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Abstract. In this work, a stationary Stokes flow with thermal effects is studied both math-
ematically and numerically. First, existence, uniqueness and regularity of the weak solution of
the problem are established. Next, finite element approximation to the problem, based on a fixed
point algorithm, is proposed. Then, an error estimate between continuous solution and discrete

oneisobtained. Finally, some numerical tests are presented to confirm the theoretical results.
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1 Introduction

In modelling engineering problems describing incompressible quasi Newtonian
flows with viscous heating we need to consider the following thermally coupled
Stokes problem (see for instance [1-4], and the references therein):
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(i  =2V-(u@Dw)+Vp=f InQ
(i) V.u=0 inQ
(i) —A0 = n(®)|D)|? inQ (L1
(ivy u=0 onI
v)y 6=0 onI

whereu : @ — R? isthevelocity, p : @ — Risthepressure, 6 : Q@ — Risthe
temperature, 2 is abounded open subset of R, d = 2 or 3, I itsboundary. The
viscosity u isafunction of 6, u = w(0). D(u) = 3(Vu + Vu”) is the strain
rate tensor, and | D (u)|? is the second invariant of D(u).

Problems of this type have received especial attention recently. Mathematical
analysis of this class of problems can be found, for example, in [2, 5]. In [5],
a convergence result for an iterative method was obtained under very strong
regularity hypothesis. To our knowledge, there is no general result on the nu-
merical analysis of problem (1.1). For mathematical and numerical analyses of
simpler problems consisting of nonlinear coupled systems of two scalar elliptic
equations, werefer to [6-12].

Complete mathematical and numerical analysesto acoupled nonlinear system
of scalar elliptic equations are presented in [11]. In the present work, we will
extend the analyses presented in [11] to problem (1.1). We admit for simplicity
homogeneous boundary conditions and assume that the coupling function i e
C(R) is bounded, i.e, there exist constants K, > K; > 0 such that, for al
£ eR,

Ki<u@)<K:. (12

We first establish existence, uniqueness and regularity of the weak solution of
problem (1.1). Then, we apply a fixed point algorithm and propose a finite
element approximation. We prove the convergence of the fixed point algorithm
and derive error estimatesfor the discreteiterative solutions. Finally, we present
some numerical results to confirm the predicted rates of convergence of the
finiteelement approximationsand toiillustrate theinfluences of nonhomogeneous
boundary conditions and of the source term f on existence and stability of
solution for atwo-dimensional model.
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2 Variational formulation

Let W™ (Q2) denotethe standard Sobolev spacewithitsnorm || - || ym.r, form > 0
and1 < r < co. Wewrite H"(Q2) = W™2(Q) when r = 2, with the norm
| lggm, and L"(22) = WO (Q) when m = 0O, with the norm || - [|.-. Wg"" ()
is the closure of the space C5°(2) for the norm || - [|w=.-. Vector variables are,
in general, denoted with bold face. We denote also W' (Q) = [W™" ()14,
Wg(Q) = WS ()4, H"(Q2) = [H™(Q))Y, H§ () = [H{' ()], and
L'(Q) = [L"(2)].

Throughout this work, we assume that f € L?(S2), then the variational for-
mulation of problem (1.1) can be defined as:

Find (u, p, ) € HY(Q) x L3(Q2) x H} () such that
(i) a@:u,v)+bw,p)—(f.v)=0, VveH;Q)

i) bu,q) =0, Vg elLd) @D
(i) c(®,n) — (@) D@)|? 1) =0, V€ Hy(Q) N L®(RQ)
where
a(0; u, v) = 2(u(0) D(u), D(v)) (22)
b(v,q) =—(q,V-v) (2.3)
c(@,n) = (Vo, Vn) (2.49)

(-, -) denotesthe duality between L™ ()¢ and L™ ()¢, d = 1, 2, 3, ¥’ isthedual
number of r. Ly(R) = {g € L"(RQ) |f9q = 0}. Introducing the space:

V:{veHé(Q) ‘V-vzo}, (2.5)
we associate with (2.1) the following problem:

Find (u,0) € V x H}(S) such that
(I) a(ev u, v) = (.f9 v)s VveV (26)
(i) c@,m)=@®ID@I?n, VneHHR)NLXQ).

The classical Korn's inequality implies that the norm || D(-)||;2 is equivaent
tothenorm || - || 51 in space Hé(Q). Condition (1.2) implies that

a(0; v, v) > 2K1||D)||,, Ve HY(Q) (2.7)
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and
a@;u,v) < 2K,|| D)l 2||D(v)]l 2, Yu,ve H(Q). (2.8)

b(v, q) satisfiesthe inf-sup condition, i.e. thereexistsaconstant 8 > 0 such that
(cf. [13])
b
inf (v, q)

_ b9 2.9)
0£4< L3 gvente) 1P @ 2llgllL2

3 Existence, uniqueness and regularity

Definition 1. We denote by S, forr € (1, 00) the class of regular subsets G in
R? for which the Stokes operator maps V(l)’r(G) = {W(l)’r(G) ‘V- v = O} onto
W_l’r(G).

Remark 1. For r € (1, c0), a bounded C! domain or a bounded Lipschitz
domain with sufficiently small Lipschitz constant depending on d and r, is of
class S, [14].
From now on, we assume Q isof class S, for somer > 2. Forl <s < r,we
define M; > 1 by
|(D(u), D(v))| 1

inf sup =—.
veV3\0 wevinyo 1P ID@)e — M,

(3.1)

Remark 2. Similarly to[15] and [16], we can seethat M; < oo and especialy
M, =1.

Similarly to [12] and [15], we can prove

Lemma 1. For any given 0, ifu € Hy() satisfies (2.1., ii) (or (2.6.i)), then
there exist s € (2, min{6, r}] satisfying

1 1 1 1\ log(K> + K1) — log(K> — K3)
->—-—|=z—-- . (3.2
s 2 2 r log M,
and a constant C; > 0 defined by
1 K1+ K K, — K
S Y E V. k. ) (33)
Cs 2Ms KZ + Kl
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such that u € Wé"Y(Q) and the following estimate holds

ID@)ls < Csll fllw-1s = Cllfll 2. (34)

If s defined in Lemma 1 is such that
12 :
§ > — if d=3, (3.5)
5
we have

[(w@ID@)?, )| < Kol D@7 Inll g2 < CULFIZ V02 (36)

Thus, by the density of H}(Q) N L>(Q) in Hy(2), problem (2.1) can be written
equivaently as:

Find (u, p,0) € H§(Q) x L3(Q2) x H}(S) such that
() a@;u,v)+b@,p)=(f,v), VveHyQ)
(i) b(u,q) =0, Vg eLiQ)
(i) c@®,m) = (w®)|D@) n), V 1y e Hy(Q).

(3.7)

And the associated problem (2.6) can aso be written equivalently as:

Find (u,0) € V x H}(S) suchthat
() a@;u,v)=(f,v), YoeV (3.8)
(i) <@, n) = w®IDWI?n, V¥neHHRQ).

We now prove existence of a solution to problem (3.8). For any given & €
L?(R2), we denote by u: € V the solution of

a&; ug,v) = (f,v), YveV, (3.9
and define by 6; € H}(2) the solution of
(O m) = (WE|D@)’m). ¥ ne HHQ). (3.10)
By (3.10), (1.2) and (3.6), we have
V61l 12 < Coll f1172 (3.11)
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where the constant Cy depends only on 2, K; and K.
Let B betheball in L?(R2) defined by

Br = {n € L2@) | 1Vnll:2 < Col £122} (312)
Then, the map T defined by
£— TE) =0 € Hy(Q), VE e L3(Q) (3.13)

is compact since H}(2) is compactly imbedded in L?(Q2), and satisfies that
T(L?(2)) C Bgr. We only need show that the map T is continuous, then the
solvability of problem (3.8) comes from the Schauder Fixed Point Theorem.
Furthermore, by Lemmal.2.1in[13], thereexists p € L3(2) suchthat (u, p, 0)
solves problem (3.7).

To show the continuity of themap 7', let§; — £ in L?(2), by Lemma 1, the
corresponding solutions {u;, } of

aEjsug,v) = (f,v), VveV (3.14)

satisfy
ID(ue) s < Csll fll2. (3.15)

So, there is a subsequence denoted by {u;, } such that

ug, — ug  weskly in Wg* (). (3.16)
The uniqueness of the solution of (3.9) implies that (the whole sequence)
ug, > u;  weakly in Wg* (). (3.17)
Then, noticing (3.5), we can see that
1ENID(ue)? — 1) Due)? weaklyin L2(Q) C H (). (3.18)

Since (3.10) is a standard élliptic problem, the continuity of the map T is well
known.
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Theorem 1 (Existence). Ifs defined in Lemma 1 satisfies (3.5), then prob-
lems (2.1) and (2.6) are equivalent to problems (3.7) and (3.8), respectively.
Problem (3.7) has a solution (u, p, 0) whereas (u, 0) is a solution of problem
(3.8), and the following estimates hold:

ID@)|s < Cllfll2 (3.19)
and
IV@) s < ClIfIZ, (3.20)
where 4
— ) if s < 2d
s=1 @d—s (3.21)
any number in (2, 00), if s >2d.

Proof. Itisonly needed to prove (3.20). Infact, by the Sobolev inequality, we

have
IVOlls < ClIABI L2 = Cllin(®) D @)l Los2

< CIDW)|Z: < CIlfII72.
where C > Qisaconstant depending only on 2, K3, K, and s. O

(3.22)

To study the uniqueness of the problem, we need to assume that the function p
is Lipschitz continuous, i.e., thereisaLipschitz constant L, for any &1, &, € R,
such that

ln(§1) — n(&2)| < L|§1 — &2l (3.23)

Suppose (3.8) hastwo solutions (u1, 61) and (u», 65), andlet s = u; — u, and
6 =6, — 6. Then, by (3.8), wehaveV v e V

a(@1;u,v) =a(01; ug, v) —a(01; uz, v) (3.24)
= a(f; uz, v) —a(b1; uy, v),

and
c(@.1) = (w6 |D@)|* — 1(02)|D(m2)>. n), Ve Hy(Q). (3.25)
By (3.24), (3.23), (3.19) and the Sobolev inequality, for
s>3, if d=3, (3.26)
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we have
ID@)l 2 < 1/2K1|[[p1(82) — n(61)1D(u2) |12
< L/2K1||0| z2/6-2 || D ()|l s (3.27)
< ClIf 121 VO] 2

where C > 0 isaconstant dependent on 2, K, K», L and s.
Let » = 6 in (3.25), and considering the Holder inequality, the Sobolev in-
equality, (3.30), (3.27) and (3.19), we have

IVA]12, = (u(60)|D(m1)|? — n(62)| D(u2)|?, 6)
< (6| D) |* — (1(62)| D(u2) |*|| L2162 16| p2e/s-2
< C{Iln@)D@) - D(uy + u2) |l 276+
+ [ (01 — G D W2) |2l p2sr6+2 I VO | 2 (3.28)
C{K2|D@)| 2] D(u1 + uz)||1s
+L|0| p2sr-2 | D@ |7, HIVO |l 2
CIfIZ,IIVE12,.

A

A

A

where C is a constant directly proportional to K, and L, inversely to K, and
dependent on 2 and s aswell.
Therefore, if
CllfIIZ. <1, (3.29)

then it holds that & = 0, which implies that # = 0 by (3.27). With the above
result, we can state:

Theorem 2 (Uniqueness). [f conditions (3.23), (3.26) and (3.29) hold. Then,
problem (3.8) (or (3.7)) has a unique solution.

Theorem 3 (Regularity). If

Iz <L, (3.30)

and if s defined in Lemma 1 satisfies that

3, if d=2
s> 18 (3.31)
= if d=3,
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then we have
Il gz + lIpllgr < C {1+ IIflliz} | fl2 (3.32)
and

161z < C {1+ 1£12:)71£12 (333)

where C > Qs a constant dependent on 2, K1, Ko, L and s.

Proof. From (3.30), (3.19) and (3.20), we get
I/ ©)V6 - D)l 2 < LIIVO| p2ss-2 | D@l < CIVOl Nl fllz2 < CISI 2
Thus, by Theorem 1.5.4 in [13], we have

lullz2 4+ Ipllgr < C {11/ ©)VO - D@)llz2 + || fll2}

5 (3.34)
< C{L+1f12} £l 2.
Then,
16llzz < CllAG| 2 = Cllw@)|D@)|?|l;2 < C|D@)|?,
) ) 12 5 (3.35)
< Clull%, < C{1+ 112} 11 £12,.
U

4 A fixed point algorithm

Fromthenumerical point of view, it isinteresting to introduce an iterative scheme
to solve problems (3.7) and (3.8). The scheme proposed in this section is based
on afixed point algorithm.
For an arbitrary 0%, and n = 1,2,..., we can get an iterative solution of
problem (3.7) {(u", p", 6™)} by:
Find ", p", 0") € H}(Q) x L3(R) x H}(S2) such that
* i)  a@ L u", v)+ b, p") = (f,v), Ve HyQ) 4.1)
() b, q) =0, VqeLiQ)
(i) c(O",m) — (E"HID@MH?,n) =0, Ve HyQ.
And an iterative solution of problem (3.8) {(u", 6")} can be obtained by:

Find (", 0") € V x H}(Q) such that
(i) a@ Lu" v)=(f,v), YoeV (4.2)
(i) <@, n) = @@ HD@Zn), VneHXQ).
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Theoremd. The solutions {(u", p", 0™)}of (4.1) and {(u", 6™)} of (4.2) satisfy
ID@) s < Clifllg2,Vn>1 (4.3)

IVO" s < CILfIZ.Vn>1 (4.4)

where s and § are same as in Theorem 1. Moreover, with the same assumptions

of Theorem 3, we have

n n C 1+||V00|| o0 ” ” 2, n =
lu" |2 + 11" 12 = { ) HISI (4.5)
C{L+ISL1Z} 1S 22, Vn>2
and )
] C{L+ IV} I f12,,  n=
e < | €1 , o4 f L2 (4.6)
C{L+ A7} 1FIZ2, Vn>?2
Proof. The proof issimilar to that of Theorem 1 and 3. O

Theorem 5. If problem (3.7) has a unique solution (u, p,0), then the se-
quence {(u", p", 0™} defined by (4.1) converges in H() x L3() x H}(Q) to
(u, p, 0); and the sequence {(u", 0")} defined by (4.2) converges in V x Hol(Q)
to (u,0).

Proof. We only give a proof for problem (4.1), since the proof for problem
(4.2) issimilar. If this Theorem is not true, then there exist some small constant
go > 0 and an infinite subsequence of {(u", 6")}, denoted by {(u", p", 6")},
such that

ID@" — w2+ 1" — pligz + VO™ = O)12 = eo, Vi.  (47)

On the other hand, Theorem 4 implies that {(u", p",0")} € Wg*(RQ) x
L3(R) x W (). Sincethe space W' (R2) x L(2) x Wy (2) iscompact in
Hé(sz) X L%(Q) x Hi(€2), and noticing the fact that any limit of {(w", p", 6")}
should satisfy (3.7) and that problem (3.7) has a unique solution. Then we can
get a subsequence of {(u", p"i, 6™)} which convergesto (u, p, 6) in Hé(Q) X
L3(Q) x H(R), which leads a contradiction to (4.7). Hence, we complete the
proof. O
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To further study u — u", p — p" and 6§ — 6", by (3.7) and (4.1), and using
similar arguments to (3.27) and (3.28), we can deduce that

ID@ —u"l2 < L/2K1lD@)|I1s 116 — 6" p2vss-2 (4.8)
< Clf N2V — 6" Dl 2,
IV©B — 6"z < Clu@)D@)> — n@" HID@")?|l 2vis+2
< C{Ka2lID(u —u")|| 2] D + u™)| s (4.9)

+LI|6 — 0"l 22 | D@17 }
CIFIZNVEO = 6" D)2

IA

where C isthe same as in (3.28). The estimate for p — p” comes from (3.7),
(4.1) and the inf-sup condition (2.9),

. a@;u,v) — a(@”*l; u",v)
Bllp—p"llp2< sup D
0£veHY(Q) | D(v)]| 2
< 2{l(u®) — n@" " NID@)|l 2+ ln@ HD@ —ull 2}  (4.10)
<2{L|16 — 0" | 2/6-2 | D@) |l 1s + K2l D(w — u™)|| 2}
< ClIfll2IV©O — 6" Y]l 2.

Thus, we have

Theorem 6. If condition (3.29) holds, then, the fixed point algorithms (4.1)

and (4.2) work with the linear convergence rate, and the following estimates
hold:

ID@ —u"ll2 + 1p = p"ll2 < CUf N2 MOF)" VO = 6%, (411)

IV©O — 0"l 2 < M()" V(O — 0°)]| 2 (4.12)
where M(f) = C| fII?, < 1

5 Finite element approximation

For simplicity weassumethat 2 isapolygonal (or polyhedral) domain discretized
by aquasi uniformmesh of Ne triangles(or tetrahedrons) or convex quadrilaterals
(or hexahedrons), with mesh parameter /. Let S" betheL agrangian finiteelement
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space of C°(Q) piecewise linear polynomials, and S¢ = S" N H3(Q). Let
aso X" ¢ HY(Q) and Q" c L?() be two finite element spaces, and X} =
X N HY(Q) and Q4 = Q" N L3(2) such that the following hypotheses hold:

Hypothesis H1 (Approximation property of X4). There exists an operator
My € LIH*(RQ); X") N LH*(Q) N HE(Q); XP) such that:

v — xvllgr < CR" Y ollgm, Y veH™(Q), m=12  (51)

Hypothesis H2 (Approximation property of Q"). There exists an operator
My € L(LA(Q); Q") such that:

lg — Mogqlirz < Ch" gl pm, VgeH"(Q),m=01 (5.2)

Hypothesis H3 (Uniform inf-sup condition). For each g, € Q} there exists a
v, € X} such that:

(qn, V- 1) = llgall%, (5.3)
IV-vull2 < Clignll 2 (5.4)

with a constant C > 0O independent of h, q;, and vy,

Remark 3. Hypothesis H3 is equivalent to the discrete inf-sup condition, i.e.

(cf. [13])

inf sup b, n) > g = B*. (5.5)

0£a1<Qf ovexty 1D@WIIIL2lIgn L2

The Galerkin approximation to problem (4.1) reads:
Given 67 as an approximation of 6°, forn = 1,2,..., {(u}, p},6;)} can be
calculated by:

Find (u}, p}. 0;) € Xt x Qb x Sk such that
i a@ Yul,vn) +bp, p) — (foo) =0,  Yu,eXp

N (5.6)
(i) b}, gn) =0, Y gn € Qf
(i) @y, nn) — (M(GZ_l)ID(uZ)IZ, nn) =0, Vo, € Sé’-
Since V- u! € L3(R2), then (5.6.ii) is equivalent to
b}, qy) =0, Y g, € O". (5.7)
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Thus, we can define the space:
vh = {vh exg‘b(vh,qh):o Vg e Qh} (5.8)
and the problem associated with (5.6) is:

Find (uf,0)') € V" x Sk such that
(i) a@ Y ul, o) = (f, vn), Vo, eVh (5.9)
(i) @ m) = (@ HID@DIZ ). ¥ nu € Sh
To analyze problem (5.6), we introduce the standard Stokes and elliptic pro-
jections (i), pr, 01 € Xk x Qb x Sk defined by
(D(ay, —u"), D(vy)) — (p — p", V-v,) =0, Vv, € X§
(qn, V-u) =0, Vgn € Qf

(V@ — 6", Vi) =0, Y, € Sh. (5.11)

(5.10)

It iswell known that

Lemma 2. There exists a constant C > 0 independent of h and n such that the

following estimates hold:

lu" — iyl 2 + A D@" — )l 2 + kil p" — pjllL2
nilL X ) h Ln p PrliL (5.12)
< Ch?{lu" | gz + 11 P" 1},
16" — 67112 + hIVO" — G2 < CHZ[6" | e. (5.13)

The following inverse properties of the finite element spaces X and Si are
useful.

Lemma 3. Foranyn, € Sé’, we have

mnllee < M()|IVIpll 2 (5.14)
where
M, if d=1
M(h) =3 M|logh|*?, if d=2 (5.15)
Mh=1/?, if d=3,

and M is a constant independent of h.
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Proof. See[11] 0

For the errors of u!! — i}, p} — pr and 6] — 67, we have:

Lemma 4. There exists a constant C > 0 only dependent on 2, K1, K and L

such that
ID@} — @)llz < C{Ifll2IVO" =6 Dl 2

(5.16)
+ ||| g2 + Rl p" |l g2}

Proof. By (5.6.i) and (4.1.i), we have, V v;, € X

a@ Ll — i), v) = (@Y — w@H1D@W"), D(vy))
+a@ ut — ), v,) + by, pt— pp).

Let v, = u} —a}. By noticing that b(u}} — it}}, g») = 0,V g, € Qf and the fact
that (cf. [13]) inf, .o 1p" —gnllr2 < Cllp" —Tlgp"ll2 < Chllp" |1, Wecan
get

1D (ujy — @)l 2
1 n n—1 n—1
< EKl{L”D(u M 16"7" = 6, Ml 2vv6-2

+ K| D@" — @p)ll 2+ inf 1p" = qnlls2}
7n€Qq

< cliID@" = @llz + I fll2IVO" ™ =67 Y2 + hllp" |2}
Thus, Lemma 2 leads to (5.16). O
Lemma 5. There exists a constant C > O only dependent on 2, K1, Ko, L and
B* such that

Ip} = Brllz < C{IFll2IVE™ = 07 Yl 2+ hllu" | g2+ Al p" | g2} (5.17)

Proof. By (5.6.ii) and (4.1.i), we have, ¥ v, € X}

b(vy, pp — p1) = a@®@ L u", v,) —a@p s ul, v,) + by, pt — B
= 2[u®" Y — @, H1D@W"), D(v;))
+a@ 5w —ul, v,) + b(vy, pt— pP).
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By Remark 3, Hypothesis H3 yields:
~ 1 n— n— n
lpy — Bille < — sup {2([u®" ") — w6, H1D@"), D(vy))
B 0£v,eX?
+a@) N u" —uf, vy) + by, p" — P/ ID @)l 12
1
< E{ZL”D("")”“ 16"~ — 67 22
+2Ko| D" — up)ll2 + | p" — pjllz2}
< C{IISf 2lVO" = 6D 2 + hllu" || g2 + kIl p" | 2}
In the last inequality, we applied Lemmas 2 and 4. O
Lemma 6. The following estimate
IV =)l
< CIAFIZ {1+ MMVE™™ =0 D2} IVEe" ™t =677 Yll 2 (5.18)

+ Ch{Ifll 2 + W2 0u™ | g2 + RY21p" g} - {la ) g2 + 19" 1)

holds with C > 0 only dependent on 2, K1, K> and L, and M (h) defined

by (5.15).

Proof. By (5.6.iii), (5.11) and (4.1), we have
V@) — 6112, = (V@) — 0™, V(©O) — 6}))
= (@ HID@HI? — w@HI D@2, 6 — 0

= ([u@h — @ H1D@"2 0 — o (5.19)

+ (@, H(UD@> — 1 D@")?), 6 — b))
= Ri1+ Ro.
By the Holder inequality and the Sobolev inequality,

Ry < LI6"Y = 07 Ml 22 | D@12, 116 — 67 |l 26— 520
< CIfIZIVO" = 6,7l 2l VO] — )l 2.
Sincea® — b? = (a — b)?> + 2b(a — b), then R, can be split into:
Ry = (u(@; YHID@) —u")?, 67 — 6
+2(n@ " HD@W") - D@} —u"), 6 — 6 (5.21)

= Ro1 + Rx.
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By the Holder inequality and the inverse inequality (5.14),

Ray < Kol D@" — w7116 — 6} I~ (5.2
< KoM(h) | D" —u})|12,1 V) — 0)]l2 -
To estimate Ry, we have
Roz = 2Ka| D@") s D)y — u") | 2016 = 03l 2se2 (523
< Clfll2llD@" — up)lL2lIV(O — )]l 2.

Combining (5.19)—5.23), and noticing that

I D" —up)|l 2
< ID@" — @) |2 + | Dy, — i)l 2 (5.24)
< C{IfN2IVE" ™ = 6Dl 2 + hllu"ll gz + Al p" | 2}

we obtain (5.18). O
Let us now make an inductive hypothesis: for sufficiently small 7,
MMW|IVE" =0 Y2 <1, Vnx>1 (5.25)

In fact, when n = 1, we can choose 9}? as the standard dlliptic projection of
6°, thus, M (h)[|V(0° — 6D)|| 2 < ChY?|16°| 42 < 1 for sufficiently small &. If
(5.25) holdsfor n — 1, then, we have

IVE" — 0.2

< IV@" — )2 + IV@O) — G2 (5.26)
< CIFIZIVE" ™ = 6l + CR{Ifll 2 + B2 a2
+ B2 p" 1) (Nl gz + 11" 1 g2) + 110" [ 2}
where € isaconstant only dependent on Q, K1, K» and L. If
CIfIZ, =M(f) <1, (5.27)

and for sufficiently small ~ such that

WY (14 max{[[ V8Ol ., [ £1122}) < 1
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or
w2 max {115z + 1p" 2} < ClLF e,

then, we can obtain

IV@" — M)l 2
< M(H)"IVO° — 6Dl
Ch

_er n n gn (5.28)
+ 1_M(f){ufan max([|u” || 2 + | " | 1) + max [16” | 2
N Ch

< M(f)"h0%) 42 + 1_—M||f||§2(1+max{||ve°nm, I1£1122}).

Thus, choosing & sufficiently small such that
1 1
Ch2 0% w2 + | = + ———— 1 f1%:
{ [C 1—M(f) L ] (5.29)
x (L4 max [ V6=, 1 £12.)) | < 1

where C dependson M, then, theinductive hypothesis (5.25) holds. Meanwhile,
we have

Theorem 7. Let (u}, p;,6}) be the solution of problem (5.6) and (u},6;')
the solution of problem (5.9). Then, for sufficiently small h satisfying (5.29),
(wj, pp,0y) converges to the solution (u", p",0") of problem (4.1), and the

following error estimates hold:
|D@" = u)lizz + 119" = pill2
< CIf N { MY 16 + |14+ 1/ A= MIFIZ] (530
x (1+ max {IV6°l . [Lf12.}) |

IV©" — 0)ll2 < M(f)"hlI6°| 42

Ch (5.31)
+ | f 1172 (1 + max [ VOl . | £

1— M(f) L2( { L LZ})

where C is a constant independent of n, h and f, and M( f) < Llis defined

by (5.27).
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Now, let C* = max{C, C} where C and C are defined by (3.28) and (5.26)
respectively. Thus,
C*IflI3, = M*(f) <1 (5.32)

implies (3.29) and (5.27). Hence, we get the main result

Theorem 8. If condition (5.32) holds, then problem (3.7) has a unique solution
(u, p,0) and (u,0) is also the solution of problem (3.8), the finite element
solution sequence {(u},, p;,, 6)} of (5.6) (where {(u},, 0;)} solves problem (5.9))
converges to (u, p, 0) and the following estimates hold, for sufficiently small h
satisfying (5.29),

ID@ —upliz +lp — pylie
< CIS I ("2 [I96 = 09112 + h110° 2] (539

+ h[14 1A= M UDISIZ,] (1+ mac V6], 1 12.))]

IV© — 62 < (M*())"{IVO — 6012 + h116°] 2}

Ch
+ T 1+ max {1Vl 112

where C is a constant independent of n, h and f, and M*(f) < 1 is defined
by (5.32).

(5.34)

6 Numerical results

The iterative solution method described in the previous section has been tested
in two dimensions considering two temperature dependence functions. In the
first case we considered a bounded 1. (s) given by

(s) = !
HO =151

Thiscase hasbeen performed only to confirm the convergence estimates obtained
here by prescribing homogeneousboundary conditionsasadoptedintheanalysis.
Exact solution has been assumed to be the results obtained with a refined mesh
of 4096 elements, quadratic for the velocity field and linear for the pressures
combined with linear temperature approximation elements. The plots of Fig. 1
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confirm the first order convergence rate for the gradient of the velocities and
of the temperatures as obtained in the analysis. Fig. 1 also shows the second
order convergence of the velocity and the temperature fields as expected but
not demonstrated here. Results for the convergence in terms of the number of
iterationsversusvaluesof f areshowninFig. 2. Wenotethat for acritical value
of f the number of iterations increases largely, but it still remains practically
independent of f before the critical value.

log e

0 0.5 1 1.5 2 25 3
-logh

Figure 1 — Convergence resultswith errorseq = ||V(u — up)| 12, e2 = V(O — Op) |l 12,
e3=l|lu—up|;2andes = |0 — 6|2 inthecaseof f =0andu(l) > 0.

300

250 -

200 -

150

iterations

-50

0 5 10 15 20 25 30 35 40 45
f

Figure 2 — Number of iterations for several values of f with Tol = ||uZJrl —uyll 2+
g/t — 6,2 < 10712,

The second example deals with an axisymmetric flow in acylindrical tube. In
this study we consider the Arrhenius function

u(s) =e*
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with H the activation energy. The tubeis 10 cm long with a diameter of 4 cm.
It is a developing hydrodynamics and thermal problem. A Dirichlet bound-
ary condition for the velocity has been prescribed at the entrance section, u =
{1.0; 0.0} cm/s, homogeneous Neumann condition has been set at the end of the
tube and non slip at the wall.

For the temperature, two cases have been considered. In thefirst case, a 500K
has been prescribed at the entrance and along the cylinder wall. Changes in
the temperature field are due to the coupling viscous dissipation, with higher
temperatures in the core of the tube. Of course, the solution of the uncoupled
analogue of this problem is auniform temperature of 500K all over the domain.
The corresponding temperature profiles are shown in Fig. 3.

2

Figure 3 — Isothermal lines for the coupled problem with 500K at the entrance and at
the wall.

The second case corresponds to what is known as extended or modified Graetz
problem [17], after L. Graetz (1885) studies[18] on developed hydrodynamics-
developing thermal fields for fluids passing a flat plate. The model problem
consistsof afluid at 700K, entering the same tube with the same vel ocity bound-
ary conditions of the first case studied, cooled by a prescribed temperature of
500K at the tube wall. Changes in the temperature field are determined for the
uncoupled and for the coupled situations. In this problem the coupled effects do
not alter the velocity field but they are strong enough to affect the temperature
field. The activation energy has been set to 56,,;,. The classical temperature
profiles (isothermal lines) obtained for the uncoupled case are shown in Fig. 4.
For the coupled situation, the isothermal lines obtained are depicted in Fig. 5,
exhibiting a hotter region along the core of the duct, as expected.

Concerning convergence of the iterative method, 120 iterations have been
required for the convergence of the coupled modified Graetz problem while in
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M00S|

Figure 4 — Isothermal lines for the uncouped flow in a cylinderical tube with 700K at
the entrance and 500K at the wall (uncoupled).

A82S

00§

Figure 5 —Isothermal lines for the Graetz problem with 700K at the entrance and 500K
at the wall(coupled).

the coupled problem considered in the first case convergence has been achieved
with only 45 iterations.

7 Conclusions

In this paper, we gave the complete mathematical analyses, such as existence,
uniqueness and regularity of theweak solution of problem (1.1). The uniqueness
isconditional and dependent onthe sourceterm f which should besmall. Weap-
plied afixed point algorithm to solve the nonlinear problem and proposed afinite
element approximation. We proved the convergence of the fixed point algorithm
and derive error estimates for the discrete iterative solutions. We got condition
(5.32) for f which guarantees not only the uniqueness of the weak solution but
also the convergence. Finaly, we presented numerical implementations for a
two-dimensional model, using Taylor-Hood elements for the vel ocity-pressure
and bilinear elements for the temperature, to confirm the predicted rates of con-
vergence of the finite element approximations and to illustrate the influences of
nonhomogeneous boundary conditions and of the source term f on existence
and stability of solution.
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