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Abstract. We consider the three dimensional electromagnetic inverse scattering problem

of determining information about a buried coated object from a knowledge of the electric and

magnetic fields measured on the surface of the earth corresponding to time harmonic electric

dipoles as incident fields. We assume that the buried object is a perfect conductor that is (possibly)

partially coated by a thin dielectric layer. No a priori assumption is made on the extent of the

coating, i.e. the object can be fully coated, partially coated or not coated at all. We present an

algorithm based on the linear sampling method and reciprocity gap functional for reconstructing

the shape of the scattering obstacle together with an estimate of the surface impedance of the

coating.
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1 Introduction

The use of electromagnetic fields to detect buried objects has a long history and

continues to be an active area of research [3], [7], [8]. Of particular interest is the

use of such methods to detect chemical waste deposits, examine urban infras-

tructure and locate landmines. However, from a practical point of view, there are

two main reasons why such imagining problems remain basically unresolved.

The first of these problems is the difficulty of distinguishing the scattered field
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due to the target from the scattered fields due to the earth, the antenna and, in

particular, the air-earth interface. A second problem is that the material proper-

ties of the target are in general unknown. For example, a landmine can be made

of wood, metal or plastic whereas a rusted barrel of chemical waste deposits is

typically modeled by a complicated mixed boundary value problem involving a

dielectric of unknown permittivity. Due to such problems, traditional methods

of imagining such as the use of weak scattering approximations and nonlinear

optimization techniques remain problematic.

In recent years a new class of electromagnetic imaging techniques has been

developed which has the potential of overcoming the problems mentioned in the

above paragraph. These new techniques can be described as “qualitative meth-

ods in inverse scattering theory” [4] and have a number of remarkable features

which make them attractive for the imaging of buried objects. We will focus

our attention on the most popular of these qualitative methods called the linear

sampling method [6], [11], [15]. The remarkable feature of the linear sampling

method is that 1) it is a linear method that does not ignore multiple scattering

effects and 2) it determines the shape of a target without requiring any a pri-

ori knowledge of the target’s physical properties. However, until very recently,

the implementation of the linear sampling method for a nonhomogeneous back-

ground media required a knowledge of the Green’s function for the background

media. This is obviously an unattractive feature if it is desired to use this method

for the detection of buried objects, particularly if the scattering effects due to the

antenna play a significant role.

In order to overcome the problem of needing to compute the Green’s function

for the background media, a new version of the linear sampling method based on

the reciprocity gap functional was introduced by Colton and Haddar [10] for the

scalar case and by Cakoni, Fares and Haddar [7] for the vector case. However, in

imagining nothing is free and the price paid for avoiding the need to compute the

Green’s function is that one now needs to measure both the electric and magnetic

fields corresponding to time harmonic electric dipoles as incident fields. In the

case when the buried object is a perfect conductor or a penetrable, anisotropic

inhomogeneous medium, the efficaciousness of this approach to the imaging of

buried objects was shown in [7]. The purpose of this paper is to consider the case
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when the buried object is a perfect conductor that may be partially coated by a

thin dielectric layer. The inverse scattering problem in this case is considerably

more complicated than the simple case of a perfect conductor since it is unknown

a priori whether or not the target is coated. In particular, the inverse problem

is now to not only determine the shape of the target but also whether or not

the target is coated and if so the value of the surface impedance of the coating

[13]. As in [7], we will consider the case when the electric and magnetic fields

are both known on the entire boundary of an absorbing homogeneous region of

the background media that is known a priori to contain the target. The case of

an object buried in the earth is then handled by assuming that the part of the

boundary below the surface of the earth is far away from the incident sources

and hence we can assume that the total electric and magnetic fields are very small

on this portion of the boundary.

It gives the authors particular pleasure to present our work on the detection of

buried objects using electromagnetic fields in the proceedings of a conference

dedicated to the twenty fifth anniversary of Alberto Calderon’s seminal paper on

the same topic [8]. As is seen by the papers in this volume, Calderon’s paper of

1980 has been a major influence not only on our own work but also on the work

of many other mathematicians and scientists working in diverse disciplines. We

are happy to be part of this celebration!

2 Formulation of the direct and inverse scattering problems

We consider the scattering of a time-harmonic electromagnetic field of frequency

ω by a scattering object embedded in a piecewise homogeneous background

medium inR3. We assume that the magnetic permeabilityμ0 > 0 of the back-

ground medium is a positive constant whereas the electric permittivityε(x)

and conductivityσ(x) are piecewise constant. Moreover we assume that for

|x| = r > R, for R sufficiently large,σ = 0 andε(x) = ε0. Then the electric

field Ẽand magnetic field̃H in the background medium satisfy the time-harmonic

Maxwell’s equations

∇ × Ẽ− iωμ0H̃ = 0, ∇ × H̃ + (iωε(x)− σ(x))Ẽ = 0.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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After an appropriate scaling [12] and elimination of the magnetic field we now

obtain the following equation for the electric fieldE in the background medium

curl curlE− k2n(x)E = 0,

where

Ẽ =
1

√
ε0
E, k = ε0μ0ω

2 and n(x) =
1

ε0

(
ε(x)+ i

σ(x)

ω

)
.

Note that the piecewise constant functionn(x) satisfiesn(x) = 1 for r > R,

<(n) > 0 and=(n) ≥ 0. The surfaces across whichn(x) is discontinuous are

assumed to be piecewise smooth and closed.

Now let D be a scattering object embedded in the above piecewise homoge-

neous background such thatR3 \ D is connected. We suppose that the boundary

∂D of D is piecewise smooth and denote byν the outward unit normal. Fur-

thermore, we assume that the boundary∂D = 0D ∪5∪ 0I is split in two open

disjoint parts0D and0I having5 as their possible common boundary in∂D.

The domainD is the support of a perfect conductor (possibly a disconnected

object) that is partially coated on a portion0I of the boundary by a very thin

layer of dielectric material. We assume for sake of presentation that the coating

is homogeneous. Let the positive constantλ > 0 describe the surface impedance

of the coating. The incident field is considered to be an electric dipole located

at x0 ∈ 3 with polarizationp ∈ R3 given by

Ee(x, x0, p, ks) :=
i

ks
curlx curlx p

eiks|x−x0|

4π |x − x0|
(1)

wherek2
s = k2ns and3 is an open surface (to be made precise later on) situated in

a layer with constant index of refractionns. We denote byG(x, x0) the free space

Green’s tensor of the background medium and defineEi (x) := Ei (x, x0, p) =

G(x, x0)p which satisfies

curl curlEi (x)− k2n(x)Ei (x) = p δ(x − x0) in R3, (2)

whereδ denotes the Dirac distribution. Note thatEi can be written as

Ei (x) = Ee(x, x0, p, ks)+ Es
b(x) (3)
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whereEs
b = Es

b(∙, x0, p) is the electric scattered field due to the background

medium.

We now consider a bounded domain� suchthat D is contained in� and the

open surface3 is contained inR3 \ �. Let ∂� denote the piecewise smooth

boundary of�. Note that3 or a portion of3 may be a subset of∂�. We

assume the medium inside the domain� containing the scattering objectD is

homogeneous with constant index of refractionnb and definek2
b = k2nb (see

Fig. 1).

Λ

δΩ Ω

xo

D

Figure 1 – Example of the geometry of the scattering problem.

Then the total electric fieldE = Es + Ei , whereEs is the scattered field due to

the obstacleD, satisfies the following equation and mixed boundary conditions:

curl curlE − k2n(x)E = 0 inR3 \
(
D ∪ {x0}

)
(4)

ν × E = 0 on0D (5)

ν × curl E − ikbλ(ν × E)× ν = 0 on0I . (6)

In addition, the scattered fieldEs satisfies the Silver Müller radiation condition

lim
r →∞

(
curlEs × x − ikr Es

)
= 0 (7)

uniformly in x̂ = x/|x|, r = |x|.

In order to formulate precisely the above scattering problem we are concerned

with throughout this paper, we need the following spaces:

H(curl, D) :=
{

u ∈ (L2(D))3 : ∇ × u ∈ (L2(D))3
}

L2
t (∂D) :=

{
u ∈ (L2(∂D))3 : ν ∙ u = 0 on ∂D

}

L2
t (0I ) :=

{
u|0I : u ∈ L2

t (∂D)
}
.
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We introduce the space

X(D, 0I ) := {u ∈ H(curl, D) : ν × u|0I ∈ L2
t (0I )} (8)

equipped with the norm

‖u‖2
X(D, 0I )

= ‖u‖2
H(curl, D) + ‖ν × u‖2

L2(0I )
. (9)

For the exterior domainDe we define the above spaces in the same way for

every De ∩ BR, with BR a ball of arbitrary radiusR and denote these spaces by

Hloc(curl, De) andXloc(De, 02), respectively. The tracesν× u|∂D andν× (u ×

ν)|∂D of u ∈ H(curl, D) (or u ∈ Hloc(curl, D)) are in the Hilbert spaces

H
− 1

2
div (∂D) :=

{
u ∈ (H− 1

2 (∂D))3, ν ∙ u = 0, div∂D u ∈ H− 1
2 (∂D)

}

H
− 1

2
curl(∂D) :=

{
u ∈ (H− 1

2 (∂D))3, ν ∙ u = 0, curl∂D u ∈ H− 1
2 (∂D)

}

respectively, with curl∂D denoting the surface curl. Note that by an integration

by parts we can define a duality relation betweenH
− 1

2
div (∂D) and H

− 1
2

curl(∂D)
(see [17] in the case when the boundary is smooth, and [2] in the case when
the boundary is piecewise smooth). Finally, we introduce the trace space of
X(D, 0I ) on0D by

Y(∂D) :=

{

h ∈ (H−1/2(0D))
3 : ∃ u ∈ H0(curl, BR),

ν × u|0I ∈ L2
t (0I )

and h = ν × u|0D

}

where the ballBR containsD and H0(curl, BR) is the space of functionsu in

H(curl, BR) satisfyingν × u|SR = 0. Obviously,Y(0D) is a Banach space with

the norm

‖h‖2
Y(0D)

:= inf
{
‖u‖2

H(curl,BR)
+ ‖ν × u‖2

L2
t (0I )

}
(10)

where the infimum is taken over all functionsu ∈ H0(curl, BR) such thatν ×

u|0I ∈ L2
t (0I ) andh = ν×u|0D . Y(0D) is also a Hilbert space and its dual space

Y′(0D) can be precisely characterized. In particular a functionφ ∈ Y(0D)
′ can

be extended to a functioñφ ∈ H
− 1

2
curl(∂D) defined on the whole boundary and

satisfyingφ̃|0I ∈ L2
t (0I ) (see [6] for details).

The direct scattering problemcan be formulated as givenEi defined by (3)

find Es = E − Ei ∈ X(R3 \ D) satisfying (4)–(7). In a similar way as in [6] it

can be shown that the direct scattering problem has a unique solution.
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Remark 2.1. It is also possible to consider the problem of objects buried in

an unbounded multi-layer medium. In this case, the radiation condition and

mathematical analysis of the forward problem become more complicated (see

[14] for the case of two layered medium). However the following analysis of the

inverse scattering problems remains the same.

In order to formulate theinverse problemwe assume thatboth the tangential

componentsν × E andν × curl E of the total electric fieldE = E(∙ , x0, p)

and magnetic fieldH = 1
ikb

curl E, respectively, are known on∂� for all point

sourcesx0 ∈ 3. Furthermore, without loss of generality, we assume that3 is a

closed surface surrounding� situated in a layer with index of refractionns. By

an analyticity argument the following analysis also holds true if the point sources

are located on an open analytic surface provided it can be extended to a closed

(analytic) surface as above.

The inverse scattering problemwe are interested in is to determineD andλ

from a knowledge of the tangential componentsν × E andν × curl E of the

total electric fieldE = E(∙ , x0, p) and magnetic fieldH = 1
ik curl E measured

on ∂� for all point sourcesx0 ∈ 3 and two linearly independent polarizations

p tangent to3 at x0. Hereν denotes the outward unit normal to∂�. We

remark that in what followsν is always the outward unit normal to the surface

under consideration unless otherwise stated. We remark that by modifying the

approach in [12] it is possible to prove that the above data uniquely determines

D and than the uniqueness forλ follows in the same way as in [16]. Here we are

mainly concern with the solution of the inverse problem.

3 The reciprocity gap functional

Let E = E(∙ , x0, p) = Es(∙ , x0, p) + G(∙ , x0)p and H = 1/ ik curl E be the

total electric and magnetic fields, respectively, corresponding to the scattering

problem (4)–(7). Note that we suppress the dependence of the total field on

the wave numberks of the medium where the point source is located. For any

functionW ∈ H(curl,�), we can define thegap reciprocity functionalby

R(E,W) =
∫

∂�

(ν × E) ∙ curlW − (ν × W) ∙ curl E ds. (11)

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Since E ∈ H(curl,�), the integral is interpreted in the sense of the duality

betweenH
− 1

2
div (∂�) and H

− 1
2

curl(∂�). Note thatE depends onx0 and hence so

doesR. Next, in order to connectR with the scattering problem, we define the

subspaceH(�) ⊂ H(curl,�) by

H(�) :=
{

W ∈ H(curl,�) : W> ∈ L2
t (0I ),

curlW> ∈ L2
t (0I ), curl curlW − k2

bW = 0
}

whereU> := (ν × U ) × ν. The reciprocity gap functional restricted toH(�)

can be seen as an operatorR : H(�) → L2
t (3) defined by

R(W)(x0) = R(E(∙, x0, p(x0)),W)p(x0) (12)

for all x0 ∈ 3.

In order to derive an integral equation fromR, we need to use a parametric

family of solutions inH(�) which satisfy certain properties to be made precise

later. In particular, we consider the electric Herglotz functionHg defined by

Hg(x) :=
∫

S2
g(d)eikbd∙x ds(d), g ∈ L2

t (S
2) (13)

whereS2 is the unit sphere. Now, letting

Ee(x, z,q, kb) =
i

k
curlx curlx q8(x, z, kb), q ∈ R3 (14)

denote the electric dipole corresponding tokb, we look for a solutiong ∈

L2
t (S

2) of

R(E,Hg) = R(E, Ee(∙, z,q, kb)). (15)

Alternatively, we can define the single layer potential by

(Aϕ)(x) := curl curl
∫

3̃

ϕ(y)8(x, y, kb) ds, ϕ ∈ L2
div(3̃) (16)

where

8(x, y, kb) :=
1

4π

eikb|x−y|

|x − y|
, x 6= y,

and3̃ is a regular part of the boundary of some simply connected domain con-

taining� in its interior, and look for a solutionϕ ∈ L2
div(3̃) of

R(E, Aϕ) = R(E, Ee(∙, z,q, kb)). (17)

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Note that both{Hg, g ∈ L2
t (S

2)} and{Aϕ, ϕ ∈ L2
div(3̃)} are subsets ofH(�).

To fix our ideas, we use in this paper only electric Herglotz functions. Hence,

the reciprocity gap functional method is based on the characterization ofD from

the behavior of a solutionϕ of (15) for different sampling pointsz ∈ �. We

also emphasize that the background Green’s functionG(∙ , x0)p does not appear

in (15).

To study the integral equation (15), which is ill-posed sinceR is a smoothing

operator, we first study the properties ofR.

Lemma 3.1. Assume that0I is not empty. Then the operatorR : H(�) →

L2
t (3) defined by(12) is injective.

Proof. RW = 0 meansR(E(∙, x0, p(x0)),W) = 0 for all (x0, p(x0)). Since

bothE andW satisfy Maxwell’s equation in�\ D,we have, using the boundary

condition forE on ∂D,

0 = −
∫

∂D

(ν × E) ∙ curlW − (ν × W) ∙ curl E ds

=
∫

0D

(ν × W) ∙ curl E ds

+
∫

0I

E ∙ [ν × curlW − ikbλ(ν × W)× ν]

where first integral is interpreted in sense of duality betweenY(0D) andY(0D)
′

while the second integral in the sense ofL2
t (0I ). Next let Ẽ be the unique

solution to (see [6])

curl curl Ẽ − k2n(x)Ẽ = 0 inR3 \ D

ν × (Ẽ − W) = 0 on0D

ν × curl(Ẽ − W)− ikbλ[ν × (Ẽ − W)] × ν = 0 on 0I

lim
r →∞

(
curl Ẽ × x − ikr Ẽ

)
= 0.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Then from the above problem, the boundary conditions for the total fieldE =

Es +G(∙, x0)p and (18) we have that

0 =
∫

0I

E ∙ [ν × curl Ẽ − ikbλ(ν × Ẽ)× ν] ds−
∫

0D

(ν × Ẽ) ∙ curl E ds

=
∫

∂D

(ν × E) ∙ curl Ẽ − (ν × Ẽ) ∙ curl E ds

=
∫

∂D

[ν × (Es +G(∙, x0)p)] ∙ curl Ẽ − (ν × Ẽ) ∙ curl(Es +G(∙, x0)p) ds.

Now sinceEs andẼ are both radiating solutions to the same equation the above

equation simplifies to

0 =
∫

∂D

(ν ×G(∙, x0)p) ∙ curl Ẽ − (ν × Ẽ) ∙ curlG(∙, x0)p ds

= −p ∙ Ẽ(x0)

(18)

Sincep is an arbitrary polarization on the tangent plane to3 at x0, we obtain

ν × Ẽ(x0) = 0 for x0 ∈ 3. Furthermore, sincẽE is a radiating solution

to Maxwell’s equations outside the domain bounded by3, we conclude by

the uniqueness of the scattering problem for a perfect conductor (c.f. [12])

that Ẽ = 0 outside the domain bounded by3. Then the unique continuation

principle implies thatẼ = 0 outsideD, whence bothν × W = 0 on0D and

ν × curlW − ikbλ(ν × W)× ν = 0. Finally from the uniqueness of the interior

mixed boundary value problem forW we conclude thatW = 0 which proves

the lemma. �

Lemma 3.2. Assume that0I is not empty. Then the operatorR : H(�) →

L2
t (3) defined by(12) has dense range.

Proof. Considerβ ∈ L2
t (3) and assume that

(RW, β)L2
t (3)

= 0 for all W ∈ H(�).
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From (12) and the bi-linearity ofR one has

(RW, β)L2
t (3)

=
∫

3

R(E(∙, x0, α(x0)),W) ds(x0) = R(E,W),

where

E(x) =
∫

3

E(x, x0, α(x0)) ds(x0) (19)

andα = (β ∙ p) p. Using the second vector Green’s formula and the boundary

conditions forE one concludes that

0 = R(E,W) = −
∫

0D

(ν × W) ∙ curlE ds

−
∫

0I

E ∙ [ν × curlW − ikbλ(ν × W)× ν] ds
(20)

for all W ∈ H(�), where again the first integral is interpreted in sense of duality

betweenY(0D) andY(0D)
′ while the second integral in the sense ofL2

t (0I ).

SinceH(�) contains the Herglotz wave functions given by (13), from Theorem

2.8 in [6]and the well posedness of the interior mixed boundary value problem

one has that the set

{
ν × W|0D , ν × curlW − ikbλ(ν × W)× ν|0I , for all W ∈ H

}

is dense inY(0D)× L2(0I ). Therefore

ν × E = 0 on0I and ν × curlE = 0 on0D.

The boundary conditions forE imply that bothν × E = 0 andν × curlE = 0

on ∂D. This means that the extension ofE by 0 insideD satisfies Maxwell’s

equations inside the domain bounded by3with the indexn set equal tonb inside

D. From the unique continuation principle one has thatE is 0 inside the domain

bounded by3 and outsideD. Noting that

E(x) =
∫

3

(Es(x, x0, α(x0))+G(x, x0)α(x0)) ds(x0)

one concludes thatE × ν is continuous across3. The uniqueness theorem for

the exterior problem for Maxwell’s equations with boundary dataν × E = 0 on

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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3 implies thatE = 0 outside the domain bounded by3 as well. Finally, from

the jump relations of the vector potential across3 [12] we have that

0 = curlE|3+ − curlE|3− = −α on 3.

Hence(β ∙ p) p = 0 for all p tangential to3 which implies thatβ = 0. This

ends the proof. �

Remark 3.1. It is easy to prove (see e.g. Theorem 4.8 in [4]) that the operator

R : H(�) → L2
t (3) is compact.

4 Solution of the inverse problem

We now investigate the solvability of

R(E,Hg) = R(E, Ee(∙, z,q, kb)) (21)

with respect tog whereEe(∙, z,q, kb) is given by (14) andHg is the electric

Herglotz function with kernelg given by (13). To this end, we recall the interior

mixed boundary value problem forz ∈ D

curl curlEz − k2
b Ez = 0 in D (22)

ν × [Ez − Ee(∙, z,q, kb)] = 0 on0D (23)

ν × curl [Ez − Ee(∙, z,q, kb)]

− ikbλ[ν × (Ez − Ee(∙, z,q, kb)] × ν = 0 on0I . (24)

It is shown in [6] that there is a unique solutionEz ∈ X(D, 0I ) of the above

problem. We can now prove the following result:

Theorem 4.1. Assume that0I 6= ∅ and let E = E(∙ , x0, p) and H =

1/ ik curl E be the total electric and magnetic fields, respectively, correspond-

ing to the scattering problem(4)–(7). Then

1. For z ∈ D and a givenε > 0, there exists agεz ∈ L2
t (S

2) such that

‖R(E,Hgεz)− R(E, Ee(∙, z,q, kb))‖L2
t (3)

< ε

and the corresponding electric Herglotz wave functionHgεz converges to

the solution of(22)–(24) in X(D, 0I ) asε → 0.
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2. For a fixedε > 0, we have that

lim
z→∂D

‖Hgεz‖X(D,0I ) = ∞ and lim
z→∂D

‖gεz‖L2
t (S2) = ∞.

3. For z ∈ R3 \ D and a givenε > 0, everygεz ∈ L2
t (S

2) that satisfies

‖R(E,Hgεz)− R(E, Ee(∙, z,q, kb))‖L2
t (3)

< ε

is such that

lim
ε→0

‖Hgεz‖X(D,0I ) = ∞ and lim
ε→0

‖gεz‖L2
t (S2) = ∞.

Proof. Let z ∈ D. SinceW ∈ H(�) andEe(∙, z,q, kb) satisfy curl curlW −

kbW = 0 in� \ D, integrating by parts and using the boundary condition for the

total field we have that

R(E,W)− R(E, Ee(∙, z,q, kb))

= −
∫

∂D
(ν × W − ν × Ee(∙, z,q, kb)) ∙ curl E ds.

From the proof of Lemma 3.1 we see thatR(E,W) = R(E, Ee(∙, z,q, kb))

has a unique solutionW if and only if there exists aW ∈ H(�) such that

ν × W − ν × Ee(∙, z,q, kb) = 0 on0D andν × curl [Ez − Ee(∙, z,q, kb)] −

ikbλ[ν × (Ez − Ee(∙, z,q, kb)] × ν = 0 on0I which is in general not true.

However in [6], Theorem 2.8, it is proved that the family

{
ν ×Hg|0I , ν × curlHg − ikbλ(ν ×Hg)× ν|0I , g ∈ L2

t (S
2)

}

is dense inY(0D) × L2
t (0I ). Hence, for everyε > 0 there exists a Her-

glotz functionHgεz such thatν × Hgεz approximatesν × Ee(∙, z,q) with re-

spect to theY(0D) norm andν × curlHg − ikbλ(ν ×Hg) × ν approximates

ν×curl Ee(∙, z,q, kb)− ikbλ(ν× Ee(∙, z,q, kb))×ν with respect to theL2
t (0I )

norm. In particular, from (18),gεz is an approximate solution to (21) andHgεz
converges to the solution of (22)–(24) in theX(D, 0I ) norm asε → 0. Next,

sinceν × Ee(∙, z,q) → ∞ in theY(0D) norm andν × curl Ee(∙, z,q, kb) −

ikbλ(ν × Ee(∙, z,q, kb)) × ν → ∞ in the L2
t (0I ) norm asz approaches the
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boundary, we obtain from the well posedness of the interior mixed bound-

ary value problem that, for a fixedε > 0, limz→∂D ‖Hgεz‖X(D,0I ) = ∞ and

limz→∂D ‖gεz‖L2
t (S2) = ∞. Now we considerz ∈ � \ D and letgεz and its

corresponding Herglotz functionHgεz be such that

‖R(E,Hgεz)− R(E, Ee(∙, z,q, kb))‖L2(3) < ε. (25)

Note that from Lemma 3.2 we can always find such aHgεz. Assume to the

contrary that‖Hgεz‖X(D,0D) < C where the positive constantC is indepen-

dent of ε. From the trace theorems we have that the mixed trace ofHgεz is

also bounded in the corresponding norms. Noting that the total field can be

written asE(∙, x0, p) = Es(∙, x0, p) + G(∙, x0)p and integrating by parts, we

obtain that

R(E, Ee(x, z,q, kb)) =
∫

∂�

(ν × Es(x, x0, p)) ∙ curl Ee(x, z,q, kb) dsx

−
∫

∂�

(ν × Ee(x, z,q, kb)) ∙ curl Es(x, x0, p) dsx

+
∫

∂�

(ν ×G(x, x0)p) ∙ curl Ee(x, z,q, kb) dsx

−
∫

∂�

(ν × Ee(x, z,q, kb)) ∙ curlG(x, x0)p dsx.

Due to the symmetry of the background Green’s function,Es(x, x0, p) as a

function of x0 solves curlx0 curlx0 Es(x, x0, p) − k2n(x0)Es(x, x0, p) = 0 in

the domain bounded by3 and∂D. Hence the first two integrals in the above

equation give a solutionW(x0) to the same equation as the one satisfied by

Es(∙, x0, p), whereas the last two integrals add up to−G(z, x0)p by the Stratton-

Chu formula and the fact thatEe(x, z,q, kb) is the fundamental solution of

curl curlE − k2
b E = 0. On the other hand we have that

R(E,Hgεz) = −
∫

0D

(ν ×Hgεz) ∙ curl E ds

−
∫

0I

E ∙
[
ν × curlHgεz − ikbλ(ν ×Hgεz)× ν

]
ds

(26)
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Combining the above equalities we obtain that

R
(
E,Hgεz

)
− R(E, Ee(∙, z,q, kb)) = −

∫

0D

(
ν ×Hgεz

)
∙ curl E ds

−
∫

0I

E ∙
[
ν × curlHgεz − ikbλ(ν ×Hgεz)× ν

]
ds

− W(x0)+G(z, x0)p.

(27)

Now since‖Hgεz‖X(D,0I ) < C there exists a subfamily, still denoted byHgεz,

that converges weakly to aV ∈ X(D, 0I ) asε → 0 and thereforeν ×Hgεz and

ν× curlHgεz − ikbλ(ν×Hgεz)× ν converges weakly toν× V andν×curlV −

ikbλ(ν× V)× ν in the duality pairingY(0D),Y(0D)
′ andL2

t (0I ), respectively.

Let us set

W̃(x0) = lim
ε→0
R

(
E,Hgεz

)

= −
∫

0D

(ν × V) ∙ curl E(∙, x0, p) ds

−
∫

0I

E ∙ [ν × curlV − ikbλ(ν × V)× ν]ds, x0 ∈ 3.

From (25) we now have that

W̃(x0) = W(x0)+G(z, x0)p x0 ∈ 3. (28)

SinceW̃(x0) andW(x0) can be continued as radiating solutions to

curlx0 curlx0 Es(x, x0, p)− k2n(x0)E
s(x, x0, p) = 0

outside the domain bounded by3 we deduce by uniqueness and the unique

continuation principle that (28) holds true inR3 \ (D ∪ {z0}). We now arrive at

a contradiction by lettingx0 → z. HenceHgεz is unbounded in theX(D, 0I )

norm asε → 0, which proves the theorem. �

Theorem 4.1 provides a characterization of the boundary∂D of the scattering

object D. Unfortunately, since the behavior ofHgεz is described in terms of a

norm depending on the unknown regionD,Hgεz cannot be used to characterizeD.

Instead, we characterize the obstacle by the behavior ofgεz. In particular, given
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a discrepancyε > 0 andgεz the ε-approximate solution of (21), the boundary

of the scatterer is reconstructed as the set of pointsz where theL2
t (S

2) norm

of gεz becomes large. In practice, since (21) is severely ill-posed due to the

compactness of the operatorR, one uses regularization methods to obtain a

solution to (21). Obviously, an important question is whether this regularized

solution will exhibit the properties of theε-approximate solution provided by

Theorem 4.1. In general, this question is still open (However, see [1] for an

answer to this question in the case of the scalar problem for a perfect conductor in

homogeneous background using far field data). Numerical examples for similar

reconstruction methods have shown in these cases that the computed regularized

solution behaves in the way that the theory predicts [7], [9], [11], [15]. Note that

the method determinesD without any a priori knowledge of0D, 0I or λ.

Assuming now thatD is known, we want to determine the surface impedance

λ by making use of the approximate solutiong of the equation (21). To this

end letz ∈ D and Ez the unique solution of (22)–(24). DefineWz := Ez −

Ee(∙, z,q, kb). Applying the second vector Green’s formula in� \ D and the

boundary conditions forWz we have that

2kbλ

∫

0I

|(ν × Wz))|
2 ds =

∫

∂D

(
ν × Wz ∙ curlWz − ν × Wz ∙ curlWz

)
ds

=
∫

∂D

(
ν × Ee(∙, z,q, kb) ∙ curl Ee(∙, z,q, kb)

−ν × Ee(∙, z,q, kb) ∙ curl Ee(∙, z,q, kb)
)

ds

−
∫

∂D

(
ν × Ez ∙ curl Ee(∙, z,q, kb)− ν × Ee(∙, z,q, kb) ∙ curl Ez

)
ds

−
∫

∂D

(
ν × Ee(∙, z,q, kb) ∙ curl Ez − ν × Ez ∙ curl Ee(∙, z,q, kb)

)
ds.

(29)

One can easily see that ifE ∈ H(curl, D) and H = 1
ikb

curl E is a solution of
Maxwell’s equations andz ∈ D we have that

ν × Ee(y, z,q, kb) ∙ curly E(y) = −
i

kb
(−ikb)curlz curlz q8(y, z) ∙ (ν × H(y))

= − q ∙ curlz curlz8(y, z)(ν × H(y))
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and

ν × E(y) ∙ curly Ee(y, z,q, kb) = ikbq ∙ curlz8(y, z)(ν × E(y))

and therefore from the Stratton-Chu formula
∫

∂D

(
ν × Ee(y, z,q, kb) ∙ curly E(y)− ν × E(y) ∙ curly Ee(y, z,q, kb)

)

= ikbq ∙ E(z).

(30)

Furthermore, using again the second Green’s formula in� \ D for

Ee(∙, z,q, kb) andEe(∙, z,q, kb) we obtain that
∫

∂D

(
ν × Ee(∙, z,q) ∙ curl Ee(∙, z,q, kb)

− ν × Ee(∙, z,q, kb) ∙ curl Ee(∙, z,q, kb)
)

ds

=
∫

∂�

(
ν × Ee(∙, z,q, kb) ∙ curl Ee(∙, z,q)

− ν × Ee(∙, z,q, kb) ∙ curl Ee(∙, z,q, kb)
)

ds

− 2 Im
(
k2

b

) ∫

�\D

|Ee(y, z,q, kb)|
2 dy

(31)

Finally, using (31) and the identity (30), (29) becomes

2kbλ

∫

0I

|(ν × Wz))× ν|2 ds

= − 2 Im
(
k2

b

) ∫

�\D

|Ee(y, z,q, kb)|
2 dy − 2kbq ∙ Re(Ez(z))

+
∫

∂�

(
ν × Ee(∙, z,q, kb) ∙ curl Ee(∙, z,q, kb)

− ν × Ee(∙, z,q, kb) ∙ curl Ee(∙, z,q, kb)
)

ds

Noting thatν×[Ez−Ee(∙, z,q, kb)] is zero on0D, we have proven the following

theorem:
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Theorem 4.2. Let z ∈ D be a fix point andEz be the corresponding solution

of (22)–(24). Then

λ =

A(z,�, kb,q)− k−1
b Im

(
k2

b

) ∫

�\D

|Ee(y, z,q, kb)|
2 dy − q ∙ Re(Ez(z))

∫

0

|ν × [Ez − Ee(∙, z,q, kb)]|
2 ds

(32)

where the constantA(z,�, kb,q) which depends on the chosen�, z, kb and the

polariazationq is given by

A(z,�, kb,q) =
∫

∂�

(
ν × Ee(∙, z,q, kb) ∙ curl Ee(∙, z,q, kb)

− ν × Ee(∙, z,q, kb) ∙ curl Ee(∙, z,q, kb)
)

ds.

Note that (32) provides a formula for calculatingλ sinceEz can be approximated

by the Herglotz functionHg whereg is the approximate (regularized) solution

of (21).

We end the paper with two remarks.

Remark 4.1. All the above analysis can be done if instead ofHg one uses

single layer potentialsAϕ and the same results hold for the solutionϕ of (17).

In fact there are many choices of the parameterization of the gap reciprocity

functionalR(E,W) in terms ofW := Fψ whereFψ ∈ H(�) with density

functionψ in a Hilbert spaceH . The only requirement is that{Fψ, ψ ∈ H}

forms a dense subset ofH(�).

Remark 4.2. The above analysis for solving the equation (21) requires the

measured tangential component of the total electric and magnetic field on the

whole boundary∂� of�. The case of an object buried in the earth is handled by

assuming that the part of∂� below the surface of the earth is far away from the

incident sources and hence we can assume that the total electric and magnetic

fields are very small on this portion of the boundary.

Numerical examples for determiningD andλ for partially coated buried objects

using the above analysis will follow in a forthcoming paper. Note also that it is
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possible to treat the case of non constant inpedence. In this case one can only

determine the essential suprimum ofλ (see [5] for the case of a homogeneous

background).
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