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Abstract. This paper reviews four variants of global Carleman weights that are especially
adapted to some singular controllability and inverse problems in partial differential equations.
These variants arise when studying: i) one measurement stationary source inverse problems
for the heat egquation with discontinuous coefficients, ii) one measurement stationary potential
inverse problems for the heat equation with discontinuous coefficients, iii) null controllability for
fluid-structure problemsin mobile domains and iv) recovering coefficients from locally supported
boundary observationsfor thewave equation. Inall the caseweexplain how to explicitly construct

the Carleman weight.
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1 Introduction

Let @2 be a regular domain in R” and let us consider a second order adjoint
operator of theform Pyz = f evolvingin Q = © x I, where / isatimeinterval.
We suppose that P, depends on some stationary parameter g € L*°(£2). Given
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168 FOUR VARIATIONS IN GLOBAL CARLEMAN WEIGHTS

some suitable weight function ® defined in Q, we perform the following change
of variables or conjugation:
w=pz, p=exp(—sd(x,r)), s>0, @
Piz=f & pPj(p w)=pf. e
For a given parameter A > 0 and « larger enough, typical weights functions ®
are of the form:

Heat equation: Pi=-8—-A+q, Q0=QX 0, 7)

_ &Xpa) — eXp(hy(x))

D(x,t) T

3)

where ¥ (x) is some suitable continuous function to be precised later (see for
instance Table 1 for some conditions on  and Figure 1 for typical shapes

of ¥).
Wave equation: P; =6 —A+q,0=Q2x(-T,T)

D (x, 1) = — PR (¥) = B1%), ¥(x) = |x — xof, )
where x is some given point outside Q and 8 € (0, 1) is suitably chosen.
Schrodinger equation: P’ =id, + A+q, Q=Q x (=T, T)

_exp(ha) — exp(Ay(x)) e 2
O(x,1) = T-DT+0 Y(x) = |x — xol, %)

where xg is some given point outside .

We aso introduce a function ¢ (x, ¢) such that
Vd = —AVY g.

We consider aninternal observational or control region w CC 2 and aboundary
observational or control region Ty C 0Q2. Under some assumptions, we will
work with global Carleman inequalities of the form

P1(s MY 2p VzllZa ) + Pols. M0 2020172,

(6)
1/2

= C(Ip 1) + P16 0¥ 20 V2 nZy 1t pots. W20 2125, 1))
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Figure 1 — Graphical interpretation of pseudoconvexity for ® = |x — xg|% — 2 (waves)
with increasing velocity from the outer to the inner levelsof ®. p = 55 — |€|% isthe
principal symbol of P*. Left: rays are bicharacteristics, right: arrowsare Vo.

Yo

V. n < 0outside o V& - n < 0outside I'o
o isthewhole boundary T'g isthe exit/lateral part of the boundary

Figure 2 — Graphica interpretation of the strong Lopatinskii condition for
® = |x — xg|? — Br? (waves) in the cases that xg isinside and outside of the domain.
The level sets of the weight ® are represented by the dotted lines.

wheren isthe unit exterior normal to 2, p; are polynomial weights (see Table 2)

and p isthe weight function given by (1). Noticethat p — 0 exponentiadly as
s® — +4o00.
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170 FOUR VARIATIONS IN GLOBAL CARLEMAN WEIGHTS

Theinternal observational or control region w appearing at the right hand side
of the global Carleman inequality is such that the pseudoconvexity of ® with
respect to P holds outside o (for pseudoconvexity notion see [20], [43]). The
boundary observational or control region I'g is such that a strong Lopatinskii
condition holds outside T'g (see Table 1). If the condition of pseudoconvexity
is satisfied in al 2 x I then o can be empty. Also, if the strong Lopatinskii
condition holdsonall €2 then I"g can be empty (see[43] for amuch moregeneral
statement of global Carleman inequalitiesin this cases).

outside w outside I'g
Condition [V (x)] >0 Viy(x)-n<0
(necessary to pseudoconvexity) | (strong Lopatinskii)

Table 1 — Pseudoconvexity and strong Lopatinskii conditions could not be satisfied in
theinternal and boundary observational/control regions.

Equation P11 Po
Heat sa? s34
Wave sh 533
Schrodinger | sa s34

Table 2 — Polynomial weightsin global Carleman inequalities.

Some variants we consider in this review appear when considering operators
with discontinuous coefficients in the principal part. In this case, the function
hasto bewell adapted to thisnew situation and specific global Carleman estimates
can be derived. In both cases, some spatial monotonicity of the coefficientsis
needed. As an application of these inequalities, we study one measurement
inverse problems for the heat and wave equations using the general Bukhgeim-
Klibanov approach [11]. The results explained here have been collected from
the articles[13], [6], [7] and the preprint [2].

Other interesting variants we consider here arisein the case of mobile domains
in fluid-structure problems, when studying the boundary null controllability of
animmersed solid into aviscous Navier-Stokesfluid. Inthiscase, thefunction v
depends on time, and the global Carleman inequality is much more complicated
than (6) because on one hand of incompressibility in Navier-Stokes and on the
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other hand due to the presence of the structure. The results we present in this
review were adapted from the articles[9], [10].

The last variant is concerned with one measurement inverse problems from
local boundary observations for the wave equation. In this case, the function
Y ismodified in order to obtain some strong Lopatinskii condition of the form
(x —xg) - Tn < 0, where T is some linear transformation of the normal field.
For further details we refer to the article [14] where the Carleman weights were
introduced for two dimensional domains. Here we explain how to deal with the
three dimensional case.

Although this is a reduced selection of variants, this collection of Carleman
weights and applicationsillustrate the wealth of the extent of Carleman inequal-
ities when they are applied to the study of some singular inverse and controlla-
bility problems.

2 Inverse source problem for heat transmission problems

Given © C R” be abounded and regular subset and let 21 be a subdomain such
that Q; C Qandlet usset Qp = Q\ Q1. Let S be the interface between Qg
and 21 with unit normal n exterior to ;. Let usdenote by S and S~ the outer
and inner sides of the interface S with respect ton and =+ = St x (0, T),
=85 x(0,T1).

Let us consider the heat transmission problem

Vi —div(ap(x)Vy) = f(x)g(x, 1) in Qo x (0,T)

yi —div(a1(x)Vy) = f(x)g(x, 1) in Q1 x (0, T) (7)
0 0

Vgt = yls-, ao—y|2+ =al_y|2—» y=00n 9Q x (0, T) ()
on on

witha; > ¢g > 0ae. in Q. Let usintroduce the space
V=1{yeC*Q x[0,T]), i=0,1, ysatisfies (x)} . (8)

Theinversesourceproblem consistsinretrievingthesource f (x) fromtheknowl-
edge of g(x, ), thelocal trace of the solution y in wg x (0, T), wherewg C Qg
and from sometime dlice y(-, Tp) for some Ty € (0, T'), but without any knowl-
edge of theinitia condition y(-, 0) of the system. We have to assume also that
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172 FOUR VARIATIONS IN GLOBAL CARLEMAN WEIGHTS

someisotopy type condition is satisfied (see Figure 2 and the detailsin the article
[13]). Theinverse stability result is

Theorem 2.1 ([6],[7]). LetTy € (O, T) and wg C 20 and let us assume that 21
and Qq satisfy the isotopy type conditions of [13]. Assume that y solution of (7)
suchthaty, y, € V. Assume that ai|s- —agls+ > Oandthatg € C>(Qx [0, T)),
lg(-, To)| = ro > Oa.e. in Q. Then there exists a constant C = C(g, wg, Tp)
such that for all f € L?(RQ)

/L2 < C (||}7('7 To) | p2(q) + 1y G, To) ll L2(qy) + “y”Hl(O,T;LZ(wo))) . (9

This result has as main ingredient a global Carleman estimate for the system
(7) stated in [13]. This inequality was firstly used in order to prove the exact
controllability to trgjectories for a semilinear system similar to (7) that is con-
trolledinwg x (O, T). Inthe general case when €2, isnot simply connected, and
in order to construct the weight functions, an isotopy type condition between S
and the boundary of two disjoint open subsets O;, i = 1, 2 of ©; isused. Two
weights similar to (3) are then constructed of the form

O, (x. 1) = exp(ra) ; e_XF;(Kwi(X))’

i=12 (10)

where y; € V and Vi = 0only in O; (see Figure 1 left). Notice that you can
also consider the opposite case when Qo € Q and Q1 = Q \ Qo, and aways
wo C Qo. Inthiscase, anisotopy type condition between 92 and S isasufficient
condition. See Figure 1 right).

3 Controllability problems in mobile domain for fluid-structure
interaction

Let @ C R? be afixed bounded connected open subset with regular boundary.
We denote respectively by Qg(r) and Q5 (1) = Q \ Qs(¢) the domains occupied
by the structure (we consider here only one connected component of solid but
the results shown here are still valid for afinite number of solids) and by the fluid
respectively. Let n be the unit exterior normal to 9Q2s(¢). The time evolution
fort € (0, T) of the fluid eulerian velocity u and pressure p is governed by

Comp. Appl. Math., Val. 25, N. 2-3, 2006
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Figure 3 — Construction of the global Carleman weight (bottom curves) for the heat
equation with discontinuous coefficientssuch that a1 (S~) —ag(ST) > 0(middlecurves).
Inthecase Qo C £ (left) two combined weights are used and inthe case Q1 € € (right)
one weight suffices. In both cases the observation zone w is represented by a black dot.

theincompressi ble Navier-Stokes equations where the Cauchy tensor o (1, p) =
v(Vu + Vu') — pld with viscosity v > O will appear. The movement of the
rigid solid with mass m > 0 and moment of inertia J > 0 is described by the
velocity of its center of mass a(f) € R? and by its angular velocity r(7) € R.
The systemis

du+ (u-Vu—dvo(u, p) = f1,, dvu =0in Qr@)

ma = / o(u, pyndo, Jr = / (o (u, p)n) - (x — a)*do,
{ 125() 925() (11)

u=a+rx—a)-on dQ(), u=00n 9,

u(0,) =ugin Qr(0), a(0) = ag, a(0) = ay, r(0) = rq,

Comp. Appl. Math., Val. 25, N. 2-3, 2006
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@ (b) ©

@ (b) (©
Figured—Inall thefigures Qg isfilledin gray and the observation region w isrepresented
by ablack dot. Theinterface S between Qg and 21 is represented by a dashed line and
the boundary 92 by a solid line. In the lower line, all the examples except for (b) and
(d) satisfy theisotopy type condition of [13] between S and d2. Intheupper ling, al the
examples except for (e) satisfy the isotopy type condition between S and the boundaries
of two digoints subsets 01 and 0> of Q3. In al the exceptions, the Carleman weight
can not be constructed with the method of [13].

Here the function f is the control function which acts over a fixed small non-
empty open subset w (with characteristic function 1,). See Figure 5.

Figure 5 — Notations of Section 3.
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We have used the notation x+ = (x1, xo)* = (—x2, x1). The total angle 6
associated to the angular velocity r is defined by 6(¢) = 6y + f(; r(s)ds, where
0o € R complements the initial data. The existence of solutions and regularity
for this system has been recently studied in several papers (see[39], [41] and the
references therein).

The controllability result isthe following, saying that it is possible to drive the
structure and the fluid at rest and the immersed solid up to its reference position
inarbitrarily small timewith alocalized control f, provided theinitial conditions
are sufficiently small.

Theorem 3.1 ([9]). Suppose that: i) the initial body solid shape satisfies

Q2s(0) C Q\ w, d(2s(0), 9(2\ w)) > 0, f (y —ao)do =0, (12)
0Q25(0)
ii) the initial conditions ug € H3(Q2r(0))% ag € R? a1 € R? 6y € R and
ro € R satisfy the compatibility conditions
divug =0 in Qr(0),
uo = ar + ro(x —ap)™ on 9Qs(0) and (13)
ug=0 on 092;
iii) the acceleration ui of the fluid and the accelerations a; and ry of the
structure at initial time (determined by the equations of the motion (11) and by
the boundary conditions taken at initial time, well defined thanks to Helmholtz
decomposition) satisfy
uy, =0 on 09,
up =az + ri(x —aop)" — r§(x — ao) (14)
— Vuo(al + ro(x — ao)L) on 925(0).
Under the above assumptions, for all T > O there exists ¢ > 0 and f €
L?((0, T) x w)? such that if
luoll #3202 + laol + laa| + |60 + [rol < &
then

u(T,) =0 in Qp(T), a(T) =0, a(T) =0, 6(T) = 0, r(T) = 0.

Comp. Appl. Math., Val. 25, N. 2-3, 2006
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Thelast condition in (12) is asymmetry restriction over the shape of the solid
needed in the proof of the Carleman inequality satisfied by the adjoint problem
of the linearized system to get estimates on the structure motion from estimates
on the fluid velocity on the interface.

The result only holds for small initial data because we want to keep the non-
collision condition on the whole interval (0, T')

inf d(Qs(1), (2 \ w)) > 0.
te(0,T)

The first result of this kind using global Carleman estimates was obtained in
[12] for aone-dimensional Burgers-particle system studiedin[45]. Also, similar
results to the one presented here has been simultaneously and independently
obtained in the preprint [12] (see the preprint version of [10]).

Theideaof the proof isthefollowing and followsideasfor the controllability of
the Navier-Stokes equations recently used in[15], [21] and theideasof [12]. We
first consider alinearized problem. Let (G, 7) begivenin H?(0, T)? x H(0, T).
Wedefined theangleassociated to therotation vel ocity 7 defined up to aconstant.
For any ¢ € (0, T'), we define the structure domain

Qs(1) = {a(t) + Ryy_,(y — a0). y € 2s5(0)} .

We suppose that @(0) = ag, §(0) = 6 and inf;co.1) d(Qs(1), (R \ w)) > 0.
Thus, we can define the fluid domain Qx(t) = Q \ m We also consider
a given velocity u satisfying regularity properties and compatibility conditions
with (a, 7). Thelinearized problem associated to (11) is the one where we have
replaced in (11) Qs(¢) by Q(2), £ (1) by Q£ (1) and the nonlinear term (u - V)u
in the first equation by (& - V)u. We prove a null controllability result for the
linearized problem with the help of a Carleman inequality shown on the adjoint
system associated to a linearized system. Finaly, Theorem 3.1 is proved by
applying Kakutani’s fixed point theorem.

Wewill give the Carleman inequality herefor two reasons. First, once Navier-
Stokes equations are involved, the corresponding global Carleman inequality
is different from (6) because of the pressure (or because of incompressibility).
Indeed, the exponential weights appearing at the left and right hand sides of the
inequality are no more the same. Secondly, since we are working with variable
domains, thisisin fact a Carleman inequality in moving domains.

Comp. Appl. Math., Val. 25, N. 2-3, 2006
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Let usfirst introduce the corresponding adjoint operator P on this case given
by the solution (v, ¢, b, y) of thelinear system

—dv—(@i-V)v—divo(v,q) =0, divv = 0inQr (1),

ml.).(t) = _faﬁs(z)d(v’ g)ndo,

1770 =~ [i5,,(@@. @) - (x —a@0)*do, (15)
v=>b+y(x —a)t onds(r), v=00n0g,

(T, ") =vf INQp(T), b(T) =0, b(T) =b], y(T) =y,

with -
divvl =0 in Qx(T),
v =bl +yI(x —a(r))* on 9Q4(T) and (16)
vy =0 on

and i regular enough and conveniently chosen.

The following extremal weights appear when eliminating the explicit depen-
dence on the pressure ¢ of the Carleman inequality. For agiven field v(x, ¢) we
take the notation:

v() = sup wv(x,t), v@)= inf wv(x,1). @n
xeﬁp(t) xeQF(t)

Theorem 3.2 ([9]). There exists S, *and C depending on Q, w and T such that,
for every regular solution (v, b, v) of (15), for all ). > Aands > § we have:

f / (s |Av| + |0, v| )+sk2g0|Vv|2+s3A4(p3|v|2> dxdt
QF(l)

+s)»/ £2£<|1;|2+ |)7|2) dt
0

/ / 3A3<p3|v| V- n + 25h9| Vo )dodt
Q?(t)

(18)

<CS19/2)\.13/ /(p/p)z —2 — 10|U|2dxdl,

The Carleman inequality is expressed on the moving domains Qs (1) and Q (1)
and the transport theorem is used on its deduction. More precisely, the weight
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@ used hereis of the form (compare with (3))

_ exp(rag) — explairy (x, 1))

Pw) (T — 1)

(19)

whereag, a; aresuitable constants. Thetime dependent weight function ¥ (x, )
is chosen as the standard weight for the heat equation but it follows the shape
of Qs(t). More precisely, v (x, t) is aregular function such that g—f <0onx,
[Viy| > 0 outside w and it satisfies the time dependent conditions % > 0on
9Q2s(2), ¥ constant on 925(¢). Notice that an interesting property is that the
spatial gradient of v isrelatedto 1/8(¢), where §(¢) > 0isthe distance between
Qs(1) and 3( \ w). This could be useful when doing explicit calculations of
constants in the Carleman inequality as the collision parameter §(t) — 0 as
t — t; for somecollisiontimez, > 0.

4 Inverse problem in wave equation with partial boundary data

The main ideaisto modify the weight function & given in (4) in such away that
itsgradient V@ arotation of the original field (x — xo) with aradially dependent
magnitude. Thisconcept come up from multiplierstechnique and controllability
[19], [34].

Let 2 beadomaininR”, n = 2, 3. In order to solve the Dirichlet to Neumann
one measurement inverse problem, it suffices to measure on a rotated exit part
of the boundary T',. If n = 2, this region depends on a point xo € R" and on
arotation 7, inanangle 6 € (—x /2, 7/2). If n = 3, it depends also on a unit
direction o € R® and the rotation 7} is considered on the orthogonal plane to o
denoted hereby o. Wewill usethenotation vt = v — (v-o)« for theprojection
of thefield v on a*. More precisely

(n=2)T(x0,0) ={x €92 | (x — x0) - Tyn > 0} (20)
(n=3)T'(x0,,0) = {x € Q| (x — xq) - (COSO(n — nt) + Tyn* > 0} (21)
We can aways reduce the two-dimensional case to the bi-dimensional one
by considering R? immersed in R3 with o = (0, 0, 1), so in the following we

will only refer to the three-dimensional case. Notice that, as 6 approaches /2,
the rotated exit part tends to be the union of the boundary points x where the
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dot product between the vector x — xo and the projection n' rotated in /2 is
positive (see Figure 6). There are of course an infinite number of intermediate
cases depending on the localization of xq, the direction of « and the angle 6.
The case & = 0 corresponds to the standard exit condition previously used for
the same inverse problem [24]. Remark also that the rotated exit condition is a
particular case of the geometrical optics BLR condition [1], [33].

The main stability result is the following (we present here the case xo ¢ £,
the other case in which two arbitrarily near interior points are used can be found

in [14]).

Figure 6 — Rotated exit boundary region in a cube (—a, a)3 with respect to the origin
xo = Oand adiagonal axisa parallel to (1, 1, 1) with orthogonal plane« (dotted lines).
The exit region (shaded) are the boundary points whose position vectors have a positive
dot product with the 7z /2 rotation of the projection of thenormal n+ on .+ (arrows). By
taking a suitable time-dependent Neumann measure on alittle bit more than thisregion,
the inverse problem of recovering atime-independent potential in the wave equation is
locally stable (not really in a cube but in aregularized C? cube).

Theorem 4.1 ([14]). Let P; = d; — A+ q and let u(q) and u(q) be the re-
spective solutions of Pju = 0 with Dirichlet boundary conditions associated to
q,q € L*®(2) and with Neumann measurements & and & on ', x (0, T') respec-
tively. There exists atime T > Qsuchthatif T > T, ifu(g) € HX(0, T; L*(Q))
and if lu(0)| > ag > O a.e. in Q, then there exists a positive constant Cy de-

pending on M = ||q || L~(q) such that
||q - CI”LZ(Q) = CM ||§ - s“ HL(0,T;L2(T,)) Vq with ”q ||L°°(Q) = M. (22)
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If0 — 7 then T — +oo and it behaves asymptotically as

_ 2
T~ N; exp (cos@ 00) , (23)

where Ry = SUP, .q |x —xo| and 6y = sUp, .o arg(x —xo)= —inf .cq arg(x —xo)*,

i.e., the angle of view of Q with respect to the axis of direction o passing by xo.

The proof of this Theorem is based on a global Carleman estimate using the
variant of the Carleman weight for the wave equation (compare with (4))

®(x,1) = —rexp(cosd|x — xol* exp (2tand arg(x — xo)*) — %)  (24)

for some suitable constant 8 € (0, 1). This weight was constructed in order to
make appear in the gradient V& the matrix

coso 0 0
0 cos®  sinf (25)
0 —sind cosH

writtenin abasis attached to o, . The product of this matrix and avector field
v is exactly cosé (v — vt) + T,vt, expression which appears in the definition
(21) of T',.

The main steps in the deduction of such inequality are taken from [35, 23]
following a well known technigue due to Bukhgeim and Klibanov [11], [29].
Roughly speaking, the techniquein this case consistsin reducing the problem to
a source inverse problem for the perturbed equation around u(g) and then take
itstime derivative in order to obtain a quasi-observability inequality after use of
the Carleman inequality. Quasi, since the initial condition is bounded not only
by the observation but also by the unknown source term, but a sufficiently large
time and the properties of the Carleman weight allow to get rid of this source
term.

Thereare also geometrical exit type conditionsfor the anal ogousinverse prob-
leminthe case of the Scrhédinger equation (see[3]). The present method should
also work in this case because the spatia part used in Carleman weightsfor wave
and Schodinger equations are the same (compare (4) with (5)). Nevertheless, in
the case of the Scrhodinger operator, it is strongly possible that the geometrical
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optic condition are not necessary to solve the one measurement inverse prob-
lem (see [27]). Other completely different problem is the case when you have
Dirichlet to Newmann map measurements. In this case, a suitable arbitrarily
small boundary of measurements is enough to solve the inverse problem both
for Schodinger and wave equations (see [28]). But recently, it has been shown
that you can solve the one measurement problem for the wave equation with
an arbitrarily boundary measurement region (in the case of Neumann bound-
ary conditions and Dirichlet measurements), but the corresponding inequality
analogousto (22) islogarithmic [5].

S Inverse coefficient problem for wave transmission problems

Notice that recently, Global Carleman estimates and application to one mea-
surement inverse problems for the wave equation were obtained in the case of
variable but still regular coefficients[4], [26]. Theinverse problem of retrieving
coefficients from a wave equation with discontinuous coefficients from bound-
ary measurements arise naturally in geophysics and more precisely, in seismic
prospection of earth inner layers[44].

Let © and Q1 C 2 be two open subsets of R? with smooth boundaries I and
I'; respectively and let 2, = Q \ Q1. To fix ideas we assume that 21 is simply
connected. We set:

Gy =1 @ ¥Eth (26)
a x € 2o

witha; > Ofor j =1, 2, for eachq € L*°(2), we consider u(g) asthe solution
of the following wave transmission equation

uy —div@@ax)Vu) + g(x)u =0 in Q=2 x (0,T)
u=g on x=Ix(0,T)

u(0) =ug in Q

u,(0) =u; IinQ.

(27)

The following inverse stability result holds (see the preprint [2]):

Theorem 5.1 ([2]). Assume Q1 is strictly convex and a; > ap > 0. Let U be a
bounded subset of L*°(R2), g € L*(Q2) andr > 0. If lug(x)| >r > 0a. e. inQ
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andu(q) € Hl(O, T; L™(82)), then there exists C = C(Q, T, ||q|lLe), U) >
0 such that:

du@)  dulq)
on on

lg —qlli2 = C
HY(0,T;L%(T"))

forall ug € Hol(SZ) and g € U.

This Theorem is proved by combining the Carleman inequality for the wave
equation with discontinuous coefficients proved in [2] and the method of Bukh-
geim-Klibanov explained in section 4. To thisend, system (27) isviewed astwo
wave equations with constant coefficients coupled with transmission conditions
(see[31]). Then, aglobal Carleman inequality isfound out for thistransmission
problem by working with variants of Carleman weights of the form (compare
with (4))

Q(x, 1) = —expre(x)), (28)

as 2 2 .
n(x) |[x —xo|c— Bt*+ M1 In Q1 x (=T,T)
r(x)2

p) =1 (29)
1 2 2 .
x — X0l — B2+ My in Q@ x (=T, T)

r(x)?

where M, and M, areconstantssuchthat My — M, = a1 —ap, r(x) = |xg—y(x)],
y(x) = I'1 N [xg, x] and 5 is some cut-off function with support in 2, centered
at xo. We aso combine the Carleman inequalities obtained from two different
interior points as we did in section 2, see aso Figure 1, left. The convexity
hypothesis on 2; comes from the fact that the positiveness of the Hessian of the
weight @ isrelated with the curvature of I'; with respect to xo.

There are a lot of important works concerning this inverse problem in the
case that awide class of measurements are available. |n these cases, microlocal
analysis has been used and it gives positive answer to the problem of retrieving
coefficients and discontinuity interfaces without restrictive hypothesis of con-
vexity of the interfaces or monotonicity of the speed of waves. These kinds of
results are fundamental for seismic prospection. For an overview on this subject
see [44] and the references therein, in particular related to thie study are the
works of [8], [17], [37], [38], [40].
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