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1 Introduction

Let n ≥ 1 andN ≥ 1 be two integers. Let� be a bounded domain inRn with

C4 boundary0, 00 be a nonempty open subset of0, andT > 0 be given and

sufficiently large. PutQ
4
= (0, T) × �, 6

4
= (0, T) × 0 and60

4
= (0, T) × 00.

For simplicity, we will use the notationyi = ∂y
∂xi

, wherexi is thei -th coordinate
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of a generic pointx = (x1, ∙ ∙ ∙ , xn) in Rn. Throughout this paper, we will use

C = C(T,�, 00) andC∗ = C∗(�, 00) to denote generic positive constants

depending on their arguments which may vary from line to line.

Set

Y
4
=

{
y ∈ H3(�)

∣
∣
∣ y|0 = 1y|0 = 0

}
.

We consider the followingRN-valued plate system with a potentiala ∈ L∞(0, T;

L p(�;RN×N)) for somep ∈ [n/3, ∞]:





ytt + 12y − 1ytt + ay = 0 in Q,

y = 1y = 0 on6,

y(0) = y0, yt(0) = y1 in �,

(1)

wherey = (y1, ∙ ∙ ∙ , yN)>, and the initial datum(y0, y1) is supposed to belong

toH
4
=

{
ϕ ∈ H3(�)

∣
∣ ϕ|0 = 1ϕ|0 = 0

}N
×

(
H2(�)

⋂
H1

0 (�)
)N

, the state

space of system (1). It is easy to show that system (1) admits one and only one

weak solutiony ∈ C([0, T];H).

In what follows, we shall denote by| ∙ |, || ∙ ||p and||| ∙ |||p the (canonical) norms

onRN , L∞(0, T; L p(�;RN×N)) andL∞(0, T; W1,p(�;RN×N)), respectively.

We shall study the observability constantK (a) of system (1), defined as the

smallest (possibly infinite) constant such that the following observability estimate

for system (1) holds:

||(y0, y1)||2H
4
= ||y0||2

(H3(�))N + ||y1||2
(H2(�))N

≤ K (a)

∫

60

(∣
∣
∣
∂y

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂yt

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂1y

∂ν

∣
∣
∣
2)

dxdt, ∀ (y0, y1) ∈ H.

(2)

This inequality, the so-calledobservability inequality, allows estimating the

total energy of solutions in terms of the energy localized in the observation

subdomain00. It is relevant for control problems. In particular, in this linear

setting, this (observability) inequality is equivalent to the so-called exact control-

lability property, i.e., that of driving solutions to rest by means of control forces

localized in60 (see [6, 11]). This type of inequality, with explicit estimates on

the observability constant, is also relevant for the control of semilinear problems

([10]). Similar inequalities are also useful for solving a variety of Inverse Prob-

lems ([9]). We remark that, as for the wave equations, (2) holds for the Kirchhoff
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plate only if (�, 00, T) satisfies suitable conditions, i. e.00 needs to satisfy

certain geometric conditions andT needs to be large enough.

Obviously the observability constantK (a) in (2) not only depends on the

potentiala, but also on the domains� and00 and on the timeT . The main

purpose of this paper is to analyze only its explicit and sharp dependence on the

potentiala.

The main tools to derive the explicit observability estimates are the so-called

Carleman inequalities. Here we have chosen to work in the spaceH in which

Carleman inequalities can be applied more naturally. But some other choices of

the state space are possible. For example, one may consider similar problems

in state spaces of the form(H1
0 (�))N × (L2(�))N or (H2(�) ∩ H1

0 (�))N ×

(H1
0 (�))N where the Kirchhoff plate system is also well posed. But the cor-

responding analysis on the observability constants, in turn, is technically more

involved.

One of the key points to derive inequality (2) for system (1) is the possibility

of decomposing the Kirchhoff plate operator∂2
t + 12 − ∂2

t 1 as follows:

∂2
t + 12 − ∂2

t 1 = (∂t t − 1)(I − 1) + 1, (3)

whereI is the identity operator. Actually, we set

z = y − 1y, (4)

wherey is the solution of (1). By the first equation of (1) and noting (3), it

follows that

−ay = ytt + 12y − 1ytt = (∂t t − 1)(y − 1y) + 1y = ztt − 1z + y − z.

Therefore the Kirchhoff plate system (1) can be written equivalently as the fol-

lowing coupled elliptic-wave system





1y + z − y = 0 in Q,

ztt − 1z + y − z + ay = 0 in Q,

y = z = 0 on6,

z(0) = y0 − 1y0, zt(0) = y1 − 1y1 in �.

(5)
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Consequently, in order to derive the desired observability inequality for sys-

tem (1), it is natural to proceed in cascade by applying the global Carleman

estimates to the second order operators in the two equations in system (5). We

refer to [2, 3] for related works on Carleman inequalities for other cascade sys-

tems of partial differential equations.

Similar (boundary and/or internal) observability problems (in suitable spaces)

have been considered for the heat and wave equations in [1], and for the Euler-

Bernoulli plate equations in [5]. According to [1] and [5], the sharp observability

constants for the heat, wave and Euler-Bernoulli plate equations with bounded

potentialsa (i.e., p = ∞) contain respectively the product of the following two

terms (Recall thatC∗ = C∗(�, 00) andC = C(T,�, 00))

H1(T, a) = exp(C∗T ||a||∞), H2(T, a) = exp
(
C∗||a||2/3

∞

)
,

W1(T, a) = exp
(
C||a||1/2

∞

)
, W2(T, a) = exp

(
C||a||2/3

∞

)
,

and

P1(T, a) = exp(C∗T |||a|||1/2
∞ ), P2(T, a) = exp

(
C∗||a||1/3

∞

)
.

As explained in [1, 5], the role that each of these constants plays in the observ-

ability inequality is of different nature:H1(T, a), W1(T, a) and P1(T, a) are

the constants which arise when applying Gronwall’s inequality to establish the

energy estimates for solutions of evolution equations; whileH2(T, a), W2(T, a)

andP2(T, a) appear when using global Carleman estimates to derive the observ-

ability inequality by absorbing the undesired lower order terms.

It is shown in [1, Theorems 1.1 and 1.2] and [5, Theorem 3] that the above

observability constants are optimal for the heat, wave and Euler-Bernoulli plate

systems (N ≥ 2) with bounded potentials, in even dimensionsn ≥ 2. The proof

of this optimality result uses the following two key ingredients:

1) For the heat and Euler-Bernoulli plate equations, because of the infinite

speed of propagation, one can chooseT as small as one likes and hence-

forth H1(T, a) and P1(T, a) can be bounded above byH2(T, a) and

P2(T, a), respectively forT = O
(
||a||−1/3

∞

)
andO

(
||a||−1/6

∞

)
. On the

other hand, for the wave equation, although one has to takeT to be large
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enough (because of the finite velocity of propagation), for any finiteT ,

W1(T, a) can bounded byW2(T, a) because the power 1/2 for ||a||∞ in

W1(T, a), given by the modified energy estimate, is smaller than 2/3, the

power for||a||∞ in W2(T, a), arising from the Carleman estimate. In this

way, for any finiteT large enough, one gets an upper bound on the ob-

servability constant (for the wave equation) of the order of exp
(
C||a||2/3

∞
)
.

2) Based on the Meshkov’s construction [8] which allows finding potentials

and non-trivial solutions for elliptic systems decaying at infinity in a super-

exponential way, one can construct a family of solutions (for the heat, wave

and Euler-Bernoulli plate equations) with suitable localization properties

showing that most of the energy is concentrated away from the observation

domain. According to this, the observed energies grow exponentially as

exp
(
− ||a||2/3

∞
)

for the wave and heat systems and as exp
(
− ||a||1/3

∞
)

for

the Euler-Bernoulli plate ones.

Things are more complicated for the Kirchhoff plate systems under consid-

eration. Indeed, on one hand, due to the finite speed of propagation, one has

to choose the observability timeT to be large enough. On the other hand, a

modified energy estimate for the Kirchhoff plate systems (see(10) in Lemma 1

in Section 2) yields a power 1/2 for ||a||∞ which can not be absorbed by the

one, 1/3, arising from the Carleman estimate. To overcome this difficulty, the

key observation in this paper is that, althoughT has to be taken to be large, one

can manage to use the indispensable energy estimate only in a very short time

interval when deriving the desired observability estimate. However, we do not

know how to show the optimality of the observability constant at this moment.

Indeed, when proving the optimality, the energy estimate has to be used in the

whole time duration[0, T] and this breaks down the concentration effect that

Meshkov’s construction guarantees, which is valid only for very small time du-

rations for the Kirchhoff plate systems. Therefore, proving the optimality of the

observability estimates obtained in this paper is an interesting open problem.

The rest of this paper is organized as follows. In Section 2 we give some

preliminary energy estimate for Kirchhoff plate systems, and show some fun-

damental weighted pointwise estimates for the wave and elliptic operators. In

Section 3 we present the sharp observability estimate for the Kirchhoff plate
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system. In Section 4 we explain more carefully the main difficulty to show the

optimality of the observability constant for Kirchhoff plate systems by means of

the above mentioned Meshkov’s construction.

2 Preliminaries

In this section, we show some preliminary energy estimates for Kirchhoff plate

systems, and weighted pointwise estimates for the wave and elliptic operators.

The estimates for the Kirchhoff plate system will then be obtained by noting the

equivalence between system (1) and the coupled wave-elliptic system (5).

2.1 Energy estimates for Kirchhoff plate systems

Denote the energy of system (1) by

E(t) =
1

2

[
|1yt(t, ∙)|

2
(L2(�))N + |yt(t, ∙)|

2
(H1

0 (�))N + |1y(t, ∙)|2
(H1

0 (�))N

]
. (6)

Note that this energy is equivalent to the square of the norm inH. For

s0 =
n

3p
, (7)

consider also the modified energy function:

E(t) = E(t) +
1

2
||a||

2
2−s0
p |y(t, ∙)|2

(L2(�))N . (8)

It is clear that both energies are equivalent. Indeed,

E(t) ≤ E(t) ≤ C

(
1 + ||a||

2
2−s0
p

)
E(t). (9)

The following estimate holds for the modified energy:

Lemma 1. Let a ∈ L∞(0, T; L p(�;RN×N)) for somep ∈ [n/3, ∞]. Then

there is a constantC0 = C0(�, p, n) > 0, independent ofT, such that

E(t) ≤ C0eC0||a||
1

2−s0
p |t−s|E(s), ∀ t, s ∈ [0, T]. (10)
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Proof. For simplicity, we assumeN = 1. The same proof applies to a system

with any finite number of componentsN. Using (8) and noting system (1), it is

easy to see that

dE(t)

dt
= −

∫

�

ay1ytdx + ||a||
2

2−s0
p

∫

�

yytdx. (11)

Put p1 = 2
s0−2p−1 and p2 = 2

1−s0
. Noting that

1

p
+

1

p1
+

1

p2
+

1

2
= 1 and

1

2s−1
0

+
1

2(1 − s0)−1
+

1

2
= 1 ,

by Hölder’s inequality and Sobolev’s embedding theorem, and recalling (7)–(8)

and observings0 p1 = 2s0
s0−2p−1 = 2n

n−6, we get

∣
∣
∣
∣−

∫

�

ay1ytdx

∣
∣
∣
∣ ≤

∫

�

|a||y|s0|y|1−s0|1yt |dx

≤ ||a||p

∣
∣
∣
∣
∣
∣|y(t, ∙)|s0

∣
∣
∣
∣
∣
∣
L p1(�)

∣
∣
∣
∣
∣
∣|y(t, ∙)|1−s0

∣
∣
∣
∣
∣
∣
L p2(�)

||1yt (t, ∙)||L2(�)

= ||a||p||y(t, ∙)||s0
Ls0 p1(�)

||y(t, ∙)||1−s0

L(1−s0)p2(�)
||1yt (t, ∙)||L2(�)

= ||a||p||y(t, ∙)||s0

L
2n

n−6 (�)

||y(t, ∙)||1−s0
L2(�)

||1yt (t, ∙)||L2(�)

= C||a||
1

2−s0
p ||y(t, ∙)||s0

L
2n

n−6 (�)︸ ︷︷ ︸

≤E(t)
s0
2

(

||a||
1−s0
2−s0
p ||y(t, ∙)||1−s0

L2(�)

)

︸ ︷︷ ︸

≤E(t)
1−s0

2

||1yt (t, ∙)||L2(�)︸ ︷︷ ︸
≤E(t)1/2

≤ C||a||
1

2−s0
p E(t).

(12)

Similarly,

||a||
2

2−s0
p

∣
∣
∣
∣

∫

�

yytdx

∣
∣
∣
∣ ≤ ||a||

1
2−s0
p

2

∫
�

(
||a||

2
2−s0
p |y|2 + |yt |2

)
dx

≤ C||a||
1

2−s0
p E(t).

(13)

Now, combining (11)–(13), and applying Gronwall’s inequality, we conclude the

desired estimate (10). �
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2.2 Pointwise weighted estimates for the wave and elliptic operators

In this subsection, we present some pointwise weighted estimates for the wave

and elliptic equations that will play a key role when deriving the sharp observ-

ability estimates for the Kirchhoff plate system.

First, we show a pointwise weighted estimate for the wave operator “∂t t −1”.

For this, for any (large)λ > 0, anyx0 ∈ Rn andc ∈ R, set

`(t, x) = λ

[
|x − x0|

2 − c

(
t −

T

2

)2 ]
. (14)

By taking(ai j )n×n = I , the identity matrix, andθ = e` (with ` given by (14))

in [4, Corollary 4.1] (seealso [7, Lemma 5.1]), one has the following pointwise

weighted estimate for the wave operator.

Lemma 2. For anyu = u(t, x) ∈ C2(R1+n), anyk ∈ R andv
4
= θu, it holds

θ2|utt − 1u|2 + 2
[
`t(v

2
t + |∇v|2) − 2(∇`) ∙ (∇v)vt − 9vvt

+ (A + 9)`tv
2
]

t

+ 2
n∑

i =1

{
2vi (∇`) ∙ (∇v) − `i |∇v|2 + 9vvi − 2`tvtvi + `i v

2
t

− (A + 9)`i v
2
}

i

≥ 2λ(1 − k)v2
t + 2λ(k + 3 − 4c)|∇v|2 + Bv2, ∀ (t, x) ∈ R1+n,

(15)

where





9
4
= λ(2n − 2c − 1 + k),

A = 4λ2
[
c2(t − T/2)2 − |x − x0|

2
]

+ λ(4c + 1 − k),

B = 8λ3
[
(4c + 5 − k)|x − x0|

2 − (8c + 1 − k)c2(t − T/2)2
]

+ O(λ2).

(16)

As a consequence of Lemma 2, we have the following pointwise weighted

estimate for the elliptic operator.
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Corollary 1. Let p = p(t, x) ∈ C2(R1+n), and setq = θp. Then

θ2|1p|2 + 2
n∑

i =1

{
2qi (∇`) ∙ (∇q) − `i |∇q|2 + 9̃qqi − (Ã + 9̃)`i q

2
}

i

≥ 6λ|∇q|2 + B̃q2, ∀ (t, x) ∈ R1+n,

(17)

where





9̃
4
= λ(2n − 1), Ã = −4λ2|x − x0|

2 + λ,

B̃ = 40λ3|x − x0|
2 + O(λ2), uniformly w.r.t. t ∈ [0, T].

(18)

Proof. We fix an arbitraryt ∈ [0, T] and view the corresponding function

which depends onx as a function of(x, s) with sbeing a fictitious time parameter.

We then set

U (s, x) ≡ p(t, x), V(s, x) = 4(x)U (s, x) ∀(s, x) ∈ R1+n,

where4 = eL and L = λ|x − x0|2. Choosingc = 0 in (14), and applying

Lemma 2 (withk = 0) in the variable(x, s) to the aboveU andV , we get

42|1U |2 + 2
n∑

i =1

{
2Vi (∇L) ∙ (∇V) − Li |∇V |2 + 9̃V Vi − (Ã + 9̃)Li V

2
}

i

≥ 6λ|∇V |2 + B̃V2,

(19)

with 9̃, Ã and B̃ given by (18). Now, for anyc ∈ R, multiplying both sides of

(19) bye−2cλ(t− T
2 )

2

, noting

θ = 4e−cλ(t− T
2 )

2

, ` = L − cλ

(
t −

T

2

)2

and q = e−cλ(t− T
2 )

2

V ,

the desired inequality (17) follows. �

Remark. The key point in Corollary 1 is that we choose the same weightθ in

(17) as that in (15). This will play a key role in the sequel when we deduce the

sharp observability estimate for Kirchhoff plates.
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In the sequel, for simplicity, we assumex0 ∈ Rn \ � (For the general case

where, possibly,x0 ∈ �, we can modify an argument in [7, Case 2 in the proof

of Theorem 5.1] to derive the same result). Hence

0 < R0
4
= minx∈�|x − x0| < R1

4
= maxx∈�|x − x0|. (20)

Also, for anyβ > 0, we set

2 = 2(t)
4
= exp

{
−

βR1

t
−

βR1

T − t

}
, 0 < t < T. (21)

It is easy to see that2(t) decays rapidly to 0 ast → 0 or t → T . The desired

pointwise Carleman-type estimate with singular weight2 for the wave operator

reads as follows:

Theorem 1. Let u ∈ C2([0, T] × �) and v = θu. Then there exist four

constantsT0 > 0, λ0 > 0, β0 > 0 andc0 > 0, independent ofu, such that for

all T ≥ T0, β ∈ (0, β0) andλ ≥ λ0 it holds

θ22|utt − 1u|2 + 2
{
2

[
`t(v

2
t + |∇v|2) − 2(∇`) ∙ (∇v)vt − 9vvt

+(A + 9)`tv
2
]}

t

+ 22

n∑

i =1

{
2vi (∇`) ∙ (∇v) − `i |∇v|2 + 9vvi − 2`tvtvi + `i v

2
t

−(A + 9)`i v
2
}

i

≥ c0λθ22(u2
t + |∇u|2 + λ2u2),

(22)

with A and9 given by(16).

Remark. The main difference between the pointwise estimates (15) and (22) is

that we introduce a singular “pointwise” weight in (22). As we will see later, this

point plays a crucial role in the proof of Theorem 3 in the next section. Another

difference between (15) and (22) is thatT is arbitrary in the former estimate;

while for the later one needs to takeT0, and henceT , to be large enough.

Proof of Theorem 1. The proof is divided into several steps.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Step 1. We multiply both sides of inequality (15) by2. Obviously, we have

(recall (16) forA and9)

2
[
`t(v

2
t + |∇v|2) − 2(∇`) ∙ (∇v)vt − 9vvt + (A + 9)`tv

2
]

t

=
{
2

[
`t(v

2
t + |∇v|2) − 2(∇`) ∙ (∇v)vt − 9vvt + (A + 9)`tv

2
]}

t

− βT R1t
−2(T − t)−2(T − 2t)2

[
`t(v

2
t + |∇v|2)

− 2(∇`) ∙ (∇v)vt − 9vvt + (A + 9)`tv
2
]
.

(23)

Note that
∣
∣
∣ − βT R1t

−2(T − t)−2(T − 2t)2
[

− 2(∇`) ∙ (∇v)vt − 9vvt

]∣∣
∣

≤ βT R1t
−2(T − t)−2|T − 2t |2

[
2|(∇`) ∙ (∇v)vt | + |9vtv|

]

≤ βT R1t
−2(T − t)−2|T − 2t |2

[
(|∇`| + 1)v2

t + |∇`||∇v|2 +
1

4
92v2

]
.

(24)

Thus by (15), and using (23)–(24), we get

θ22|utt − 1u|2 + 2
{
2

[
`t(v

2
t + |∇v|2) − 2(∇`) ∙ (∇v)vt − 9vvt

+ (A + 9)`tv
2
]}

t

+ 22

n∑

i =1

{
2vi (∇`) ∙ (∇v) − `i |∇v|2 + 9vvi − 2`tvtvi + `i v

2
t

− (A + 9)`i v
2
}

i

≥ 22λ(1 − k)v2
t + 22λ(k + 3 − 4c)|∇v|2

+ 2βT R1t
−2(T − t)−2(T − 2t)`t2(v2

t + |∇v|2)

− 2βT R1t
−2(T − t)−2|T − 2t |2

[
(|∇`| + 1)v2

t + |∇`||∇v|2
]

+ 2
[
B + 2βT R1t

−2(T − t)−2(T − 2t)`t(A + 9)

− βT R1t
−2(T − t)−2 |T − 2t |

2
92

]
v2,

(25)

whereB is given by (16).
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Step 2. Recalling that̀ and9 are given respectively by (14) and (16), we get

22λ(1 − k)v2
t + 22λ(k + 3 − 4c)|∇v|2

+ 2βT R1t
−2(T − t)−2(T − 2t)`t2(v2

t + |∇v|2)

− 2βT R1t
−2(T − t)−2|T − 2t |2

[
(|∇`| + 1)v2

t + |∇`||∇v|2
]

+ 2
[
B + 2βT R1t

−2(T − t)−2(T − 2t)`t(A + 9)

− βT R1t
−2(T − t)−2 |T − 2t |

2
92

]
v2

= λ2(F1v
2
t + F2|∇v|2) + λ32Gv2,

(26)

where

F1
4
= 2(1 − k) + 2cβT R1t−2(T − t)−2(T − 2t)2

−2βT R1t−2(T − t)−2|T − 2t |(2|x − x0| + λ−1),
(27)

F2
4
= 2(k + 3 − 4c) + 2cβT R1t−2(T − t)−2(T − 2t)2

−4βT R1t−2(T − t)−2|T − 2t ||x − x0|
(28)

and

G
4
= 8

[
(4c + 5 − k)|x − x0|2 − (8c + 1 − k)c2(t − T/2)2

]

+ O(λ−1)

+ 8cβT R1t−2(T − t)−2(T − 2t)2
[
c2(t − T/2)2

−|x − x0|2 + O(λ−1)
]

− β(2n − 2c − 1 + k)2T R1t−2(T − t)−2|t − T/2|λ−1.

(29)

Thus, by (25) and (26), we have

θ22|utt − 1u|2 + 2
{
2

[
`t(v

2
t + |∇v|2) − 2(∇`) ∙ (∇v)vt − 9vvt

+(A + 9)`tv
2
]}

t

+ 22

n∑

i =1

{
2vi (∇`) ∙ (∇v) − `i |∇v|2 + 9vvi − 2`tvtvi + `i v

2
t

−(A + 9)`i v
2
}

i

≥ λ2(F1v
2
t + F2|∇v|2) + λ32Gv2.

(30)
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Step 3. Let us show thatF1, F2 andG are positive whenλ is large enough. For

this purpose, we choosec ∈ (0, 1) sufficiently small so that

(4 + 5c)R2
0

9c
> R2

1, (31)

andT(> 2R1) sufficiently large such that

4(4 + 5c)R2
0

9c
> c2T2 > 4R2

1. (32)

Also, we choose

k = 1 − c. (33)

By (33) and recalling thatc ∈ (0, 4/5), it is easy to see that the nonsingular

part F0
1

4
= 2(1 − k) of F1 (resp. F0

2
4
= 2(k + 3 − 4c) of F1) is positive. Using

(33) again, the nonsingular part ofG reads

G0 4
= 8

[
(4c + 5 − k)|x − x0|

2 − (8c + 1 − k)c2(t − T/2)2
]

+ O(λ−1)

≥ 2
[
4(4 + 5c)R2

0 − 9c3T2
]

+ O(λ−1),

which, via the first inequality in (32), is positive provided thatλ is sufficiently

large.

Whent is near 0 andT , i.e., t ∈ I0
4
= (0, δ0) ∪ (T − δ0, T) for some suffi-

ciently smallδ0 ∈ (0, T/2), the dominant terms inFi (i = 1, 2) andG are the

singular ones. Fort ∈ I0, the singular part ofF1 reads

F1
1

4
= 2cβT R1t−2(T − t)−2(T − 2t)2

− 2βT R1t−2(T − t)−2|T − 2t |(2|x − x0| + λ−1)

≥ 2βT R1t−2(T − t)−2|T − 2t |[c(T − 2δ0) − 2R1 − λ−1)]

= 2βT R1t−2(T − t)−2|T − 2t |(cT − 2R1 − 2cδ0 − λ−1),

which, via the second inequality in (32), is positive provided that bothδ0 and

λ−1 are sufficiently small. Similarly, fort ∈ I0, the singular part ofF2,

F1
2

4
= 2cβT R1t−2(T − t)−2(T − 2t)2

− 4βT R1t−2(T − t)−2|T − 2t ||x − x0|
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is positive provided thatδ0 is sufficiently small. Also, fort ∈ I0, the singular

part ofG reads

G1 4
= 8 cβT R1t−2(T − t)−2(T − 2t)2

[
c2(t − T/2)2 − |x − x0|2

+O(λ−1)
]

− β(2n − 2c − 1 + k)2T R1t−2(T − t)−2|t − T/2|λ−1.

It is easy to see that, fort ∈ I0, it holds

G1 = βT R1t
−2(T − t)−2|T − 2t |

{
8c|T − 2t |

[
c2(t − T/2)2 − |x − x0|2 + O(λ−1)

]

− (2n − 2c − 1 + k)2(2λ)−1
}

= βT R1t−2(T − t)−2|T − 2t |
{
8c|T − 2t |

[
c2(t − T/2)2 − |x − x0|2

]
+ O(λ−1)

}

≥ βT R1t−2(T − t)−2|T − 2t |
{
8c|T − 2δ0|

[
c2(δ0 − T/2)2 − R2

1

]
+ O(λ−1)

}

≥ βT R1t−2(T − t)−2|T − 2t |
{
8c|T − 2δ0|

[
c2T2/4 − R2

1 + c2δ0(δ0 − T)
]
+ O(λ−1)

}
,

which, via the second inequality in (32), is positive provided that bothδ0 and

λ−1 are sufficiently small.

By (27)–(29), we see thatF1 = F0
1 + F1

1 , F2 = F0
2 + F1

2 andG = G0 + G1.

SinceF0
1 , F0

2 andG0 are positive, by the above argument, we see thatF1, F2 and

G are positive fort ∈ I0. For t ∈ (0, T) \ I0, noting again the positivity ofF0
1 ,

F0
2 andG0, one can chooseβ > 0 sufficiently small such thatF1

1 , F1
2 andG1

are very small, hence so thatF1, F2 andG are positive. Hence (30) yields the

desired (22). This completes the proof of Theorem 1. �

Similar to Theorem 1, by multiplying both sides of (17) by2, we have

Theorem 2. Let p = p(t, x) ∈ C2([0, T] × �), and setq = θp. Then there

exist two constantsλ0 > 0andc0 > 0, independent ofp, such that for allT > 0,

β > 0 andλ ≥ λ0 it holds
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θ22|1p|2 + 22

n∑

i =1

{
2qi (∇`) ∙ (∇q) − `i |∇q|2 + 9̃qqi − (Ã + 9̃)`i q

2
}

i

≥ c0λθ22
(
|∇ p|2 + λ2 p2

)
,

(34)

with Ã and9̃ given by(18).

3 Sharp observability estimate

In this section we establish a sharp observability estimate for system (1).

For this purpose, for any fixedx0 ∈ Rn \ � (As mentioned before, we do

not really need to assume thatx0 is out of �. Indeed, for the case where,

possibly,x0 ∈ �, we can modify an argument in [7, Case 2 in the proof of

Theorem 5.1] to derive the same observability result in this section), we introduce

the following set:

00
4
=

{
x ∈ 0

∣
∣ (x − x0) ∙ ν(x) > 0

}
. (35)

One of the main results in this paper is the following observability inequality

with explicit dependence of the observability constant on the potentiala for

system (1):

Theorem 3. Let 00 be given by(35) and p ∈ [5n/2, ∞]. Then there is a

constantC > 0 such that for anyT > T0, with T0 as in Theorem 1, and

any a ∈ L∞(0, T; L p(�;RN×N)), the weak solutiony of system(1) satisfies

estimate(2) with the observability constantK (a) > 0 verifying

K (a) ≤ C exp

(
C||a||

1
3−5n/2p
p

)
. (36)

We now sketch the main points in the proof of Theorem 3. The first ingredient

consists in decomposing the Kirchhoff plate equation into a coupled system of

wave and elliptic equations as in (5) and to apply the pointwise estimates of the

previous section in cascade. First, we apply Theorem 1 toz. Integrating (22) in
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Q, noting that2(t) decays rapidly to 0 ast → 0+ or t → T−, recalling that

z|6 = 0 (and hence∇z = ∂z
∂ν

ν andzi = ∂z
∂ν

νi on6), one may deduce that

λ

∫

Q
θ22(z2

t + |∇z|2)dxdt+ λ3
∫

Q
θ22z2dxdt

≤ C

{∫

Q
θ22(ztt − 1z)2dxdt+ 4λ

∫

6

θ22

∣
∣
∣
∂z

∂ν

∣
∣
∣
2
(x − x0) ∙ ν(x)dxdt

}

≤ C

{∫

Q
θ22(ztt − 1z)2dxdt+ eCλ

∫

60

2

∣
∣
∣
∂z

∂ν

∣
∣
∣
2
dxdt

}

≤ C

{∫

Q
θ22[(ay)2 + y2 + z2]dxdt+ eCλ

∫

60

2
(∣
∣
∣
∂y

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂1y

∂ν

∣
∣
∣
2)

dxdt

}
,

(37)

with 60
4
= (0, T) × 00 and00 being given in (35).

Similarly, applying Theorem 2 respectively toy andyt , we deduce that

λ

∫

Q
θ22|∇y|2dxdt+ λ3

∫

Q
θ22y2dxdt

≤ C
{ ∫

Q
θ22(1y)2dxdt+ eCλ

∫

60

2

∣
∣
∣
∂y

∂ν

∣
∣
∣
2
dxdt

}

≤ C
{ ∫

Q
θ22(y2 + z2)dxdt+ eCλ

∫

60

2

∣
∣
∣
∂y

∂ν

∣
∣
∣
2
dxdt

}
,

(38)

and

λ

∫

Q
θ22|∇yt |

2dxdt+ λ3
∫

Q
θ22y2

t dxdt

≤ C
{ ∫

Q
θ22(1yt)

2dxdt+ eCλ

∫

60

2

∣
∣
∣
∂yt

∂ν

∣
∣
∣
2
dxdt

}

≤ C
{ ∫

Q
θ22(y2

t + z2
t )dxdt+ eCλ

∫

60

2

∣
∣
∣
∂yt

∂ν

∣
∣
∣
2
dxdt

}
.

(39)

It is easy to see that the termC
∫

Q θ22z2dxdt (resp. C
∫

Q θ22y2dxdt and

C
∫

Q θ22y2
t dxdt) in the right hand side of (37) (resp. (38) and (39)) can be

absorbed by its left hand side. Hence, for anyε0 > 0, (37) added first to

ε0λ
3×(38), then toε0λ×(39), makes
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λ

∫

Q
θ22(z2

t + |∇z|2)dxdt+ λ3
∫

Q
θ22z2dxdt

+ ε0λ
2
∫

Q
θ22|∇yt |

2dxdt+ ε0λ
4
∫

Q
θ22(y2

t + |∇y|2)dxdt

+ ε0λ
6
∫

Q
θ22y2dxdt

≤ C
{
||θ

√
2ay||2L2(Q)

+
∫

Q
θ22y2dxdt+ ε0

∫

Q
θ22(λ3z2 + λz2

t )dxdt

+ eCλ

∫

60

2
(∣
∣
∣
∂y

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂yt

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂1y

∂ν

∣
∣
∣
2)

dxdt
}
.

(40)

By takingε0 > 0 sufficiently small (which is independent ofλ), one can absorb

the undesired termsCε0
∫

Q θ22(λ3z2+λz2
t )dxdt in the right hand side of (40) by

its left hand side. Then, for this choice ofε0 and taking takingλ > 0 sufficiently

large, one can absorb further the undesired termsC
∫

Q θ22y2dxdt in the right

hand side of (40). Consequently, we arrive at

λ

∫

Q
θ22(z2

t + |∇z|2)dxdt+ λ3
∫

Q
θ22z2dxdt

+ λ2
∫

Q
θ22|∇yt |

2dxdt+ λ4
∫

Q
θ22(y2

t + |∇y|2)dxdt

+ λ6
∫

Q
θ22y2dxdt

≤ C
{
||θ

√
2ay||2L2(Q)

+ eCλ

∫

60

2
(∣
∣
∣
∂y

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂yt

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂1y

∂ν

∣
∣
∣
2)

dxdt
}
.

(41)

Recallingz = y − 1y, one has

λ

∫

Q
θ22(z2

t + |∇z|2)dxdt+ λ3
∫

Q
θ22z2dxdt

≥ λ

∫

Q
θ22[(1yt − yt)

2 + |∇1y − ∇y|2]dxdt

+λ3
∫

Q
θ22(1y − y)2dxdt

≥
λ

2

∫

Q
θ22[(1yt)

2 + |∇1y|2]dxdt+
λ3

2

∫

Q
θ22(1y)2dxdt

−λ

∫

Q
θ22(y2

t + |∇y|2)dxdt− λ3
∫

Q
θ22y2dxdt.

(42)
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Combining (41) and (42), it follows

λ

∫

Q
θ22[(1yt )

2 + |∇1y|2]dxdt+ λ2
∫

Q
θ22|∇yt |

2dxdt

+ λ3
∫

Q
θ22(1y)2dxdt+ λ4

∫

Q
θ22|∇y|2dxdt

+ λ6
∫

Q
θ22y2dxdt

≤ C
{
||θ

√
2ay||2L2(Q)

+ eCλ

∫

60

2
(∣
∣
∣
∂y

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂yt

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂1y

∂ν

∣
∣
∣
2)

dxdt
}
.

(43)

Now we have to get rid of the term||θay||2
L2(Q)

.

By the proof of [1, Theorem 2.2], for anyε > 0, we have

||θ
√

2ay||2
L2(Q)

≤ ελ||θ
√

2y||2
L2(0,T; H1

0 (�))

+ ε−n/(p−n)||a||2p/(p−n)
p λ−n/(p−n)||θ

√
2y||2

L2(Q)
.

By takingε small enough the first termελ||θ
√

2y||2
L2(0,T; H1

0 (�))
can be absorbed

by the left hand side of (43). Then, for this choice ofε and takingλ sufficiently

large, the term

Cε−n/(p−n)||a||2p/(p−n)
p λ−n/(p−n)||θ

√
2y||2L2(Q)

can be absorbed byλ6
∫

Q θ22y2dxdt. For this, we chooseλ such that

Cε−n/(p−n)||a||2p/(p−n)
p λ−n/(p−n) ≤

1

2
λ6,

which yieldsλ ≥ C||a||2p/(6p−5n)
p = C||a||1/(3−5n/2p)

p .

Therefore, recalling the definition ofE(t) in (6), it follows from (43) that
∫ T

0
2E(t)dt

≤ Cexp

(
C||a||

1
3−5n/2p
p

) ∫

60

(∣
∣
∣
∂y

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂yt

∂ν

∣
∣
∣
2
+

∣
∣
∣
∂1y

∂ν

∣
∣
∣
2)

dxdt.

(44)

Now, for ||a||p sufficiently large, put

t0 =
1

2
||a||

1
3−5n/2p − 1

2−n/3p
p . (45)
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Hence

2||a||
1

2−n/3p
p t0 = ||a||

1
3−5n/2p
p . (46)

Recall thatp > 5n/2. Hencet0 is small when||a||p is large. Therefore, by the

definition of2 in (21), it is obvious that

∫ T

0
2E(t)dt ≥

∫ 2t0

t0

2E(t)dt ≥
1

C
e−Ct−1

0

∫ 2t0

t0

E(t)dt. (47)

By (9) and Lemma 1 (withs0 = n
3p), it follows that

∫ 2t0

t0

E(t)dt ≥
1

1 + ||a||
2

2−n/3p
p

E(0)

∫ 2t0

t0

e−C||a||
1

2−n/3p
p tdt

≥
t0

1 + ||a||
2

2−n/3p
p

E(0)e−2C||a||
1

2−n/3p
p t0.

(48)

Combining (45)–(48), and noting (46), it follows

∫ T

0
2E(t)dt ≥ E(0)exp

(
−C||a||

1
3−5n/2p
p

)
. (49)

Finally, the desired estimates (2) and (36) follow from (44) and (49).

4 An open problem on the optimality of the observability constant for
Kirchhoff plate systems

In [5, Theorem 3], it is shown that whenp = ∞ the observability constant

P2(T, a) for the Euler-Bernoulli plate systems with at least two equations in

even space dimensionsn ≥ 2 is optimal in what concerns the dependence on

the potentiala. The main idea to prove this optimality result is the same as

that in [1], which is based on a suitable construction ofu andq satisfying the

following bi-Laplacian equation:

12u = qu, in Rn, (50)

which decays at infinity sufficiently fast. More precisely, following Meshkov’s

construction [8, 5], we have the following result onu andq for (50):
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Lemma 3. Letn ≥ 2 be even. Then there exist two nontrivial complex-valued

functions:

u ∈ C∞(Rn; C), q ∈ C∞(Rn; C)
⋂

L∞(Rn; C)

such that(50) is satisfied, and for some constantC:

|u(x)| + |∇u(x)| + |∇1u(x)| ≤ Ce−|x|4/3
, ∀ x ∈ Rn. (51)

One may expect that Lemma 3 can be applied to establish a similar optimality

result for the observability constantK (a) for the Kirchhoff plate systems as well.

However, this is an open problem. We now explain why the above Meshkov’s

construction does not seem to suffice for Kirchhoff plate systems. Based on

the construction ofu andq in Lemma 3, by suitable scaling and localization

arguments, one can find a family of rescaled potentialsaR(x) = R4q(Rx) with

anL∞-norm of the order ofR4 and a family of solutionsuR(x) = u(Rx) of the

corresponding bi-harmonic problem, with a decay of the order of

|uR(x)| ≤ Cexp
(

− R4/3|x|4/3
)
.

Without loss of generality we may assume that the boundary0 (and therefore

the observation subdomain00) is included in the region|x| ≥ 1. This yields a

sequence of solutions of the bi-Laplacian system12uR = aRuR in which the

ratio between total energy and the energy concentrated in00 and the norm of

the boundary traces is of the order of exp
(

− R4/3
)
. Taking into account that

||aR||∞ ∼ R4, this ratio turns to be of the order of exp
(

− ||aR||1/3
∞

)
. These so-

lutions of the above mentioned bi-Laplacian system can be regarded also as solu-

tions of the Kirchhoff plate system for suitable initial data. However, they do not

fulfill homogeneous boundary conditions. Therefore, one needs to compensate

them by subtracting the solution taking their boundary data and zero initial ones.

In turn, one has to show that these solutions are as small as exp
(

− ||aR||1/3
∞

)
in

the energy spaceH. Due to the infinite speed of propagation, this can be easily

done for the Euler-Bernoulli plate systems during a time interval of the order

of T ≤ μ||aR||−1/6
∞ (because it suffices to use the energy estimate, which yields

an exponential growth exp
(

T ||aR||1/2
∞

)
for the energy evolution in a very short
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time). However, the same approach fails for Kirchhoff plate systems since, in

order that the (boundary) observability estimate for these systems to hold, one

needs to take the timeT to be large enough. In fact, the key point is that, at this

level the energy estimate yields an exponential growth exp
(

T ||aR||1/2
∞

)
for the

energy evolution, and it has to be used in the whole time duration[0, T]. This

breaks down the concentration effect that Meshkov’s construction guarantees.
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