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conductor devices from data obtained by the stationary voltage-current (VC) map. The related
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1 Introduction

In this paper we investigate the problem of identifying discontinuous doping
profiles in semiconductor devices from data obtained by the VC map for the
linearized stationary bipolar model (close to equilibrium). Two different methods
of data acquisition are considered:

1) Current flow measurements through a contact;

2) Pointwise measurements of the current density.

The related inverse problems correspond to the inverse problem for the DN
map with partial data.

We propose a framework to handle the inverse problems and analyze relevant
properties of the parameter-to-output maps. Moreover, we present a numerical
experiment for the case of pointwise measurements of the current density.
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188 SEMICONDUCTORS AND DIRICHLET-TO-NEUMANN MAPS

The paper is outlined as follows: In Section 2 we present the transient end
stationary drift diffusion equations. In the Section 3 we introduce the VC map
and derive the underlying model for the analysis presented in this paper, namely
thelinearized stationary bipolar case (close to equilibriuntvo inverse prob-
lems corresponding to different data acquisition procedures are introduced in
Section 4. Some regularity properties of the related parameter-to-output maps
are verified in this section. In Section 5 we present some numerical results for a
level set type iterative method and pointwise measurements of the current den-
sity. This experimentindicate that a single measurement may suffices to identify
the doping profile.

2 Dirift diffusion equations

The transient model

The basic semiconductor device equations consist of the Poisson equation (1a),
the continuity equations for electrons (1b) and holes (1c), and the current relations
for electrons (1d) and holes (1e).

div(eVV)=q(n—p—-0C) inQ2x (0, T) (1a)
divJ, =qin+ R) inQ2x (0, T) (1b)
divly, =q(-dp—R) inQx (0, T) (1¢)
Jh = q(DVn — upnVV) inQ2x (0, T) (1d)
Jp =09(=DpVp — puppVV) inQx (0, T). (1e)

This system is defined i x (0, T), whereQ2 C Rd (d=123)isado-
main representing the semiconductor device. Hémenotes the electrostatic
potential VV is the electric fieldE = |VV])), n and p are the concentra-
tion of free carriers of negative charge (electrons) and positive charge (holes)
respectively and,, and J, are the densities of the electron and the hole current
respectively. D, and D, are the diffusion coefficients for electrons and holes
respectively. u, and i, denote the mobilities of electrons and holes respec-
tively. The positive constants and q denote the permittivity coefficient (for
silicon) and the elementary charge (see Appendix).
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The functionR has the formR = R(n, p, x)(np — niz) and denotes the
recombination-generation rai@; is the intrinsic carrier density). THendgap
is relatively large for semiconductors (gap between valence and conduction
band), and a significant amount of energy is necessary to transfer electrons
from the valence and to the conduction band. This process is called genera-
tion of electron-hole pairs. On the other hand, the reverse process corresponds
to the transfer of a conduction electron into the lower energetic valence band.
This process is called recombination of electron-hole pairs. In our model these
phenomena are described by the recombination-generatioiRrafeequently
adopted in the literature are the Shockley Read Hall m&lgk(y) and the Auger
model (R ay), defined by

Rsru = [tTp(N+N) + 1p(P+ ni)]il ,

Rau = Cin+Cpp,

whereC,, Cy, 7, andr, are positive constants (see Appendix).

The functionC (x) models a preconcentration of ions in the crystalCgg) =
C.(x) — C_(x) holds, whereC,. andC_ are concentrations of negative and
positive ions respectively. In those subregiongah which the preconcentra-
tion of negative ions predominate (P-regions), we Hage) < 0. Analogously,
we define the N-regions, whef&(x) > 0 holds. The boundaries between the
P-regions and N-regions (whe@change sign) are callgzh-junctions

In the sequel we turn our attention to the boundary conditions. We assume
the boundarn® 2 of Q2 to be divided into two nonempty disjoint part82 =
dQN U 8Qp. The Dirichlet part of the boundadg2p models the Ohmic con-
tacts, where the potentisl as well as the concentrationsand p are prescribed.
The Neumann pard2y of the boundary corresponds to insulating surfaces,
thus a zero current flow and a zero electric field in the normal direction are
prescribed. The Neumann boundary conditions for system (1a)—(1e) read:

ﬂ(X,t)=8—n(X,t)=%(X,t)=0, 0Qn x [0, T]. (2)
ov ov av

Moreover, attQ2p x [0, T], the following Dirichlet boundary conditions are
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190 SEMICONDUCTORS AND DIRICHLET-TO-NEUMANN MAPS

imposed:

VX, 1) = Vo, 1) = U(X, t) + Ve () = U(x, t) 4 Ut In (nDn(_X)> (3a)

n(x,t) = Np(x) = % (C(x) +,/C(x)2 +4ni2> (3b)
p(X,t) = pp(X) = % (—C(x) +,/C(x)?%+ 4ni2> ) (3¢)

Here the functiorJ (x, t) denotes the applied potential, the constantrepre-
sents the thermal voltage, aMy; is given logarithmic function [4]. We shall
consider the simple situatici2p = I'g U I'y, which occurs, e.g., in a diode.
The disjoint boundary parts;, i = 0, 1, correspond to distinct contacts. Dif-
ferences irJ (x) between different segments @f2p correspond to the applied
bias between these two contacts. Moreover, the initial conditions0) > 0,
p(x, 0) > 0 have to be imposed.

The stationary model

In this paragraph we turn our attention to the stationary drift diffusion equations.
We disconsider the thermal effects and assume fudhgét = on/at = 0.
Thus, thestationary drift diffusion modes derived from (1a)—(1e) in a straight-
forward way. Next, motivated by the Einstein relatioBg = Uru, and

Dy = Urpup (a standard assumption about the mobilities and diffusion coef-
ficients), one introduces the so-call&tbtboom variablesi and v, which are
related to the originat and p variables by the formula:

-V (X)

n(x) = n; exp(VUL:)) ux), pXx) =n exp(U—T) v(X). 4)

For convenience, we rescale the potential and the mobilities, i.e.

V(X)
V(X) « U_T, Mn < QUrpn, pp < QUrpp.

It is obvious to check that the current relations now rdad= u,n; €¥Vu,
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Next we write the stationary drift diffusion equations in termg\éf u, v)

A2AV = §2(e'u—eVv) — C(x) in Q (5a)
divJ, = §*Q(V, u, v, x) (uv — 1) in Q (5b)
divly = —8*Q(V,u,v,x) (uv—1 inQ (5¢)
V=Vp = U+ W onaJoQ2p (5d)
u=up = e onap (5e)
v= vp = €&’ ondp (5f)
VWeov=Jy-v=17J-v=0 ona2y , (59)

where? := ¢/(qUr) is the Debye length of the devicé? := n; and the
function Q is defined implicitly by the relatioQ(V, u, v, X) = R(n, p, X).%

One should notice that, due to the thermal equilibrium assumption, it follows
np = n?, and the assumption of vanishing space charge densitymgives-C =
0, for x € daQp. This fact motivates the boundary conditions on the Dirichlet
part of the boundary.

It is worth mentioning that, in a realistic model, the mobilities and 1,
usually depend on the electric field streng#V/|. In what follows, we assume
thatu, andu , are positive constants. This assumption simplifies the subsequent
analysis, allowing us to concentrate on the inverse doping problems. As a matter
of fact, this dependence could be incorporated in the model without changing
the results described in the sequel.

Existence and uniqueness of solutions for system (5) can only be guaranteed
for small applied voltages. Therefore, it is reasonable to consider, instead of this
system, its linearized version around the equilibrium péln=s 0. We shall
return to this point in the next section, where the VC map is introduced.

3 A simplified model

In the sequel we make some simplifying assumptions on the stationary drift
diffusion equations introduced in Section 2 and derive a special case which will
serve as underlying model for the inverse problem investigated in Section 4.

INotice the applied potential has also to be rescalétk) < U (x)/U.
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192 SEMICONDUCTORS AND DIRICHLET-TO-NEUMANN MAPS

The linearized stationary drift diffusion equations (close to equilibrium)

We begin this paragraph by introducing ttteermal equilibriumassumption
for the stationary drift diffusion equations. This is a previous step to derive a
linearized system of stationary drift diffusion equations (close to equilibrium).
The thermal equilibrium assumption refers to the condition in which the semi-
conductor is hot subject to external excitations, except for a uniform temperature,
i.e. no voltages or electric fields are applied. It is worth noticing that, under the
thermal equilibrium assumption, all externally applied potentials to the semicon-
ductor contacts are zero (i.&l (x) = 0). Moreover, the thermal generation is
perfectly balanced by recombination (iR.= 0).
If the applied voltage satisfid$ = 0, one immediately sees that the solution
of system (5a)—(59) simplifies @/, u, v) = (V°, 1, 1), whereV° solves

AR2AVO= e —eV’'_C(x) inQ (6a)
VO = V(%) on 9Q2p (6b)
vWl.v=0 onaQy . (6¢)

In the bipolar model discussed below we shall be interested in the linearized
drift diffusion system at the equilibrium. Keeping this in mind, we compute the
Gateaux derivative of the solution of system (5a)—(5g) with respect to the voltage
U at the pointU = 0 in the directiorh. This directional derivative is given by
the solution(V, 0, ) of

WPAV =e"0+e 9+ @ +eV)WV  inQ (7a)
div (2n€” V) = Qo(V°, X)(0 + D) in Q (7b)
div (pe V" VD) = Qo(VO, X)(0 + 1) in Q (7¢)
V=h onap (7d)
0= —h onoaQp (7e)
v=h onoaQp (71)
VWO v=Vl.v=Vi-v=0 ona2y , (79)

where the functiorQg satisfiesQq(V?, x) = Q(V°, 1, 1, x).
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Linearized stationary bipolar case (close to equilibrium)

Inthis paragraph we present a special case, which plays a key rule inthe modeling
inverse doping problems relateddarrent flowmeasurements.
The following discussion is motivated by the stationary VC map
Yc: H¥?@Qp) — R.
U — (I + Jp) - vds
I
Here (V, u, v) is the solution of system (5) for an applied voltade This
operator models practical experiments wheaskage-current datare available,
i.e. measurements of the averaged outflow current densifyj an o2p.
The linearized stationary bipolar case (close to equilibriuogrresponds to
the model obtained from the drift diffusion equations (5) by linearizing the VC
map atU = 0. This simplification is motivated by the fact that, due to hys-
teresis effects for large applied voltage, the VC map can only be defined as a
single-valued function in a neighborhooddf= 0. Moreover, the following
simplifying assumptions are also taken into account:

Al) The electron mobility., and hole mobility.., are constant;
A2) No recombination-generation rate is present,Re= 0 (or Qg = 0).

An immediate consequence of our assumptions is the fact that the Poisson
equation and the continuity equations decouple. Indeed, from (7) we see that
the Gateaux derivative of the VC majx. at the pointU = 0 in the direction
h e H%¥2(3Qp) is given by the expression

X:(0h = fr (n€™0, — npe ¥d,) ds, (8)
1
where((, v) solve
div (une’’va) = 0 inQ (9a)
div(upeV'Vi) = 0 inQ (9Db)
ad= —h ona2p (9¢)
v=h onaQ2p (9d)
Vi-v=Vo-v =0 onoa2y (9e)
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andV? is the solution of the equilibrium problem (6); see Lemma 1.

Notice that the solution of the Poisson equation can be computed a priori, since
itdoes not depend dm The applicatiork (0) maps the Dirichlet data fqg, v)
to a weighted sum of their Neumann data and can be compared with the DN map
in the Electrical Impedance TomograplIT).

4 Inverse Problems for Semiconductors

We begin this section verifying that the stationary VC n¥g, introduced in
Section 3, is well defined in a suitable neighborhootlof 0.

Lemmal [[5], Proposition 3.1]. In (5), for each applied voltagg € B; (0)
C H®%?2@@Qp) withr > 0 sufficiently small, the currend - v € HY?(I"y) is
uniquely defined. Furthermor&c : H¥?(0Qp) — HY?(I'y) is continuous
and continuously differentiable iB, (0). Moreover, it's derivative in direction
h € H3¥2(32p) is given by the operatoE(. (0) defined in(8).

As a matter of fact, we can actually prove that, siriéev) in (9) depend
continuously (inH?(2)?) on the boundary datd € H¥*?(3Qp), it follows
from the boundedness and compactness of the trace operatdd?(Q) —
HY2(I'y) that = (0) is a bounded and compact operator.

Lemma 1 establishes a basic property to consider the inverse problem of recon-
structing the doping profil€ from the VC map. In the sequel we shall consider
two possible inverse problems for this map.

Current flow measurements through a contact

In this first inverse problem we assume that, for e@clthe output is given by
¥ (0)U; for someU;. Arealistic experiment corresponds to measure, for given
{U; }?zl, with ||U; || small, the outputs

{ZcOU; | j=1,--- N}

(recall that=c(0) = (V9 1, 1)). In practice, the functiond; are chosen to be
piecewise constant on the cont&gtand to vanish o'g. From the definition of
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>¢(0) we derive the following abstract formulation of the inverse doping profile
problem for the VC map:
FIC) =Y, (10)

where
1) {U; };\':l C H%?2(3Qp) are fixed voltage profiles satisfying;|r, = 0;
2) Parameter.C = C(x) € L%(Q) =: X;
3) Output: Y = {Z¢(OU;}_, € RN = V;
4) Parameter-to-output mags : X — V.
The domain of definition of the operatéris
D(F) := {C € L®(Q); Cn < C(x) < Cy, a.e. inQ} ,

whereC,, andC,, are suitable positive constants.

The inverse problem described above corresponds to the problem of identify-
ing the doping profileC from the linearized stationary VC mapt= 0 (see
bipolar case in Section 3).

The non-linear parameter-to-output operafois well defined and Fréchet
differentiable in its domain of definitio® (F). This assertion follows from
standard regularity results in PDE theory (see, e.g., [4], Propositions 2.2 and 2.3).

It is worth noticing that the solution of the Poisson equation can be computed
a priori. The remaining problem (coupled system (9) §6rv)) is quite sim-
ilar to the problem of EIT. In this inverse problem the aim is to identify the
conductivityg = q(x) in the equation:

—div(gVu) = f inQ,

from measurements of tHairichlet-to-Neumann mapvhich maps the applied
voltage u|,q to the electrical fluxqu,|se. The applicationX;(0) maps the
Dirichlet data ford ando to the weighted sum of their Neumann data. It can
be seen as the counterpart of electrical impedance tomography for common
conducting materials.
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Pointwise measurements of the current density

In the sequel, we investigate a different inverse problem related to the VC map.
Differently from the previous paragraph, we shall assume that the VC operator
maps the Dirichlet data far andd in (9) to the sum of their Neumann data, i.e.

Yc: H¥2@Qp) — HY2M)
U = G+ vin

where functions/, 0, v, J,, J, andU have the same meaning as in Section 3.
It is immediate to observe that the Gateaux derivative of the VC Ew@pt the
pointU = 0 in the directiorh € H¥?(3Qp) is given by

e (Oh = (uneit, — upe™d,) Ir, (11)

where(Q, v) solve system (9). Notice that, for each applied voltegehe VC

map associates a scalar valued function defined;onn this case, the outputs
¥¢(0)U; are in a data space which is larger than in the case of current flow
measurements.

Again we can derive an abstract formulation of type (10) for the inverse doping
profile problem for the linearized stationary VC map with pointwise measure-
ments of the current density. The only difference to the framework described in
the previous paragraph concerns the definition of the Hilbert spaadich is
now defined by:

3) Output: Y = {Z¢ (U}, € L2IpN = V;

The domain of definition of the operatér, remains unaltered.

It is immediate to observe that the model concerning current flow measure-
ments carries less information about the unknown parameter than the model
related to pointwise measurements does. In so far, the inverse problem related
with the first measurement type is harder to solve.

5 A numerical experiment

In this section we apply numerical methods to solve an inverse doping profile
problem related to the VC map. We consider the stationary linearized bipolar
model with pointwise measurements of the current density.
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In the sequel we consider the bipolar model introduced in Section 3. It follows
from the assumptiolQ = O that the Poisson equation (6a) and the continuity
equations (9a), (9b) decouple. The inverse doping profile problem corresponds
to the identification ofC = C(x) from pointwise measurements of the total
current densityd at the contacl’;, namely

J|F1 = (Jn + Jp)|F1 = (/vbnevbiav - Mpe_vbiﬁv) |F1

(compare with the Gateaux derivative of the VC nigp at the pointU = 0
in (8)). Here(V°, 0, 1) solve, for each applied voltadé, the system (6), (9),
with h substituted byJ.

Notice that we can split the inverse problem in two parts: First we define the

functiony (x) := €'°®, x € Q, and solve the parameter identification problem

div(unyVl) =0 inQ div(upy Vi) =0 inQ
0=-UX) onoQ2p v =U(X) ondQp (12)
Vi-v=0 ona2N Vo-v=0 ona2y

for y, from measurements @fihy 0, — Mpyflﬁv)m. The second step consists
in the determination of in

CxX) = y(X) —ytx) =22 Adny(x), x € Q.

Since the evaluation o from y can be explicitely performed in a stable way,
we shall focus on the problem of identifying the function parametar (12).

Summarizing, the inverse doping profile problem in the linearized bipolar
model for pointwise measurements of the current density reduces to the identi-
fication of the parameter in (12) from measurements of the DN map

Ayt H¥20Qp) — HY3Ty).
U = (a0 — tpy 00) Iy

If we take into account the restrictions imposed by the practical experiments
described in Section 4, it follows:

i) The voltage profilet) € H¥2(9Qp) must satisfyJ |r, = 0;
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ii) The identification ofy has to be performed from a finite number of mea-
surements, i.e. from the data

(U}, A, U], € [H¥2To) x HY2rp]". (13)

For this experiment concerning pointwise measurements of the current density,
we assume that only one measurement is availableN.e= 1 in (13). What
concerns the numerical implementation, we applied an iterative method of level
set type to solve the identification problem foin (12) (see [19, 15, 20]). The
domainQ cC R?is the unit square, and the boundary parts are defined as follows

= {x,1; xe (@D}, T := {(x,0; xe (0,1},
QN = {0, y); ye O, D}U{L y); ye (0, D}.
The fixed inpulJ, is chosen to be a piecewise constant function supportggl in

1, |x—05/<h

UXx) =
*x) 0, else

The doping profile to be reconstructed is shown in Figure 1(a). In Figure 1(b)
the voltage sourct) (applied atl’g) and the corresponding solutignof (12)

are shown. In these pictures, as well as in the forthcoming dhés,the lower

left edge and™ is the top right edge (the origin corresponds to the upper right
corner).

In Figure 2 we present a numerical experiment for the bipolar model with
pointwise measurements of the current density. Here exact data is used for the
reconstruction of the p-n junction in Figure 1(a). The pictures show plots of the
iteration error after 1, 10 and 100 steps of the level set method respectively.

What concerns the quality of the reconstruction of the P-N junction, the level set
approach considered in this paper brings much better results than the Landweber-
Kaczmarz approach implemented in [4]. A possible explanation for the different
performance of these methods is the fact that the Landweber-Kaczmarz approach
does not take into account the assumption that the coeffigien{12) for such
application is a piecewise constant function. The Landweber-Kaczmarz method
tries to identify a real function defined &, which is a much more complicated
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.200e+01
.191e+01
.182e+01
173e+01
.164e+01
.155e+01
145e+01
.136e+01
.127e+01
.118e+01
.109e+01
.100e+01

. 4

.100e+01
.809e+00
.818e+00
.727e+00
.636e+00
.545e+00
.455e+00
.364e+00
.273e+00
.182e+00
.909e-01
.000e+00

Exact Coefficient

i
mwwwmwm“m =
i —
i

(@)

Solution of direct problem: Source

Figure 1 — Picture (a) show the doping profiles to be reconstructed in the numerical

(b)

experiments.
object than the original unknown curve (the P-N junction). Due to the nature of

the level set approach, it incorporates in a natural way the assumptiop ihat
piecewise constant if2.
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Step ....1: Level Set Method

.900e+01
.818e+01
.736e+01
.655e+01
.573e+01
.491e+01
.409e+01
.327e+01
.245e+01
.164e+01
.818e+00
.000e+00

Step ...10: Level Set Method
.900e+01

.818¢+01
.736e+01
.655e+01
.573e+01
.491e+01
.409e+01
.327e+01
.245e+01
.164e+01
.818e+00
.000e+00

Step ..100: Level Set Method
.900e+01

.818e+01
.736e+01
.655e+01
.573e+01
.491e+01
.409¢+01
.327¢+01
.245e+01
.164e+01
.818e+00
.000e+00

Figure 2 — Experiment for the bipolar model with pointwise measurements of the current
density: Reconstruction of the p-n junction in Figure 1(a). Evolution of the iteration
error for exact data and one measurement of the DN magi.e. N = 1in (13)).
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Appendix

Properties of silicon at room temperature

Parameter Typicalalue

€ 119 ¢g

Un ~ 1500cnfV—1st
Wp ~ 450 cntV-tst
Cn 28x 103 cmb/ s
Cp 9.9 x 1032 cmP/ s
. 10 %s

Tp 10°s

Table 1 — Typical values of main the constants in the model.

Relevant physical constants:

Permittivity in vacuum:ey = 8.85 x 10-**As V-tcm?;

Elementary chargeq = 1.6 x 10~ °As.
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