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1 Introduction

Letn > 1 andN > 1 be two integers. Le®2 be a bounded domain iR" with
C* boundaryl’, T'y be a nonempty open subsetldf andT > 0 be given and
sufficiently large. Pu@Q = O0,T)x,X B} (O T) x T"'andXq B (0, T) x I'o.
For simplicity, we will use the notatiog = wherey; is thei-th coordinate
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354 OBSERVABILITY INEQUALITY FOR KIRCHHOFF PLATE SYSTEMS

of a generic poink = (Xq, - - - , X) in R". Throughout this paper, we will use
C = C(T,Q,T'yp) andC* = C*(Q2, T'p) to denote generic positive constants
depending on their arguments which may vary from line to line.

Set

Y= {y e H@)| yir = Aylr =0}

We consider the followin&N-valued plate system with a potenteaE L>(0, T;
LP(2; RN*NY) for somep e [n/3, ool

i + A%y — Ay +ay=0 inQ,
y=Ay=0 onz, 1)
y0) =Yy° (0 =y! in Q,

wherey = (y1,---, yn) ', and the initial datungy®, y*) is supposed to belong
to } = lp € H3Q)| ¢Ir = Aglr = 0}N x (H2(Q)N Hol(sz))N, the state
space of system (1). It is easy to show that system (1) admits one and only one
weak solutiony € C([0, T]; H).

In what follows, we shall denote Qyl, ||- ||, and||| - ||| , the (canonical) norms
onRN, L>(0, T; LP(Q; RN>*Ny)y andL>(0, T; WHP(Q2; RN*N)), respectively.

We shall study the observability constdtta) of system (1), defined as the
smallest (possibly infinite) constant such that the following observability estimate
for system (1) holds:

0 1y 2 & 0112 1,2
||(y ’y )IIJ—( = ||y ||(H3(Q))N + ||y ||(H2(Q))N

(’8y Byt‘ ‘aAy ) (2)

< K(@) = dxdt V(% yhH e X

This inequality, the so-calledbservability inequality allows estimating the
total energy of solutions in terms of the energy localized in the observation
subdomainy. It is relevant for control problems. In particular, in this linear
setting, this (observability) inequality is equivalent to the so-called exact control-
lability property, i.e., that of driving solutions to rest by means of control forces
localized inXy (see [6, 11]). This type of inequality, with explicit estimates on
the observability constant, is also relevant for the control of semilinear problems
([10]). Similar inequalities are also useful for solving a variety of Inverse Prob-
lems ([9]). We remark that, as for the wave equations, (2) holds for the Kirchhoff
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XU ZHANG and ENRIQUE ZUAZUA 355

plate only if (2, T'g, T) satisfies suitable conditions, i. &y needs to satisfy
certain geometric conditions affdneeds to be large enough.

Obviously the observability constait(a) in (2) not only depends on the
potentiala, but also on the domain® andI'y and on the timel. The main
purpose of this paper is to analyze only its explicit and sharp dependence on the
potentiala.

The main tools to derive the explicit observability estimates are the so-called
Carleman inequalitiesHere we have chosen to work in the spaceén which
Carleman inequalities can be applied more naturally. But some other choices of
the state space are possible. For example, one may consider similar problems
in state spaces of the fortH} ()N x (L2()N or (H2(£2) N HF ()N x
(Hg(£2))N where the Kirchhoff plate system is also well posed. But the cor-
responding analysis on the observability constants, in turn, is technically more
involved.

One of the key points to derive inequality (2) for system (1) is the possibility
of decomposing the Kirchhoff plate operatigr+ A? — 32A as follows:

324+ A% — 92N =By — A)(I —A)+ A, (3)
wherel is the identity operator. Actually, we set
zZ= y - Ayv (4)

wherey is the solution of (1). By the first equation of (1) and noting (3), it
follows that

—ay = Vit + A%y — Ay = (B — A)(Y — AY) + Ay =24 — AZ+ Yy —Z

Therefore the Kirchhoff plate system (1) can be written equivalently as the fol-
lowing coupled elliptic-wave system

Ay+z—-y=0 in Q,
zt —Az+y—z+ay=0 in Q,
®)

20 =y°— Ay, z©0) =y'—Ay! inQ.
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356 OBSERVABILITY INEQUALITY FOR KIRCHHOFF PLATE SYSTEMS

Consequently, in order to derive the desired observability inequality for sys-
tem (1), it is natural to proceed in cascade by applying the global Carleman
estimates to the second order operators in the two equations in system (5). We
refer to [2, 3] for related works on Carleman inequalities for other cascade sys-
tems of partial differential equations.

Similar (boundary and/or internal) observability problems (in suitable spaces)
have been considered for the heat and wave equations in [1], and for the Euler-
Bernoulli plate equations in [5]. According to [1] and [5], the sharp observability
constants for the heat, wave and Euler-Bernoulli plate equations with bounded
potentialsa (i.e., p = oo) contain respectively the product of the following two
terms (Recall tha€* = C*(2, I'y) andC = C(T, 2, I'p))

Hi(T, a) = exp(C*T||allc), Ha(T, @) = exp(C*||al|Z?),

Wy (T, a) = exp(Cllall?).  Wa(T, a) = exp(Cllall%?).

and
Pi(T, @) = exp(C*T|||al||¥?), Px(T, @) = exp(C*|lal|%?).

As explained in [1, 5], the role that each of these constants plays in the observ-
ability inequality is of different natureH,(T, a), Wi(T, a) and P,(T, a) are

the constants which arise when applying Gronwall’s inequality to establish the
energy estimates for solutions of evolution equations; WHIET, a), Wo(T, a)
andP,(T, a) appear when using global Carleman estimates to derive the observ-
ability inequality by absorbing the undesired lower order terms.

It is shown in [1, Theorems 1.1 and 1.2] and [5, Theorem 3] that the above
observability constants are optimal for the heat, wave and Euler-Bernoulli plate
systems N > 2) with bounded potentials, in even dimensions 2. The proof
of this optimality result uses the following two key ingredients:

1) For the heat and Euler-Bernoulli plate equations, because of the infinite
speed of propagation, one can cho®sas small as one likes and hence-
forth Hy(T, a) and Pi(T, a) can be bounded above Wy, (T, a) and
P,(T, a), respectively folT = O (||a||;ol/3> andO <||a||;ol/6). On the
other hand, for the wave equation, although one has toTaikebe large
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enough (because of the finite velocity of propagation), for any fifite

W, (T, a) can bounded bW, (T, a) because the power/2 for ||a|| in

Wy (T, a), given by the modified energy estimate, is smaller th&s the
power for||a||, in Wo(T, a), arising from the Carleman estimate. In this
way, for any finiteT large enough, one gets an upper bound on the ob-
servability constant (for the wave equation) of the order ol(@{rm |§é3).

2) Based on the Meshkov’s construction [8] which allows finding potentials
and non-trivial solutions for elliptic systems decaying at infinity in a super-
exponential way, one can construct a family of solutions (for the heat, wave
and Euler-Bernoulli plate equations) with suitable localization properties
showing that most of the energy is concentrated away from the observation
domain. According to this, the observed energies grow exponentially as
exp( — |[al[3%) for the wave and heat systems and as(expla|=.°) for
the Euler-Bernoulli plate ones.

Things are more complicated for the Kirchhoff plate systems under consid-
eration. Indeed, on one hand, due to the finite speed of propagation, one has
to choose the observability timE to be large enough. On the other hand, a
modified energy estimate for the Kirchhoff plate systesee(10) in Lemma 1
in Section 2) yields a power/2 for ||a||. Which can not be absorbed by the
one, ¥3, arising from the Carleman estimate. To overcome this difficulty, the
key observation in this paper is that, althouihas to be taken to be large, one
can manage to use the indispensable energy estimate only in a very short time
interval when deriving the desired observability estimate. However, we do not
know how to show the optimality of the observability constant at this moment.
Indeed, when proving the optimality, the energy estimate has to be used in the
whole time duratiori0, T] and this breaks down the concentration effect that
Meshkov’s construction guarantees, which is valid only for very small time du-
rations for the Kirchhoff plate systems. Therefore, proving the optimality of the
observability estimates obtained in this paper is an interesting open problem.

The rest of this paper is organized as follows. In Section 2 we give some
preliminary energy estimate for Kirchhoff plate systems, and show some fun-
damental weighted pointwise estimates for the wave and elliptic operators. In
Section 3 we present the sharp observability estimate for the Kirchhoff plate
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358 OBSERVABILITY INEQUALITY FOR KIRCHHOFF PLATE SYSTEMS

system. In Section 4 we explain more carefully the main difficulty to show the
optimality of the observability constant for Kirchhoff plate systems by means of
the above mentioned Meshkov’s construction.

2 Preliminaries

In this section, we show some preliminary energy estimates for Kirchhoff plate
systems, and weighted pointwise estimates for the wave and elliptic operators.
The estimates for the Kirchhoff plate system will then be obtained by noting the
equivalence between system (1) and the coupled wave-elliptic system (5).

2.1 Energy estimates for Kirchhoff plate systems

Denote the energy of system (1) by

1 2 2 2

Note that this energy is equivalent to the square of the nord.ifror

n
- 7
S 3p’ (7)

consider also the modified energy function:

1 =
EM = E®) + Sllallp IY(t, )l 2@ )
It is clear that both energies are equivalent. Indeed,
2
Et) <&t <C (1+ ||a||é‘s°) E®). 9)

The following estimate holds for the modified energy:

Lemma 1. Leta e L>(0, T; LP(Q; RN*N)) for somep e [n/3, oo]. Then
there is a constant, = Cy(£2, p, n) > 0, independent of , such that

1
7=

&(t) < CoeSollale *lt=sle(g) vt se[0, T (10)
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Proof. For simplicity, we assumBl = 1. The same proof applies to a system
with any finite number of components. Using (8) and noting system (1), itis
easy to see that

dét
di) / ayAyidx+ [1allp / yndx. (11)
Putp, = ST andp; = _— Noting that
1 1 1 1 1 1 1
—+—+—+5=1 and + +5-=1,
P P P2 2 2557 21-s)t 2

by Holder’s inequality and Sobolev‘s embedding theorem, and recalling (7)—(8)

and observingop; = so—sz?rl = 20, we get

‘— / ayAyidx
Q

s/§2|a||y|50|y|1—S°|Ayt|dx

[y o)

< llallp||lyct. 1| 1A%, )iz

LPL(RQ) LP2(Q)

= [[allplly(t, )IILsopl(Q)IIY(t )||L(1 o2 o 1AV (L L2

- S
—||a||pIIY(t,-)||Ln26( Iy(t, )IILz(Q)IlAyt(t MLz (12)

— Clali} @ Iy, Nz . (||a|| Oy, )||Lz(g))||Ayt<t,~)||Lz<m
|
\—,_z

<&m2
58(t)7 Sg(t)PTSO
<C||a||p5°8(t)
Similarly,
ﬁ
faity ™ | [ ywax| < S5 (il 1y + 17)dx
(13)
< CllaliZ e,

Now, combining (11)—(13), and applying Gronwall's inequality, we conclude the
desired estimate (10). O
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360 OBSERVABILITY INEQUALITY FOR KIRCHHOFF PLATE SYSTEMS

2.2 Pointwise weighted estimates for the wave and elliptic operators

In this subsection, we present some pointwise weighted estimates for the wave
and elliptic equations that will play a key role when deriving the sharp observ-
ability estimates for the Kirchhoff plate system.

First, we show a pointwise weighted estimate for the wave operagor “A”.
For this, for any (large). > 0, anyxg € R" andc € R, set

T 2
e(t,x)=x[|x—xo|2—c(t—§) ] (14)

By taking (a' )n.n = |, the identity matrix, and = €‘ (with ¢ given by (14))
in [4, Corollary 4.1] 6eealso [7, Lemma 5.1]), one has the following pointwise
weighted estimate for the wave operator.

Lemma 2. Foranyu = u(t, x) € C2(R¥*"), anyk € R andv = 4u, it holds
62|Uy — AU + 2 [zt(vf + Vo) — 2(V0) - (Vo)u — Wy,

T (A+ q,)mz]
t
n
+ 22 {2ui (V) - (Vv) — |Vv]? 4+ Wov; — 26vv; + 602 (15)
i=1

(AW u2}i
> 20(1 — k)v? + 2r(k 4 3 — 4c)|Vu|> + Bv?, VY (t, x) € R*™",
where
WEA@2n—2c-1+K),
A=52[At-T/2? - x - x| + A4+ 1- k), (16)
B = 8.3 [(4c—|— 5 K)|x — X0l — (8¢ + 1 — k)C3(t — T/2)2] +00.2).

As a consequence of Lemma 2, we have the following pointwise weighted
estimate for the elliptic operator.
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Corollary 1. Letp = p(t, x) € C2(R*"), and seg = §p. Then
n ~ ~ ~
021ap2+23" [26(V0) - (Va) — & |Val2 + Tag — (A+ D2}
N |
i=1 (17)
> 6rVal2+ Bg?, V¥ (t,x) e RM™,

where

252n—1), A=—42x—x)2+2,

U
N (18)
B

= 4023|x — Xo|> + O(A?), uniformly w.r.t.t € [0, T].

Proof. We fix an arbitraryt € [0, T] and view the corresponding function
which depends ok as a function ofx, s) with sbeing afictitious time parameter.
We then set

U(s, X) = pt,x), V(s,x)=EXU(,X) Y(s, X) € RN,

whereE = e- andL = A|x — Xp|?. Choosingc = 0 in (14), and applying
Lemma 2 (withk = 0) in the variablgXx, s) to the aboveJ andV, we get

n
22AU2 +2) {2\4 (VL) - (VV) = Li[VV2 + TV V. — (A + \Tf)Livz},
— i (19)
i=1
> 6A|VV|? + BV?,

with ¥, A and B given by (18). Now, for ang € R, multiplying both sides of
2
(19) bye=2+(t-%)" noting

- 7cx(t71)2 T\? 7cx(t71)2
0 = Ee 2) E:L—CAI—E and gq=-¢€ 2) V,

the desired inequality (17) follows. O

Remark. The key pointin Corollary 1 is that we choose the same weight
(17) as that in (15). This will play a key role in the sequel when we deduce the
sharp observability estimate for Kirchhoff plates.
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In the sequel, for simplicity, we assumg € R" \ Q (For the general case
where, possiblyx, € €, we can modify an argument in [7, Case 2 in the proof
of Theorem 5.1] to derive the same result). Hence

0 < Ro = MiNgeq|X — Xo| < Ri = MaXcq|X — Xol. (20)

Also, for anyg > 0, we set

0=0m2exp - PR _ PR }

O<t<T. (21)
t Tt

It is easy to see thad(t) decays rapidlyto 0 as— 0 ort — T. The desired
pointwise Carleman-type estimate with singular wei@tfor the wave operator
reads as follows:

Theorem 1. Letu € C?(0,T] x Q) andv = 6u. Then there exist four
constantsTy > 0, Ag > 0, Bg > 0 andcy > 0, independent ofi, such that for
all T > Ty, B € (0, Bo) andA > Ag it holds

620|uy — Auf® + 2 {@[zt(vf +Vo[?) — 2(V0) - (Vo)u — Wy

F(A+ W)Etvz]}t

n
+ 20 Z {2vi (V) - (Vv) — & Vo2 + Yoy — 24vw; + G2 (22)
i=1
—(A+ \p)eivz}'
1

> CAB%O (U2 + |VUul? + 1%u?),
with A and W given by(16).
Remark. The main difference between the pointwise estimates (15) and (22) is
that we introduce a singular “pointwise” weightin (22). As we will see later, this
point plays a crucial role in the proof of Theorem 3 in the next section. Another
difference between (15) and (22) is thatis arbitrary in the former estimate;
while for the later one needs to takg, and hencd, to be large enough.

Proof of Theorem 1. The proof is divided into several steps.
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Step 1. We multiply both sides of inequality (15) b®. Obviously, we have
(recall (16) forA and¥)

@[zt(vf + Vo) — 2(VE) - (Vo)u — Wou + (A+ w)etvz]t

— {@[zt(vf +[Vol2) — 2(V0) - (Vo)u — Woug + (A+ \D)Etvz]}

' (23)
_ BT Rt 2(T —t) 2T — 2t)®[€t(vt2 +[Vu?)
—2(VE) - (Vo)v — Vo + (A+ \P)Ztvz].
Note that
— BTRt2(T —t) (T — 2t)@[ —2(VE) - (Vo)u — \Ilvvt]‘
< BTREAT —t) 2T — 2t|®[2|(W) (Vo) + I\vatvl] (24)

1
< BTRU AT — )T — 2t|®[(|ve| + Dv2 + VL) Vo2 + szvz].

Thus by (15), and using (23)—(24), we get
020Uy — AU + 2{@[&@5 + Vo) = 2(VE) - (Vo)u — Yo

(A4 lIJ)Ktvz]}t

n
+20)° {2vi (V) - (Vo) — & |Vul2 + Wou, — 200w + £ 02
i=1

—(A+ \p)zivz}

204(1 — k)vZ + 20A(k + 3 — 4¢)|Vv|? (25)

v

+ 28T Rit2(T — ) 4(T — 20)£:0 (v? + |Vv|?)
_2BTR2(T —t) 2T — 2t|®[(|v1z| + D2+ |W||Vv|2]

+ @[B 4 28T Rt ™2(T — ) 2(T — 20)6 (A + W)

T -2t
t)_2| |

— BT Rt (T — 5

\112] v2,
whereB is given by (16).
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Step 2. Recalling that andW are given respectively by (14) and (16), we get
201(1 — K)v? + 20A(K + 3 — 40)|Vv|?

+ 2BT Rit™2(T — )73(T — 20)4,0 (v + |Vv|?)

~ 2BTRU2(T —t) 2T — 2t|®[(|V£| + 1?4 |W||Vv|2]

+ @[B 28T Rit2(T —t)2(T — 206 (A + W) (26)

T —2t
_ BTRt (T — t)’z%\llz]vz

= AO(Fv? + F2|Vv|?) + 130Gv?,
where
A

Fi= 2(1—K)+2c8T Rit=2(T —t)"%(T — 2t)?

(27)
—2B8T Rit2(T —t) 2T — 2t|(2|X — Xo| + 1 71),
Fo 2 2(k+3—4c) + 2c8T Rit—2(T — t)~%(T — 2t)2

(28)
—4BT Rit=2(T —t) 2T — 2t||X — Xo

and
GL 8 [(4c+ 5 k)X — %ol — (8¢ + 1 — K)G2(t — T/2)2]
+ o0
+8CAT Rit2(T —t)~4(T — 2t)2[02(t —T/2? (29)
ZIx = xol2 4+ O()rl)]

— BN —2c — 1+ K2’TRt2(T —t) 2t — T/2IA7L.
Thus, by (25) and (26), we have

620Uy — Au|? + 2 {@[zt(uf Vo)) — 2(V0) - (Vo) — Wy

F(A+ \p)ztvz]}t

n
+20)" {Zvi (VO) - (Vo) — 6 |Vu2 + Woy — 20w + G2 (30)
i=1
—(A+w)e0?]
1
> A0 (Fu2 4 Fo| Vu|?) + 220Guv?,
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Step 3. Letusshow thaF,;, F, andG are positive when is large enough. For
this purpose, we choosee (0, 1) sufficiently small so that

(4+5C)R3 R

9C 1 (31)
andT (> 2R,) sufficiently large such that
44 2
A+ OR c’T? > 4R2. (32)
9c
Also, we choose
k=1-c. (33)

By (33) and recalling that € (0, 4/5), it is easy to see that the nonsingular
partFO 2 2(1 — k) of F; (resp. F9 2 2(k + 3 — 4c) of Fy) is positive. Using
(33) again, the nonsingular part Gfreads

G2 g [(4c+ 5— K)[X — Xo|? — (8¢ + 1 — K)C2(t — T/Z)Z] + 00
> 2[4(4 4 50)R2 — 9c3T2] + o0 Y,

which, via the first inequality in (32), is positive provided thais sufficiently
large.

Whent is near 0 andl, i.e.,t € lp = (0, 8g) U (T — 89, T) for some suffi-
ciently smallsy € (0, T/2), the dominant terms il (i = 1, 2) andG are the
singular ones. Far € |g, the singular part oF; reads

F1 2 2c8T Rit=2(T — t)~2(T — 2t)2
—2BTRt=2(T —t)72|T — 2t|(2|X — Xo| + A7 })
> 28T Rit=2(T — )3T — 2t|[c(T — 280) — 2Ry — A Y)]
= 2BTRit=2(T —t)?|T — 2t|(cT — 2Ry — 2¢8p — A1),

which, via the second inequality in (32), is positive provided that ldgthnd
1~ 1 are sufficiently small. Similarly, for € Io, the singular part oF,,

F} = 28T Rit=2(T —t) (T — 2t)?

— 4T Rit™2(T —t)2|T — 2t||X — X0l
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is positive provided thai, is sufficiently small. Also, fot € lg, the singular
part of G reads

GlL 8CBTRIt 2T —t)2(T — 2t)2[c2(t —T/2)% — |x — %o
+0(r1)] BN —2c— 14+ K2TRtAT —t) 2t — T/2x L.
Itis easy to see that, fare g, it holds

Gl = BTRt2(T —t)7 T — 2t
{8cIT — 2t|[c2(t — T/2)? — |x — Xol> + O(L™H]
—(@n—-2c—-1+k?2n
= BTRit=2(T —t)?|T — 2t
{8c|T — 2t|[c(t — T/2)? — [x — Xol*] + O™ H}

> BTRit=2(T —t) 73T — 2t|
{8c|T — 280|[c®(80 — T/2)> — RZ] + O(x 1}
> BTRut=2(T — )3T — 2t|

{8c|T — 260|[c?T?/4 — R + c%50(80 — T)] + O(A™H},

which, via the second inequality in (32), is positive provided that dgtand
1~ are sufficiently small.

By (27)—(29), we see thd; = F? + Fl, F, = F) + F} andG = G° + G
SinceF?, F andGP are positive, by the above argument, we seefaaF, and
G are positive fott € lo. Fort € (0, T) \ lo, noting again the positivity oF?,
F2 andGP°, one can choosg > 0 sufficiently small such tha}, F} andG?
are very small, hence so thit, F, andG are positive. Hence (30) yields the
desired (22). This completes the proof of Theorem 1. O

Similar to Theorem 1, by multiplying both sides of (17) &y we have
Theorem 2. Letp = p(t, x) € C3([0, T] x R), and selg = #p. Then there

exist two constants, > 0andcy > 0, independent gp, such that for allT > 0,
B > 0andi > Ag it holds
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n
6201ap12+20 Y {26(V0) - (Vo) — £ Va2 + Fag — (A+ D)tig?] (34)
2 34

> c016%6 (1VpI2 +27p?)
with A and ¥ given by(18).

3 Sharp observability estimate

In this section we establish a sharp observability estimate for system (1).

For this purpose, for any fixedy € R" \ Q (As mentioned before, we do
not really need to assume thas is out of Q. Indeed, for the case where,
possibly,xo € Q, we can modify an argument in [7, Case 2 in the proof of
Theorem 5.1] to derive the same observability resultin this section), we introduce
the following set:

o= {x e T| (X — Xo) - v(X) > 0} (35)

One of the main results in this paper is the following observability inequality
with explicit dependence of the observability constant on the poteatfal
system (1):

Theorem 3. Let Ty be given by(35) and p € [5n/2, co]. Then there is a
constantC > 0 such that for anyT > T, with Tp as in Theorem 1, and
anya € L>®(0, T; LP(2; RNxN)), the weak solutiory of system(1) satisfies
estimate(2) with the observability constai€ (a) > 0 verifying

1
K@) < Cexp(C||a||§5”/2p>. (36)

We now sketch the main points in the proof of Theorem 3. The first ingredient
consists in decomposing the Kirchhoff plate equation into a coupled system of
wave and elliptic equations as in (5) and to apply the pointwise estimates of the
previous section in cascade. First, we apply Theoremzl totegrating (22) in
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Q, noting that®(t) decays rapidly to 0 as— 0+ ort — T —, recalling that
z|z = 0 (and henc&z = 22y andz = 2%y on £), one may deduce that

xf 620(Z + |VZz)?)dxdt+ A3/ 6207Z2dxdt
Q Q

2
<C f@z@(zn —Az)zdxdt+4A/ 92@‘E‘ (x—x0)~v(x)dxdt}
Q b)) 8\1 (37)
712
<C /92®(zn—Az)2dxdt+eC"/ 0|— dxdt}
Q Zo v
2 2,2, 2 Ch Ay
<C /9 Ol@y)? + y2 + Z2dxdt+ € / (( ‘ )dxdt},
Q o
with Xg 2 (0, T) x I'p andI'g being given in (35).
Similarly, applying Theorem 2 respectively yoandy;, we deduce that
A/ 620|Vy|?dxdt+ AS/ 620y?*dxdt
Q Q
oV |2
< c{/ 620 (Ay)2dxdt+ ec*/ @‘—y) dxdt} (38)
Q o 81)
PIVaY:
< c{/ 620 (y? + 2)dxdt+ e“/ @‘—y‘ dxdt},
Q o 8\)
and
x/ 620 |Vy:|dxdt+ A3f 62Oy2dxdt
Q Q
gc{/ 620 (Ay)2dxdt+ e“/ 0| yt‘ dxdt} (39)
Q

SC{/QGZ(@(ytZ-i-Z[Z)dth—i— eC*/ZOG)‘a—)srdxdt}.

It is easy to see that the ter® [, 6°©z*dxdt (resp. C [, 6°©y*dxdtand
CfQ 2@y2dxd?) in the right hand side of (37)dsp. (38) and (39)) can be
absorbed by its left hand side. Hence, for agy> 0, (37) added first to
gor3x(38), then taepi x (39), makes
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,\f 0%0(22 4 |Vz|*)dxdt+ A3/ 020 z°dxdt
Q Q
+ soAZ/ 620|Vy; [2dxdt+ sox“/ 620 (y? + |Vy|?)dxdt
Q Q
+ eoA® / 620y dxdt (40)
Q
< c{||9J6ay||f2(Q)+/Qez@yzdxdt+so/QeZ@()\3z2+,\zt)dxdt

n eC*/Z()@(‘g—’v’ ayt‘ ‘My )lxd].

By takingeg > 0 sufficiently small (which is independent bf, one can absorb
the undesired termBe [, 620 (A*2*+1z7)dxdtin the right hand side of (40) by
its left hand side. Then, for this choicegfand taking taking. > 0 sufficiently
large, one can absorb further the undesired te’mfé 620y2dxdtin the right
hand side of (40). Consequently, we arrive at

x/ 92®(th+|VZ|2)dth+A3/ 020 z°dxdt
Q Q

+A2/ 6%0|Vy; [2dxdt+ x“/ 020 (y2 + |Vy|?)dxdt
Q Q

(41)
+A6/ 620y%dxdt
Q
2 Ca ﬂ SYI Ay |2
= clileveaylZ; g + ¢ /EOG)(‘aU ‘ |52 axat].
Recallingz = y — Ay, one has
,\f 020 (2 + |Vz|>)dxdt + k3/ 020z2dxdt
Q Q
>3 [ o%elay - y? + IV Ay - Vyildxdt
Q
+A3/ 620 (Ay — y)2dxdt (42)
Q

A A3
> 5/ 926)[(Ayt)2+|VAy|2]dxdt+E/ 620 (Ay)%dxdt
Q Q

—A/ 92®(yt2+|Vy|2)dxdt—k3/ 620y?dxdt
Q Q

Comp. Appl. Math., Vol. 25, N. 2-3, 2006



370 OBSERVABILITY INEQUALITY FOR KIRCHHOFF PLATE SYSTEMS

Combining (41) and (42), it follows

,\/ 620[(AW)? + [VAY|?1dxdt+ AZ/ 620 |Vy;|2dxdt
Q Q

+/\3/ 92®(Ay)2dxdt+/\4f 620|Vy[2dxdt
Q Q (43)
+A6/ 620y%dxdt
Q
3 3
= clileveayi; o + ¢ / @(‘_y yt
%o

i +15)

dxdq.

Now we have to get rid of the terlm9ay|||_2(Q)
By the proof of [1, Theorem 2.2], for arny> 0, we have

10V/OayllEzq, = eAIOVOYIITzg 1. wie)

+ g N/(p- n)||a||2p/(p M5 —n/(p— M)|6 /_y||L2(Q)

By takinge small enough the first terg | |9\/—y||L2(0 T Wiy €N be absorbed
by the left hand side of (43). Then, for this choicesatnd taking\ sufficiently
large, the term

- —n) 2 — — —n) 2
CgN/(p-n ||a||pp/(P )y —n/(p—-n ||9\/6y||L2(Q)
can be absorbed by’ [, 6?©y?dxdt For this, we choosg such that
1
—n/(p—n) 2p/(p—n) 5 —n/(p—n) - ~46
Ce || [2P/ (P~ =52
which yieldsx > CJja||5”®P~* = C|ja||§ @ >"?P.
Therefore, recalling the definition &(t) in (6), it follows from (43) that

T
/ OE(()dt
° (44)
d ad 0A
< Cexp(CllaII3 5”/2p)/ (‘_y Vt‘ +|5=> Y )dxdt
by ov
Now, for||a||, sufficiently large, put
1 1
||a||3 5n/2p ~ 2—-n/3p n/3p' (45)
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Hence

2/|allp ”/Spto = llallp ™" . (46)

Recall thatp > 5n/2. Hence is small when|al|, is large. Therefore, by the
definition of ® in (21), it is obvious that

T 2t 2ty
f ®E(t)dtzf OEM)dt > = c *Cto f E(t)dt. (47)
0

to to

By (9) and Lemma 1 (witls = 3%), it follows that

2ty 1 2ty 2—”1
f EMdt > ————E(0) e~Clialls " Pryy
o 1+jallp™™ e
t . (48)
Sp— R— (S
1+ a3
Combining (45)—(48), and noting (46), it follows
T
/ OE(t)dt > E(O)exp( Cllally 5“/2P) (49)
0

Finally, the desired estimates (2) and (36) follow from (44) and (49).

4 An open problem on the optimality of the observability constant for
Kirchhoff plate systems

In [5, Theorem 3], it is shown that whep = oo the observability constant
P,(T, a) for the Euler-Bernoulli plate systems with at least two equations in
even space dimensioms> 2 is optimal in what concerns the dependence on
the potentiala. The main idea to prove this optimality result is the same as
that in [1], which is based on a suitable constructionu@ndq satisfying the
following bi-Laplacian equation:

A%u=qu, inR", (50)

which decays at infinity sufficiently fast. More precisely, following Meshkov’s
construction [8, 5], we have the following result ormandq for (50):
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Lemma 3. Leth > 2be even. Then there exist two nontrivial complex-valued
functions:

ueC®R" C), qeC®RY O |L*®R"; C)

such that(50) is satisfied, and for some constaiit

UX)| + [VUX)| + [VAUKX)| < Ce ™ v x e R (51)

One may expect that Lemma 3 can be applied to establish a similar optimality
result for the observability constaKt(a) for the Kirchhoff plate systems as well.
However, this is an open problem. We now explain why the above Meshkov’'s
construction does not seem to suffice for Kirchhoff plate systems. Based on
the construction ofi andq in Lemma 3, by suitable scaling and localization
arguments, one can find a family of rescaled potensials) = R*q(Rx) with
anL>-norm of the order oR* and a family of solutionsir(x) = u(RXx) of the
corresponding bi-harmonic problem, with a decay of the order of

uROO] < Cexp( — R¥3[x(*7?).

Without loss of generality we may assume that the boun@fafgnd therefore
the observation subdomaih) is included in the regiofx| > 1. This yields a
sequence of solutions of the bi-Laplacian syst&fug = agug in which the

ratio between total energy and the energy concentratéy end the norm of
the boundary traces is of the order of éxp R4/3>. Taking into account that

[lar|l ~ R, this ratio turns to be of the order of e€<p IIaRIIiéE'). These so-
lutions of the above mentioned bi-Laplacian system can be regarded also as solu-
tions of the Kirchhoff plate system for suitable initial data. However, they do not
fulfill homogeneous boundary conditions. Therefore, one needs to compensate
them by subtracting the solution taking their boundary data and zero initial ones.
In turn, one has to show that these solutions are as small és—e}qpﬂ |§é3> in

the energy spac&. Due to the infinite speed of propagation, this can be easily
done for the Euler-Bernoulli plate systems during a time interval of the order
of T < uj |aR||gol/6 (because it suffices to use the energy estimate, which yields
an exponential growth e><|fl’||aR||ié2) for the energy evolution in a very short
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time). However, the same approach fails for Kirchhoff plate systems since, in
order that the (boundary) observability estimate for these systems to hold, one
needs to take the timEe to be large enough. In fact, the key point is that, at this
level the energy estimate yields an exponential growtk(@kpm |<1></>2) for the
energy evolution, and it has to be used in the whole time durdfioh]. This
breaks down the concentration effect that Meshkov's construction guarantees.
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