact a Carleman inequality in moving domains.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Let us first introduce the corresponding adjoint operator P∗
q on this case given

by the solution (v, q, b, γ ) of the linear system

−∂tv − (ũ · ∇)v − div σ(v, q) = 0, div v = 0 in �̃F(t),

mb̈(t) = − ∫
∂�̃S(t)

σ (v, q)ndσ,

J γ̇ (t) = − ∫
∂�̃S(t)

(σ (v, q)n) · (x − ã(t))⊥dσ,

v = ḃ + γ (x − ã)⊥ on ∂�̃S(t), v = 0 on ∂�,

v(T, ·) = vT
0 in �̃F(T ), b(T ) = 0, ḃ(T ) = bT

1 , γ (T ) = γ T
0 ,

(15)

with
div vT

0 = 0 in �̃F(T ),

vT
0 = bT

1 + γ T
0 (x − ã(T ))⊥ on ∂�̃S(T ) and

vT
0 = 0 on ∂�

(16)

and ũ regular enough and conveniently chosen.

The following extremal weights appear when eliminating the explicit depen-

dence on the pressure q of the Carleman inequality. For a given field v(x, t) we

take the notation:

v(t) = sup
x∈�̃F (t)

v(x, t), v(t) = inf
x∈�̃F (t)

v(x, t). (17)

Theorem 3.2 ([9]). There exists ŝ, λ̂ and C depending on�, ω and T such that,

for every regular solution (v, b, γ ) of (15), for all λ > λ̂ and s > ŝ we have:∫ T

0

∫
�̃F (t)

ρ2

(
1

sϕ

(|�v|2 + |∂tv|2
) + sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

)
dxdt

+ sλ
∫ T

0
ρ2ϕ

(∣∣b̈∣∣2 + |γ̇ |2
)

dt∫ T

0

∫
∂�̃S(t)

ρ2
(

s3λ3ϕ3|v|2∇ψ · n + 2sλϕ|∇v n|2
)

dσdt

≤ Cs19/2λ13
∫ T

0

∫
ω

(ρ/ρ)2 ρ2 ϕ10|v|2dxdt.

(18)

The Carleman inequality is expressed on the moving domains �̃S(t) and �̃F(t)

and the transport theorem is used on its deduction. More precisely, the weight

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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� used here is of the form (compare with (3))

�(x) = exp(λα0)− exp(α1λψ(x, t))

(T − t)4
(19)

where α0, α1 are suitable constants. The time dependent weight functionψ(x, t)

is chosen as the standard weight for the heat equation but it follows the shape

of �̃S(t). More precisely, ψ(x, t) is a regular function such that ∂ψ
∂n < 0 on �,

|∇ψ | > 0 outside ω and it satisfies the time dependent conditions ∂ψ

∂n > 0 on

∂�̃S(t), ψ constant on ∂�̃S(t). Notice that an interesting property is that the

spatial gradient of ψ is related to 1/δ(t), where δ(t) > 0 is the distance between

�̃S(t) and ∂(� \ ω). This could be useful when doing explicit calculations of

constants in the Carleman inequality as the collision parameter δ(t) → 0+ as

t → t−
0 for some collision time t0 > 0.

4 Inverse problem in wave equation with partial boundary data

The main idea is to modify the weight function� given in (4) in such a way that

its gradient ∇� a rotation of the original field (x − x0)with a radially dependent

magnitude. This concept come up from multipliers technique and controllability

[19], [34].

Let� be a domain inRn , n = 2, 3. In order to solve the Dirichlet to Neumann

one measurement inverse problem, it suffices to measure on a rotated exit part

of the boundary 
r . If n = 2, this region depends on a point x0 ∈ Rn and on

a rotation Tθ in an angle θ ∈ (−π/2, π/2). If n = 3, it depends also on a unit

direction α ∈ R3 and the rotation Tθ is considered on the orthogonal plane to α

denoted here by α⊥. We will use the notation v⊥ = v−(v ·α)α for the projection

of the field v on α⊥. More precisely

(n = 2) 
(x0, θ) = {x ∈ ∂� | (x − x0) · Tθn > 0} (20)

(n = 3) 
(x0, α, θ) = {x ∈ ∂� | (x − x0) · (cos θ(n − n⊥)+ Tθn
⊥ > 0} (21)

We can always reduce the two-dimensional case to the bi-dimensional one

by considering R2 immersed in R3 with α = (0, 0, 1), so in the following we

will only refer to the three-dimensional case. Notice that, as θ approaches π/2,

the rotated exit part tends to be the union of the boundary points x where the

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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dot product between the vector x − x0 and the projection n⊥ rotated in π/2 is

positive (see Figure 6). There are of course an infinite number of intermediate

cases depending on the localization of x0, the direction of α and the angle θ .

The case θ = 0 corresponds to the standard exit condition previously used for

the same inverse problem [24]. Remark also that the rotated exit condition is a

particular case of the geometrical optics BLR condition [1], [33].

The main stability result is the following (we present here the case x0 	∈ �,

the other case in which two arbitrarily near interior points are used can be found

in [14]).

Figure 6 – Rotated exit boundary region in a cube (−a, a)3 with respect to the origin

x0 = 0 and a diagonal axis α parallel to (1, 1, 1)with orthogonal plane α⊥ (dotted lines).

The exit region (shaded) are the boundary points whose position vectors have a positive

dot product with the π/2 rotation of the projection of the normal n⊥ on α⊥ (arrows). By

taking a suitable time-dependent Neumann measure on a little bit more than this region,

the inverse problem of recovering a time-independent potential in the wave equation is

locally stable (not really in a cube but in a regularized C2 cube).

Theorem 4.1 ([14]). Let P∗
q = ∂t t − � + q and let u(q) and u(q) be the re-

spective solutions of P∗
q u = 0 with Dirichlet boundary conditions associated to

q, q ∈ L∞(�) and with Neumann measurements ξ and ξ on 
r × (0, T ) respec-

tively. There exists a time T > 0 such that if T > T , if u(q) ∈ H 1(0, T ; L∞(�))
and if |u(0)| ≥ α0 > 0 a.e. in �, then there exists a positive constant CM de-

pending on M = ‖q‖L∞(�) such that

||q − q||L2(�) ≤ CM

∥∥ξ − ξ
∥∥

H1(0,T ;L2(
r ))
∀ q with ‖q‖L∞(�) ≤ M . (22)
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If θ → ±π
2 then T → +∞ and it behaves asymptotically as

T ≈ R0√
β

exp

(
2

cos θ
θ0

)
, (23)

where R0 = supx∈� |x −x0| and θ0 = supx∈� arg(x −x0)
⊥−inf x∈� arg(x −x0)

⊥,

i.e., the angle of view of � with respect to the axis of direction α passing by x0.

The proof of this Theorem is based on a global Carleman estimate using the

variant of the Carleman weight for the wave equation (compare with (4))

�(x, t) = −λ exp
(
cos θ |x − x0|2 exp

(
2 tan θ arg(x − x0)

⊥) − β t2
)

(24)

for some suitable constant β ∈ (0, 1). This weight was constructed in order to

make appear in the gradient ∇� the matrix cos θ 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (25)

written in a basis attached to α, α⊥. The product of this matrix and a vector field

v is exactly cos θ(v − v⊥) + Tθv⊥, expression which appears in the definition

(21) of 
r .

The main steps in the deduction of such inequality are taken from [35, 23]

following a well known technique due to Bukhgeim and Klibanov [11], [29].

Roughly speaking, the technique in this case consists in reducing the problem to

a source inverse problem for the perturbed equation around u(q) and then take

its time derivative in order to obtain a quasi-observability inequality after use of

the Carleman inequality. Quasi, since the initial condition is bounded not only

by the observation but also by the unknown source term, but a sufficiently large

time and the properties of the Carleman weight allow to get rid of this source

term.

There are also geometrical exit type conditions for the analogous inverse prob-

lem in the case of the Scrhödinger equation (see [3]). The present method should

also work in this case because the spatial part used in Carleman weights for wave

and Schödinger equations are the same (compare (4) with (5)). Nevertheless, in

the case of the Scrhödinger operator, it is strongly possible that the geometrical
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optic condition are not necessary to solve the one measurement inverse prob-

lem (see [27]). Other completely different problem is the case when you have

Dirichlet to Newmann map measurements. In this case, a suitable arbitrarily

small boundary of measurements is enough to solve the inverse problem both

for Schödinger and wave equations (see [28]). But recently, it has been shown

that you can solve the one measurement problem for the wave equation with

an arbitrarily boundary measurement region (in the case of Neumann bound-

ary conditions and Dirichlet measurements), but the corresponding inequality

analogous to (22) is logarithmic [5].

5 Inverse coefficient problem for wave transmission problems

Notice that recently, Global Carleman estimates and application to one mea-

surement inverse problems for the wave equation were obtained in the case of

variable but still regular coefficients [4], [26]. The inverse problem of retrieving

coefficients from a wave equation with discontinuous coefficients from bound-

ary measurements arise naturally in geophysics and more precisely, in seismic

prospection of earth inner layers [44].

Let � and �1 ⊂ � be two open subsets of R2 with smooth boundaries 
 and


1 respectively and let �2 = � \�1. To fix ideas we assume that �1 is simply

connected. We set:

ā(x) =
{

a1 x ∈ �1

a2 x ∈ �2
(26)

with a j > 0 for j = 1, 2, for each q ∈ L∞(�), we consider u(q) as the solution

of the following wave transmission equation

utt − div(ā(x)∇u)+ q(x)u = 0 in Q = �× (0, T )

u = g on � = 
 × (0, T )

u(0) = u0 in �

ut(0) = u1 in �.

(27)

The following inverse stability result holds (see the preprint [2]):

Theorem 5.1 ([2]). Assume�1 is strictly convex and a1 > a2 > 0. LetU be a

bounded subset of L∞(�), q ∈ L∞(�) and r > 0. If |u0(x)| ≥ r > 0 a. e. in�
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and u(q) ∈ H 1(0, T ; L∞(�)), then there exists C = C(�, T, ‖q‖L∞(�),U) >
0 such that:

‖q − q‖L2(�) ≤ C

∥∥∥∥∂u(q)

∂n
− ∂u(q)

∂n

∥∥∥∥
H1(0,T ;L2(
))

for all u0 ∈ H 1
0 (�) and q ∈ U.

This Theorem is proved by combining the Carleman inequality for the wave

equation with discontinuous coefficients proved in [2] and the method of Bukh-

geim-Klibanov explained in section 4. To this end, system (27) is viewed as two

wave equations with constant coefficients coupled with transmission conditions

(see [31]). Then, a global Carleman inequality is found out for this transmission

problem by working with variants of Carleman weights of the form (compare

with (4))

�(x, t) = − exp(λϕ(x)), (28)

ϕ(x) =


η(x)

a2

r(x)2
|x − x0|2 − βt2 + M1 in �1 × (−T, T )

a1

r(x)2
|x − x0|2 − βt2 + M2 in �2 × (−T, T )

(29)

where M1 and M2 are constants such that M1−M2 = a1−a2, r(x) = |x0−y(x)|,
y(x) = 
1 ∩ [x0, x] and η is some cut-off function with support in �1 centered

at x0. We also combine the Carleman inequalities obtained from two different

interior points as we did in section 2, see also Figure 1, left. The convexity

hypothesis on�1 comes from the fact that the positiveness of the Hessian of the

weight � is related with the curvature of 
1 with respect to x0.

There are a lot of important works concerning this inverse problem in the

case that a wide class of measurements are available. In these cases, microlocal

analysis has been used and it gives positive answer to the problem of retrieving

coefficients and discontinuity interfaces without restrictive hypothesis of con-

vexity of the interfaces or monotonicity of the speed of waves. These kinds of

results are fundamental for seismic prospection. For an overview on this subject

see [44] and the references therein, in particular related to thie study are the

works of [8], [17], [37], [38], [40].
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