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Abstract. We consider the three dimensional electromagnetic inverse scattering problem
of determining information about a buried coated object from a knowledge of the electric and
magnetic fields measured on the surface of the earth corresponding to time harmonic electric
dipoles as incident fields. We assume that the buried object is a perfect conductor that is (possibly)
partially coated by a thin dielectric layer. No a priori assumption is made on the extent of the
coating, i.e. the object can be fully coated, partially coated or not coated at all. We present an
algorithm based on the linear sampling method and reciprocity gap functional for reconstructing
the shape of the scattering obstacle together with an estimate of the surface impedance of the

coating.

Mathematical subject classification: Primary: 35R30, 35Q60; Secondary: 35P25;
78A45.

Key words: inverse scattering, mixed boundary conditions, budbgcts.

1 Introduction

The use of electromagnetic fields to detect buried objects has a long history and
continues to be an active area of research [3], [7], [8]. Of particular interestis the
use of such methods to detect chemical waste deposits, examine urban infras-
tructure and locate landmines. However, from a practical point of view, there are
two main reasons why such imagining problems remain basically unresolved.
The first of these problems is the difficulty of distinguishing the scattered field
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270 TARGET IDENTIFICATION OF BURIED COATED OBJECTS

due to the target from the scattered fields due to the earth, the antenna and, in
particular, the air-earth interface. A second problem is that the material proper-
ties of the target are in general unknown. For example, a landmine can be made
of wood, metal or plastic whereas a rusted barrel of chemical waste deposits is
typically modeled by a complicated mixed boundary value problem involving a
dielectric of unknown permittivity. Due to such problems, traditional methods
of imagining such as the use of weak scattering approximations and nonlinear
optimization techniques remain problematic.

In recent years a new class of electromagnetic imaging techniques has been
developed which has the potential of overcoming the problems mentioned in the
above paragraph. These new techniques can be described as “qualitative meth-
ods in inverse scattering theory” [4] and have a number of remarkable features
which make them attractive for the imaging of buried objects. We will focus
our attention on the most popular of these qualitative methods called the linear
sampling method [6], [11], [15]. The remarkable feature of the linear sampling
method is that 1) it is a linear method that does not ignore multiple scattering
effects and 2) it determines the shape of a target without requiring any a pri-
ori knowledge of the target’s physical properties. However, until very recently,
the implementation of the linear sampling method for a nonhomogeneous back-
ground media required a knowledge of the Green'’s function for the background
media. This is obviously an unattractive feature if it is desired to use this method
for the detection of buried objects, particularly if the scattering effects due to the
antenna play a significant role.

In order to overcome the problem of needing to compute the Green'’s function
for the background media, a new version of the linear sampling method based on
the reciprocity gap functional was introduced by Colton and Haddar [10] for the
scalar case and by Cakoni, Fares and Haddar [7] for the vector case. However, in
imagining nothing is free and the price paid for avoiding the need to compute the
Green’s function is that one now needs to measure both the electric and magnetic
fields corresponding to time harmonic electric dipoles as incident fields. In the
case when the buried object is a perfect conductor or a penetrable, anisotropic
inhomogeneous medium, the efficaciousness of this approach to the imaging of
buried objects was shown in [7]. The purpose of this paper is to consider the case
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when the buried object is a perfect conductor that may be partially coated by a
thin dielectric layer. The inverse scattering problem in this case is considerably
more complicated than the simple case of a perfect conductor since itis unknown
a priori whether or not the target is coated. In particular, the inverse problem
is now to not only determine the shape of the target but also whether or not
the target is coated and if so the value of the surface impedance of the coating
[13]. Asin [7], we will consider the case when the electric and magnetic fields
are both known on the entire boundary of an absorbing homogeneous region of
the background media that is known a priori to contain the target. The case of
an object buried in the earth is then handled by assuming that the part of the
boundary below the surface of the earth is far away from the incident sources
and hence we can assume that the total electric and magnetic fields are very small
on this portion of the boundary.

It gives the authors particular pleasure to present our work on the detection of
buried objects using electromagnetic fields in the proceedings of a conference
dedicated to the twenty fifth anniversary of Alberto Calderon’s seminal paper on
the same topic [8]. As is seen by the papers in this volume, Calderon’s paper of
1980 has been a major influence not only on our own work but also on the work
of many other mathematicians and scientists working in diverse disciplines. We
are happy to be part of this celebration!

2 Formulation of the direct and inverse scattering problems

We consider the scattering of a time-harmonic electromagnetic field of frequency
w by a scattering object embedded in a piecewise homogeneous background
medium inR3. We assume that the magnetic permeabijligy> 0 of the back-
ground medium is a positive constant whereas the electric permitiyiy

and conductivityo (X) are piecewise constant. Moreover we assume that for
IX| =r > R, for R sufficiently largeo = 0 ande(X) = ¢o. Then the electric

field € and magnetic fielt in the background medium satisfy the time-harmonic
Maxwell’s equations

V x & —iwpneH =0, V x H + (jwe(X) — o (x))€ = 0.
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272 TARGET IDENTIFICATION OF BURIED COATED OBJECTS

After an appropriate scaling [12] and elimination of the magnetic field we now
obtain the following equation for the electric fiefdn the background medium

curlcurl& — k?n(x)& = 0,

where

&= J—le_o& k = eouow?® and n(x) = 6—10 (e(x) +i ?) .
Note that the piecewise constant functiofx) satisfiesn(x) = 1 forr > R,
R(n) > 0 andI(n) > 0. The surfaces across whialix) is discontinuous are
assumed to be piecewise smooth and closed.

Now let D be a scattering object embedded in the above piecewise homoge-
neous background such thi&t \ D is connected. We suppose that the boundary
aD of D is piecewise smooth and denote byhe outward unit normal. Fur-
thermore, we assume that the boundady= I'p U IT U T, is split in two open
disjoint partsI'p andT"; havingIT as their possible common boundarydd.

The domainD is the support of a perfect conductor (possibly a disconnected
object) that is partially coated on a portidh of the boundary by a very thin
layer of dielectric material. We assume for sake of presentation that the coating
is homogeneous. Letthe positive constant 0 describe the surface impedance

of the coating. The incident field is considered to be an electric dipole located
atxo € A with polarizationp € R3 given by

eiks\X—XO\

i
Ee(X, Xo. P, ks) = ¢ ~curl curl = —— .
S

wherek? = k?ngs andA is an open surface (to be made precise later on) situated in
alayer with constantindex of refractiog. We denote by (X, Xo) the free space
Green’s tensor of the background medium and deffine) := E' (X, Xo, p) =

G(Xx, Xo) p which satisfies

curlcurlE' (x) — K>n(X)E' (x) = pS(x — Xg)  in R3, 2)
wheres denotes the Dirac distribution. Note tHat can be written as
E'(x) = Ee(X, Xo. P, Ks) + E5(X) 3)
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whereE; = EJ(, Xo, p) is the electric scattered field due to the background
medium.

We now consider a bounded domaksuchthat D is contained ire2 and the
open surface is contained inR3 \ Q. Let 32 denote the piecewise smooth
boundary of©2. Note thatA or a portion of A may be a subset df2. We
assume the medium inside the dom&ircontaining the scattering objebt is
homogeneous with constant index of refractignand definek? = k?n, (see
Fig. 1).

Xo
\/// \\\\
w @ 9 ;
\\\ /

Figure 1 — Example of the geometry of the scattering problem.

Then the total electric fiel& = ES + E', whereES is the scattered field due to
the obstacld, satisfies the following equation and mixed boundary conditions:

curl curlE — k*>n(x)E = 0 inR3\ (D U {xo}) (4)
vx E=0 onl'p (5)
v x CUrE —ikpA(v x E) x v =0 onTl. (6)

In addition, the scattered fielS satisfies the Silver Miller radiation condition

lim (curlE® x x —ikrE®) =0 (7)
uniformly in X = x/|X|, r = |X|.
In order to formulate precisely the above scattering problem we are concerned
with throughout this paper, we need the following spaces:

H(curl, D) := {ue (L%D))%: V x ue (L¥D))*}
LZ@D) = {ue (L?%@D)*: v-u=0 on aD}
LZ(Ty) := {ulr,: ue LZ@D)}.
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274 TARGET IDENTIFICATION OF BURIED COATED OBJECTS

We introduce the space
X(D,Ty) :={ue H(url, D) : v xulr, € LAT))} (8)
equipped with the norm

2 2 2
||u||X(D,1"|) = ”u”H(curL D) + ”U X u”|_2([~|)- (9)

For the exterior domaiD, we define the above spaces in the same way for
every D¢ N Bg, with Bg a ball of arbitrary radiu®k and denote these spaces by
Hioc(curl, De) and X oc(De, T'2), respectively. The tracesx u|;p andv x (U x
v)|sp of u € H(curl, D) (oru € Hoc(curl, D)) are in the Hilbert spaces

Hd_iv%(aD): {UE(H‘%(E)D))3, v-u=0, divaDueH—%(aD)}

-3 . -3 3 -1
Hei@D) = fue (H3(3D)%, v.u=0, culhpueH3GD)]

respectively, with cugb denoting the surface curl. Note that by an integration

_1 1
by parts we can define a duality relation betwegp’(3D) and H_,;(dD)
(see [17] in the case when the boundary is smooth, and [2] in the case when
the boundary is piecewise smooth). Finally, we introduce the trace space of

X(D,I'))onI'p by

2
YD) := {h e (H-Y2("'p)3 : Ju € Ho(curl, Br), ~ ~ ulr, € LE }

and h=v xulry
where the balBg containsD and Hg(curl, Bg) is the space of functions in
H (curl, Bg) satisfyingv x u|s, = 0. Obviously,Y (I'p) is a Banach space with
the norm

100 gy = inf {101 ur ) + 10 % U2 ] (10)

where the infimum is taken over all functionse Hg(curl, Bg) such thatv x
ulr, € Ltz(I‘. yandh = vxulr,. Y(I'p) is also a Hilbert space and its dual space
Y'(I'p) can be precisely characterized. In particular a funcianY (I'p)’ can
be extended to a functiop € Hc_uﬁ (aD) defined on the whole boundary and
satisfyingo|r, € L2(T")) (see [6] for details).

The direct scattering problengan be formulated as giveR' defined by (3)
find ES = E — E' € X(R®\ D) satisfying (4)—(7). In a similar way as in [6] it
can be shown that the direct scattering problem has a unique solution.
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Remark 2.1. It is also possible to consider the problem of objects buried in
an unbounded multi-layer medium. In this case, the radiation condition and
mathematical analysis of the forward problem become more complicated (see
[14] for the case of two layered medium). However the following analysis of the
inverse scattering problems remains the same.

In order to formulate théverse problenwe assume thdioththe tangential
componenty x E andv x curl E of the total electric fieldE = E(-, Xg, p)
and magnetic fieldH = %curl E, respectively, are known a2 for all point
sourcessp € A. Furthermore, without loss of generality, we assume thé a
closed surface surroundirfg situated in a layer with index of refraction. By
an analyticity argument the following analysis also holds true if the point sources
are located on an open analytic surface provided it can be extended to a closed
(analytic) surface as above.

Theinverse scattering problemwe are interested in is to determimeand i
from a knowledge of the tangential components E andv x curl E of the
total electric fieldE = E(-, Xg, p) and magnetic fieldd = %curl E measured
on a<2 for all point sourcesp € A and two linearly independent polarizations
p tangent toA at Xo. Herev denotes the outward unit normal &52. We
remark that in what follows is always the outward unit normal to the surface
under consideration unless otherwise stated. We remark that by modifying the
approach in [12] it is possible to prove that the above data uniquely determines
D and than the uniqueness fofollows in the same way as in [16]. Here we are
mainly concern with the solution of the inverse problem.

3 The reciprocity gap functional

LetE = E(-, Xo, p) = E3(-, X0, P) + G(-, Xo)p andH = 1/ik curl E be the

total electric and magnetic fields, respectively, corresponding to the scattering
problem (4)-(7). Note that we suppress the dependence of the total field on
the wave numbeks of the medium where the point source is located. For any
functionW e H (curl, 2), we can define thgap reciprocity functionaby

R(E,W) = (vx E)-curlW — (v x W) -curlE ds (12)
IR
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276 TARGET IDENTIFICATION OF BURIED COATED OBJECTS

SinceE € H{(curl, ), the integral is interpreted in the sense of the duality
betweenHJiv%(aQ) and HCL%(BQ). Note thatE depends orx, and hence so
doesR. Next, in order to conneck with the scattering problem, we define the
subspacél(2) ¢ H(curl, ) by
H(Q) := {W e H(eurl, Q) : Wr e LE(I),
curlWr € LAT)), curlcurlW — kKiW = 0}

whereU+ := (v x U) x v. The reciprocity gap functional restricted Hx<2)
can be seen as an operaRr H(Q) — L2(A) defined by

R(W)(Xo) = R(E(-, Xo, P(X0)), W) p(Xo) (12)

forall xg € A.

In order to derive an integral equation frdR) we need to use a parametric
family of solutions inH(£2) which satisfy certain properties to be made precise
later. In particular, we consider the electric Herglotz functiég defined by

Hy(x) := / g(d)eg 9™ ds(d), gelLi(S (13)
2
whereS? is the unit sphere. Now, letting

Ee(X, 2,0, ky) = :zcurlx curly g ®(x, z, ky), ge R3 (24)

denote the electric dipole correspondingkip we look for a solutiong €
L2(S?) of
R(E, Hg) = R(E, Ee(:, z,q, kp)). (15)

Alternatively, we can define the single layer potential by

(Ap)(x) := curl curlf~ e(Y)P(X, Y, ko) ds, pel? (A) (16)
A

where ,
1 gkolx=yl

qD(X7 y’ kb) = E |X—y| P

X#Y,

andA is a regular part of the boundary of some simply connected domain con-
taining Q2 in its interior, and look for a solutiop € L3, (A) of

TR(E’ AQD) = :R(Ea Ee(" Z’ qa kb)) (17)
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Note that bothHg, g € L2(S?)} and{Ag, ¢ € L3, (A)} are subsets dfl(<).
To fix our ideas, we use in this paper only electric Herglotz functions. Hence,
the reciprocity gap functional method is based on the characterizatiorirom
the behavior of a solutiop of (15) for different sampling pointg € Q. We
also emphasize that the background Green'’s fundion xq) p does not appear
in (15).
To study the integral equation (15), which is ill-posed siRtis a smoothing
operator, we first study the propertiesif

Lemma 3.1. Assume thal’| is not empty. Then the operat® : H(Q2) —
L2(A) defined by(12) is injective.

Proof. RW = 0 meansR(E(-, Xg, p(X0)), W) = 0 for all (xo, p(Xo)). Since
both E andW satisfy Maxwell's equation if2 \ D, we have, using the boundary
condition forE onaD,

0 = —/(vx E)-curlW— (v xW)-curlEds
oD

= /(uxW)-curIEds

I'p

+/E-[vxcur|W—ikbA(va)xv]

I

where first integral is interpreted in sense of duality betwé@ry) andY (I'p)’
while the second integral in the senseldf(I';). Next let E be the unique
solution to (see [6])

curlcurlE — k>’n(x)E = 0 inR3\ D
vx (E—W)=0 onl'p

v x curl(E — W) — ikpAlv x (E —W)] x v =0 on T
lim (curIE X x—ikrE) =0.

r—oo
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278 TARGET IDENTIFICATION OF BURIED COATED OBJECTS

Then from the above problem, the boundary conditions for the total Eeld
E® + G(-, Xo) p and (18) we have that

0 = fE-[vxcurIE—ikbk(vxE)xv]ds—/(vx E) - curlEds
I'p

ry

= /(uxE)-curlE—(vxE)-curIEds
aD

= /[v x (ES+ G(-, Xo)p)] - curlE — (v x E) - curl (ES + G(-, Xo)p) ds.
aD

Now sinceES andE are both radiating solutions to the same equation the above
equation simplifies to

0= /(v x G(-, Xo)p) - curlE — (v x E) - curlG(-, xp)p ds
D (18)

= —p- E(X)

Sincep is an arbitrary polarization on the tangent planeitat xq, we obtain

v x E(xg) = 0 for xg € A. Furthermore, sincé& is a radiating solution

to Maxwell's equations outside the domain boundedAywe conclude by

the uniqueness of the scattering problem for a perfect conductor (c.f. [12])
that E = 0 outside the domain bounded by, Then the unique continuation
principle implies thatE = 0 outsideD, whence bothy x W = 0 onTp and

v x curlW —ikyA (v x W) x v = 0. Finally from the uniqueness of the interior
mixed boundary value problem fa% we conclude tha®w = 0 which proves

the lemma. O

Lemma 3.2. Assume thal’| is not empty. Then the operat® : H(2) —
L2(A) defined by(12) has dense range.

Proof. Considers € L?(A) and assume that

(RW, B)2(ny =0 forall W e H(Q).
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From (12) and the bi-linearity dR one has
(RW, B) 2, = / R(E( %o, a (%)), W) dS(x) = R(E, W),

A

where
£00 = [ Ex 0 a(x0) dstxo) (19)
A
anda = (B8 - p) p. Using the second vector Green’s formula and the boundary
conditions forE one concludes that
0=R(E,W) = —/(v x W) -curl€ds
I'p

(20)

— / E-[vxcurlW—ikpi(v x W) x v]ds
Iy

for all W € H(S2), where again the firstintegral is interpreted in sense of duality

betweenY (I'p) and Y (I'p)’ while the second integral in the senseL(frf(D).

SinceH(2) contains the Herglotz wave functions given by (13), from Theorem

2.8 in [6]and the well posedness of the interior mixed boundary value problem

one has that the set

{v X W(rp, v x curlW — ikpA(v x W) x v|p,, forall W e H}
is dense inY (I'p) x L3(T"}). Therefore
vx &=0o0onI"y, and v xcurl€ =0o0onTp.

The boundary conditions fdt imply that bothv x € = 0 andv x curl€ =0
on dD. This means that the extension &by 0 insideD satisfies Maxwell’s
equations inside the domain boundedbwith the indexn set equal to, inside
D. From the unique continuation principle one has that 0 inside the domain
bounded byA and outsideD. Noting that

Ex) = / (E3(X, Xo, & (X0)) + G(X, Xo)ax(X0)) dS(Xo)
A

one concludes thdt x v is continuous acrosa. The uniqueness theorem for
the exterior problem for Maxwell’s equations with boundary data& = 0 on

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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A implies that€ = 0 outside the domain bounded byas well. Finally, from
the jump relations of the vector potential acra@s§l2] we have that

O=curlé|p+ —curlé|p,- = —a on A.

Hence(B - p) p = 0 for all p tangential toA which implies thats8 = 0. This
ends the proof. d

Remark 3.1. Itis easy to prove (see e.g. Theorem 4.8 in [4]) that the operator
R:H(Q) — L2(A) is compact.
4 Solution of the inverse problem
We now investigate the solvability of
R(E, Hg) = R(E, Ee(-, z,0, kp)) (21)

with respect tog whereEq(-, z, q, kp) is given by (14) andHg is the electric
Herglotz function with kernedy given by (13). To this end, we recall the interior
mixed boundary value problem fare D

curlcurlE; — kZE, =0 in D (22)
v x[E;— Ee(+, 2,9,ky)] =0 onI'p (23)
v x cUrl[E, — Ee(-, 2, q, k)]

—ikpAlv x (E; — Ee(:, 2,0, kp)] x v =0 onT,. (24)

It is shown in [6] that there is a unique solutid®y € X (D, I'}) of the above
problem. We can now prove the following result:

Theorem 4.1. Assume thafl’, # @ and letE = E(-,Xo, p) and H =
1/ik curl E be the total electric and magnetic fields, respectively, correspond-
ing to the scattering probler)—(7). Then

1. Forz e D and a givere > 0, there exists @S € L2(S?) such that

and the corresponding electric Herglotz wave functiég; converges to
the solution 0f22)—(24) in X(D, T'}) ase — 0.
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2. For a fixede > 0, we have that

lim || Hgs =00 and Iim < = 00.
z—>aD“ 9z lxo.r) Z—>3D”gZ||Lt2(SZ)

3. Forze R®\ D and a givere > 0, everygs € L2(S) that satisfies
IR(E, Hgy) — R(E, Ee(-, 2,0, ko))l 2n) < €
is such that

lim |Hgsllxo.ry =00 and lim [g5ll 2 = 0.
e—0 e—0

Proof. Letz e D. SinceW e H(2) andEc(:, z q, ky) satisfy curlcurW —
keW = 0inQ\ D, integrating by parts and using the boundary condition for the
total field we have that

R(E’ W) - :R(E’ EE('v Z, q’ kb))

=—/ (v xW —v x Ee(, 2,9,kp)) -curlE ds
D

From the proof of Lemma 3.1 we see tHR(E, W) = R(E, Ee(-, Z,q, kp))
has a unique solutiolV if and only if there exists &V e H() such that
vXxW—vx Ee, 2,q9,k) =00onTp andv x curl[E; — Ee(-, Z,q, kp)] —
ikpA[v x (E; — Ee(+, 2,09, kp)] x v = 0 onT'} which is in general not true.
However in [6], Theorem 2.8, it is proved that the family

{v x HQ|r,, v x curlHg — ikpA(v x HQ) x v|r,, g € Ltz(SZ)}

is dense inY(I'p) x LtZ(F.). Hence, for everye > 0 there exists a Her-
glotz functiondgy such thatv x JHgs approximates x Ee(-, z,q) with re-
spect to theY (I'p) norm andv x curl Hg — ikpA (v x Hg) x v approximates
v x curl Ee(-, Z, d, kp) —ikpA (v x Ee(:, Z, , kp)) x v with respect to th& 2(T"))
norm. In particular, from (18)g; is an approximate solution to (21) attfgs
converges to the solution of (22)—(24) in thk&D, I'}) norm ase — 0. Next,
sincev x Ee(, 2,q) — oo intheY((I'p) norm andv x curl Ec(-, z, q, ky) —
ikph(v x Ee(+, 2,0, kp)) x v — oo in the L3(T"}) norm asz approaches the

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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boundary, we obtain from the well posedness of the interior mixed bound-
ary value problem that, for a fixed > 0, lim,sp |H0s||xm.r,) = oo and
limzsp 1197 1lL.22) = o0. Now we considerz € \ D and letg¢ and its
corresponding Herglotz functidigs be such that

”R(E’ ng;) - :R(E’ Ee('a Z, q’ kb))||L2(A) < €. (25)

Note that from Lemma 3.2 we can always find sucfi(g;. Assume to the
contrary that||JHg; llxp,rp) < C where the positive constad is indepen-
dent ofe. From the trace theorems we have that the mixed tracEgf is

also bounded in the corresponding norms. Noting that the total field can be
written askE(-, Xo, p) = E3(-, Xo, pP) + G(-, Xo) p and integrating by parts, we
obtain that

R(E, Ee(X,2,q,kp)) = / (v x E3(X, X0, P)) - curl Ee(X, z, q, kp) ds;
Q2

— (v x Ee(X, z,q, ky)) - curl E3(X, Xo, p) ds;
0

+ (v x G(X, Xo) p) - curl Es(X, z, q, kp) ds;
aIQ

- (v x Ee(X, 2,0, kp)) - curl G(x, Xo) p ds..
0

Due to the symmetry of the background Green’s functiBfi(x, xo, p) as a
function of xo solves cul, curly, ES(X, Xo, p) — k?n(X0) ES(X, Xo, p) = 0 in

the domain bounded by anddD. Hence the first two integrals in the above
equation give a solutioW/(xp) to the same equation as the one satisfied by
E3(-, Xo, p), Wwhereas the last two integrals add up{8(z, xo) p by the Stratton-
Chu formula and the fact thaE.(x, z, q, kp) is the fundamental solution of
curlcurlE — k2E = 0. On the other hand we have that

R(E,Hg) = —/(u x Hgg) - curlEds
I'p

(26)
— / E - [v x curlHgg — ikpA (v x Hg) x v]ds

Iy
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Combining the above equalities we obtain that
R (E, Hdg) — R(E, Ee(-, 2,0, ky)) = —/ (v x Hgg) - curlEds
I'p
- / E . [v x curlHgs — ikpA (v x Hgs) x v] ds 27)
Iy

— W(Xo) + G(z, Xo) p.

Now since||HdS lIxp.r;) < C there exists a subfamily, still denoted Bygs,
that converges weakly to\d € X(D, I')) ase — 0 and therefore x J{g; and
v x curl Hgs —ikpi (v x HgS) x v converges weakly to x V andv x curl V —
ikpA (v x V) x v in the duality pairingY (I'p), Y (I'p)’ andL(T"} ), respectively.
Let us set

W(xo) = lim R (E, Hg;)

e—0

= —/ (v x V) -curlE(:, X, p)ds
I'p

— /E-[vxcurIV—ikbA(va)xv]ds, Xg € A.

Ty

From (25) we now have that
W(x0) = W(X)) + G(Z X0)p X € A. (28)
SinceW(xo) andW(xo) can be continued as radiating solutions to
curly, curly, E3(X, Xo, p) — k2n(xo) ES(X, X, p) = O

outside the domain bounded ky we deduce by uniqueness and the unique
continuation principle that (28) holds truelk? \ (D U {z,}). We now arrive at

a contradiction by lettinggo — z. Henced{(g; is unbounded in theX(D, I'y)
norm asc — 0, which proves the theorem. O

Theorem 4.1 provides a characterization of the bound&rypf the scattering
objectD. Unfortunately, since the behavior #fg; is described in terms of a
norm depending on the unknown regibng; cannot be used to characterlze
Instead, we characterize the obstacle by the behavigy.oih particular, given
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a discrepancy > 0 andgg the e-approximate solution of (21), the boundary
of the scatterer is reconstructed as the set of painthiere theL?(S?) norm
of g5 becomes large. In practice, since (21) is severely ill-posed due to the
compactness of the operat®; one uses regularization methods to obtain a
solution to (21). Obviously, an important question is whether this regularized
solution will exhibit the properties of the-approximate solution provided by
Theorem 4.1. In general, this question is still open (However, see [1] for an
answer to this question in the case of the scalar problem for a perfect conductor in
homogeneous background using far field data). Numerical examples for similar
reconstruction methods have shown in these cases that the computed regularized
solution behaves in the way that the theory predicts [7], [9], [11], [15]. Note that
the method determinds without any a priori knowledge dfp, I'; or A.

Assuming now thabD is known, we want to determine the surface impedance
A by making use of the approximate solutigrof the equation (21). To this
end letz € D and E; the unique solution of (22)—(24). Defind, := E, —
Ee(-, Z, 0, ky). Applying the second vector Green’s formulagin\ D and the
boundary conditions fow, we have that

2kbk/ (v x WZ))|2 ds= / (v x Wy - curlW, — v x W, - curIWz) ds
r aD

= / (v x Ee(+, Z,q, kp) - curl Ee(, z, q, kp)

9D
—v x Ee(+, 2,4, kp) - curl Ee(-, Z,q, kb)) ds (29)
- (v x Ez - curl Ee(, 2, q, kp) — v x Ee(:, 2, q, kp) - curl Ez) ds

3D
— [ (v x Ee(-,2 0, ko) - curlE; — v x E; - curl Ee(-, Z, q, kp)) ds.

3D

One can easily see thatif € H(curl, D) andH = ﬁcurl E is a solution of
Maxwell’s equations and € D we have that

v x Ee(y, 2z q,kp) - curly E(y) = — IE(—ikb)curlz curl, q®(y, 2) - (v x H(y))

= —q-curlcurl, ®(y, 2)(v x H(y))
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and
v x E(y) - curly Ee(Y, Z, q, kp) = ikpq - curl,®(y, 2)(v x E(y))
and therefore from the Stratton-Chu formula

/ (v x Eely, z,d., ko) - curly E(y) — v x E(y) - curly Ec(y, Z, d, ky))

9D (30)

=ikpq - E(2).

Furthermore, using again the second Green's formula$in\ D for
Ee(-, 2, q, ky) andEq(-, z, q, ky) wWe obtain that

/ <V X Ee(" Za q) : Curl Ee(‘, Z’ q’ kb)
aD
—v x Ee(+, 2,0, ky) - curl Ee(-, z, q, kb)> ds

= / (v x Ee(+, 2,9, kp) - curl Ee(+, z, Q) (31)

02
— VX Ee(', Z, q7 kb) : Curl Ee(', Z, q’ kb)) ds

- 2im(¢) [ IE«y. 2. ko)l dy
Q\D
Finally, using (31) and the identity (30), (29) becomes

2kb/\/ (v x W,)) x v|? ds
Iy

— _2m(KQ) / |Ee(y. 2. q. ko) 2 dy — 2Ky - Re(E;(2))
Q\D
+ /(u x Ee(+, Z,q, kp) - curl Ee(-, Z, d, kp)
Q2
— VX Ee(', Z, q7 kb) : Curl Ee(', Z, q’ kb)) ds

Noting thatv x [E;— Ec(-, Z, 4, Ky)]is zero o' p, we have proven the following
theorem:
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Theorem 4.2. Letz € D be a fix point andg; be the corresponding solution
of (22—(24). Then
Az, 2, ko, 9) — k' Im (k2) / |Ee(Y, 2,0, kn)|*dy — q - R&(E;(2)

= Q\D (32)
/|V X [EZ - Ee(', Z, qv kb)]|2 dS
r

where the constar(z, €2, ky, q) which depends on the chos@nz, k, and the
polariazationq is given by

Az, 2, kp, Q) = /(v x Ee(+, Z, 0, kp) - curl Ee(-, Z,q, k)
0Q

— v X Eal, 2,4, Ko) - curl Ee(, 2.0, k) ) ds

Note that (32) provides a formula for calculatinginceE, can be approximated
by the Herglotz functiorf{y whereg is the approximate (regularized) solution
of (21).

We end the paper with two remarks.

Remark 4.1. All the above analysis can be done if instead’6f one uses
single layer potential$\¢ and the same results hold for the solutipf (17).

In fact there are many choices of the parameterization of the gap reciprocity
functional R(E, W) in terms of W := Fy whereFy e H(2) with density
function v in a Hilbert spaceH. The only requirement is thdFy, v € H}
forms a dense subset Hf(2).

Remark 4.2. The above analysis for solving the equation (21) requires the
measured tangential component of the total electric and magnetic field on the
whole boundary 2 of Q2. The case of an object buried in the earth is handled by
assuming that the part 6f2 below the surface of the earth is far away from the
incident sources and hence we can assume that the total electric and magnetic
fields are very small on this portion of the boundary.

Numerical examples for determiniiganda for partially coated buried objects
using the above analysis will follow in a forthcoming paper. Note also that it is
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possible to treat the case of non constant inpedence. In this case one can only
determine the essential suprimumiofsee [5] for the case of a homogeneous
background).
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