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Abstract. In this work, we establish new exact solutions for the Hirota-Satsuma equations.

New approach for the tanh is used and extended tanh methods to construct traveling wave solutions

in terms of a hyperbolic tangent functions. New families of solitary wave solutions and periodic

solutions are also obtained for Hirota-Satsuma equations. Our approach is reduce the size of

the computational adopted in other techniques without any conditions to apply on any system of

partial differential equations.
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1 Introduction

The world around us is inherently nonlinear. The Hirota-Satsuma equations are

widely used as models to describe complex physical phenomena in various fields

of science, especially in fluid mechanics, solid stat physics, plasma physics. Var-

ious methods have been used to explore different kinds of solutions of physical

models described by nonlinear PDEs. One of the basic physical problems for

those models is obtaining their traveling wave solutions. Concepts like solitons,

peakons, kinks, breathers, cusps and compacton are now being thoroughly

investigated in the scientific literature [1-3]. During the past decades, quite a
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few methods for obtaining explicit traveling and solitary wave solutions of the

Hirota-Satsuma equations have led to a variety of powerfull methods, such as

inverse scattering method [4], bilinear transformation [5], the tanh-sech method

[6], Backlund and Darboux transform [7], Hirota [8], tanh-function method [9-

10]. Moreover these methods, extended tanh-function method [11-12], modified

extended tanh-function method [13-14] and homogeneous balance method [15].

The extended tanh-function method and the modified extended tanh-function

method belong to a class of methods called sub-equation method for which these

appears few basic relationships among the complicated NLPDEs in the study

and some simple and solvable nonlinear ordinary equations.

In this work, we introduce a matrix spectral problem with three potentials

and propose a corresponding hierarchy of nonlinear evaluation equations. An

interesting equation in the hierarchy is a generalization of the Hirota-Satsuma

coupled kdv equations:

ut =
1

2
uxxx − 3uux + 3(vw)x , (1)

vt = −vxxx + 3uvx , (2)

wt = −wxxx + 3uwx . (3)

2 Tanh method

In this section, we will try to search for a new analytical solutions for system

(1)-(3), by using tanh method [12, 16]. This technique has been proven to

be very powerful in finding travelling-wave solutions. We represent the tanh

method for the problems (1)-(3) which is a workable and universal solution

method that can be used to find exact as well as approximate solutions. This

technique is based on the fact that in many cases traveling-wave solutions can

be written in terms of a hyperbolic tangents.

Let the boundary conditions be

u(x, t) → 0, v(x, t) → 0; x → −∞ (4)

v(x, t) → v∞, w(x, t) → 0; x → ∞ (5)

To find possible travelling-wave solution, first we introduce the independent

variable ξ = c(x − vt), then, substituting ξ = c(x − vt) into Eqs. (1)-(3),
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we get:

c2 d3U (ξ)

dξ 3
+ 6V (ξ)

dW (ξ)

dξ
+ 6W (ξ)

dV (ξ)

dξ

− 6U (ξ)
dU (ξ)

dξ
+ 2v

dU (ξ)

dξ
= 0,

(6)

c2 d3V (ξ)

dξ 3
− 3U (ξ)

dV (ξ)

dξ
− v

dV (ξ)

dξ
= 0, (7)

c2 d3W (ξ)

dξ 3
− 3U (ξ)

dW (ξ)

dξ
− v

dW (ξ)

dξ
= 0, (8)

where the constants (c and v) represent (positive) wave number and (posi-

tive) velocity of the travelling-wave, u(x, t) = U (ξ), v(x, t) = V (ξ) and

w(x, t) = W (ξ).

Secondly, substituting Y = tanh ξ into Eqs. (6)-(8) gives:

c2
[
(1 − Y 2)2 d3U (Y )

dY 3 − 6Y (1 − Y 2)
d2U (Y )

dY 2 − 2(1 − 3Y 2)
dU (Y )

dY

]

+ 6V (Y )
dW (Y )

dY
+ 6W (Y )

dV (Y )

dY
− 6U (Y )

dU (Y )

dY

+ 2v
dU (Y )

dY
= 0,

(9)

c2
[
(1 − Y 2)2 d3V (Y )

dY 3 − 6Y (1 − Y 2)
d2V (Y )

dY 2 − 2(1 − 3Y 2)
dV (Y )

dY

]

− 3U (Y )
dV (Y )

dY
− v

dV (Y )

dY
= 0,

(10)

c2
[
(1 − Y 2)2 d3W (Y )

dY 3 − 6Y (1 − Y 2)
d2W (Y )

dY 2 − 2(1 − 3Y 2)
dW (Y )

dY

]

− 3U (Y )
dW (Y )

dY
− v

dW (Y )

dY
= 0.

(11)

where U (ξ) → U (Y ), V (ξ) → V (Y ) and W (ξ) → W (Y ).

Consequently, the boundary conditions reduce to the conditions with respect

to the variable with respect to the variable Y :

U (Y ) → 0, V (Y ) → 0; Y → −1 (12)

V (Y ) → V∞, W (Y ) → 0; Y → 1 (13)
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To find an exact solution,we consider a finite expansion of Y in the following

form:

U (Y ) =
M∑

m=0

amY m, V (Y ) =
N∑

n=0

bnY n, W (Y ) =
H∑

h=0

chY h . (14)

Substitution of Eq. (14) into Eqs. (9)-(11) and balancing the highest order deriva-

tive terms with the nonlinear terms, gives

M = N = H = 2. (15)

Taking account of Eq. (15) with Eq. (14), we obtain

U (Y ) = a0 + a1Y + a2Y 2, (16)

V (Y ) = b0 + b1Y + b2Y 2, (17)

W (Y ) = c0 + c1Y + c2Y 2. (18)

By using Eqs. (12) and (13) into Eqs. (16)-(18), we get:

U (Y → −1) = a0 − a1 + a2 = 0

a1 = a0 + a2

U (Y ) = a0 + (a0 + a2)Y + a2Y 2 = (1 + Y )(a0 + a2Y )

U (Y ) = A1(1 + Y )(1 + B1Y ); A1 = a0, B1 =
a2

a1

(19)

V (Y → −1) = b0 − b1 + b2 = 0

b1 = b0 + b2

V (Y ) = b0 + (b0 + b2)Y + b2 y2 = (1 + Y )(b0 + b2Y )

V (Y ) = A2(1 + Y )(1 + B2Y ); A2 = b0, B2 =
b2

b1

(20)

W (Y → 1) = c0 + c1 + c2 = 0

c1 = −c0 − c2

W (Y ) = c0 − (c0 + c2)Y + c2 y2 = (1 − Y )(c0 − c2Y )

W (Y ) = A3(1 − Y )(1 − B3Y ); A3 = c0, B3 =
c2

c1
,

(21)

where A1, B1, A2, B2, A3 and B3 are constants and can be determined.
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After substitution of Eqs. (19)-(21) into Eqs. (6)-(8), and eliminating terms

having equal power in Y , we get the following:

3A2
1 + 3A2

1 B1 − 3A2 A3 B2 + 3A2 A3 B3 + A1c2 + A1 B1c2

+ A1v − A1 B1v = 0 (22)

3A2
1 + 6A2 A3 + 12A2

1 B1 + 3A2
1 B2

1 + 6A2 A3 B2 B3

+ 8A1 B1c2 − 2A1 B1v = 0 (23)

3A2
1 B1 + 3A2

1 B2
1 + 3A2 A3 B2 − 3A2 A3 B3 − A1c2 − A1 B1c2 = 0 (24)

A2
1 B2

1 − 2A2 A3 B2 B3 − 2A1 B1c2 = 0 (25)

− 3A1 A2 − 3A1 A2 B2 − 2A2c2 − 2A2 B2c2 − A2v − A2 B = 0 (26)

− 3A1 A2 − 3A1 A2 B1 − 9A1 A2 B2 − 3A1 A2 B1 B2

− 16A2 B2c2 − 2A2 B2v = 0 (27)

− 3A1 A2 B1 − 6A1 A2 B2 − 9A1 A2 B1 B2 + 6A2c2 + 6A2 B2c2 = 0 (28)

− 6A1 A2 B1 B2 + 24A2 B2c2 = 0 (29)

3A1 A3 + 3A1 A3 B3 + 2A3c2 + 2A3 B3c2 + A3v + A3 B3v = 0 (30)

3A1 A3 + 3A1 A3 B1 − 3A1 A3 B3 + 3A1 A3 B1 B3

− 16A3 B3c2 − 2A3 B3v = 0 (31)

3A1 A3 B1 − 6A1 A3 B3 − 3A1 A3 B1 B3 − 6A3c2 − 6A3 B3c2 = 0 (32)

− 6A1 A3 B1 B3 + 24A3 B3c2 = 0 (33)

In order to obtain A1, B1, A2, B2, A3, B3, we can solve Eqs. (22)-(33). Conse-

quently we get

A1 = −2c2, B1 = −1, A2 =
4c4

A3
, B2 = 0, B3 = 0, v = 4c2. (34)

Substituting the above solution into Eqs. (19)-(21), we have the following ana-

lytical solutions:

U (Y ) = 2c2(1 − Y )(1 + Y ), (35)

V (Y ) =
4c4

A3
(1 + Y ), (36)

W (Y ) = A3(1 − Y ); v = 4c2 with Y = tanh[c(x − vt)]. (37)

where A3 = 2c2.
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Figure 1 – The graph shows the solution for u(x, t).

To find the wave number (c), we use the boundary condition

V (Y → 1) = V∞,

=⇒ c2 =
1

4
V∞,

=⇒ v = V∞.

(38)

It is well known that (wave-number) c = 109737.3

V∞ = 4.816910004516 × 1010, v = 4.816910004516 × 1010

Then, Eqs.(1)-(3) have the following analytical solutions:

u(x, t) =
−1

2
V∞

[
1 − tanh[c(x − vt)]

][
1 + tanh[c(x − vt)]

]
, (39)

v(x, t) =
1

2
V∞

[
1 + tanh[c(x − vt)]

]
, (40)

w(x, t) =
1

2
V∞

[
1 − tanh[c(x − vt)]

]
, (41)

with c, v, V∞, are given.

3 Extended tanh method

In this section, we solve the Hirota-Satsuma coupled KdV equations by extended

tanh method. This method is used to derive explicit travelling-wave solutions.

New families of solitary wave solutions and periodic solutions are formally ob-

tained for these equations. The method is used to reduce the computational size

compared to the other techniques [16-20] without any conditions to apply on any

system of partial differential equations.
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Figure 2 – The graph shows the solution for v(x, t).

Using the wave variable ξ = x − ct , Eqs. (1)-(3) reduce to ODEs in the

following form:

−cU ′ =
1

2
U ′′′ − 3UU ′ + 3(V W )′, (42)

−cV ′ = −V ′′′ + 3U V ′, (43)

−cW ′ = −W ′′′ + 3U W ′, (44)

where u(x, t) → U (ξ), v(x, t) → V (ξ) and w(x, t) → W (ξ).

Integrating Eq. (41) with respect to (ξ), we get:

−cU =
1

2
U ′′ −

3

2
U 2 + 3(V W ), (45)

where the constant of integration is equal to zero.

The solution of the reduced equations can be expressed as a finite power series

in Y in the form:

u(x, t) = S1(Y ) =
M∑

m=0

amY m,

v(x, t) = S2(Y ) =
N∑

n=0

bnY n, (46)

w(x, t) = S3(Y ) =
H∑

h=0

chY h,

Comp. Appl. Math., Vol. 28, N. 1, 2009
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Figure 3 – The graph shows the solution for w(x, t).

where M , N and H can be determined. By balancing between the highest

derivative with the nonlinear terms, in Eqs. (42)-(44) gives

M = N = H = 2 (47)

Substituting Eq. (46) into Eqs. (45), we find that:

u(x, t) = S1(y) = a0 + a1Y + a2Y 2, (48)

v(x, t) = S2(y) = b0 + b1Y + b2Y 2, (49)

w(x, t) = S3(y) = c0 + c1Y + c2Y 2. (50)

Substituting Y = tanh(μξ) in Eqs. (42)-(44), with the aid of Eqs. (47)-(49),

and equating the coefficients of each power of Y to zero, we obtain a system of

algebraic equations of the parameters a0, a1, a2, b0, b1, b2, c0, c1, c2, namely:

−3a2
0 + 2a0c + 6b0c0 + 2a2μ

2 = 0, (51)

−6a0a1 + 2a1c + 6b1c0 + 6b0c1 − 2a1μ
2 = 0, (52)

−3a2
1 − 6a0a2 + 2a2c + 6b2c0 + 6b1c1 + 6b0c2 − 8a2μ

2 = 0, (53)

−6a1a2 + 6b2c1 + 6b1c2 + 2a1μ
2 = 0, (54)

−3a2
2 + 6b2c2 + 6a2μ

2 = 0, (55)

−3a0b1 − b1c − 2b1μ
2 = 0, (56)
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−3a1b1 − 6a0b2 − 2b2c − 16b2μ
2 = 0, (57)

−3a2b1 − 6a1b2 + 6b1μ
2 = 0, (58)

−6a2b2 + 24b2μ
2 = 0, (59)

−3a0c1 − cc1 − 2c1μ
2 = 0, (60)

−3a1c1 − 6a0c2 − 2cc2 − 16c2μ
2 = 0, (61)

−3a2c1 − 6a1c2 + 6c1μ
2 = 0, (62)

−6a2c2 + 24c2μ
2 = 0. (63)

Using symbolic software Mathematica to solve the algebraic equations (50)-(62),

we obtain the following set of distinct solutions of parameters. The set is given

the following cases:

Case 1:

a1 = c1 = b1 = 0

a2 = 4μ2, b2 =
4μ4

c2

b0 =
1

3

(
A ± B

c2

)
, c0 =

1

12μ4
(A ± B)c2

c = −3a0 − 8μ2

where

A = 12a0μ
2 + 24μ4, B =

√
6μ2

√
(15a2

0 + 80a0μ2 + 104μ4)

and a0, c2 are arbitrary constants. In this case, the soliton solutions take

the form:

u(x, t) = a0 + 4μ2 tanh2 [
μ(x + (3a0 + 8μ2)t)

]
,

v(x, t) =
1

3

(
A ± B

c2

)
+

4μ4

c2
tanh2 [

μ(x + (3a0 + 8μ2)t)
]
, (64)

w(x, t) = c2

(
A ± B

12μ4
+ tanh2 [

μ(x + (3a0 + 8μ2)t)
]
)

.

where a0, c2 are arbitrary constants.
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Figs. (4)-(6) represent the soliton solutions for Eq. (63), by taking different

values for constants, for example a0 = −1, μ = 0.5, c2 = −1.

Figure 4 – The soliton solution for u(x, t) in Case 1 when a0 = −1, μ = 0.5, c2 = −1.

Figure 5 – The soliton solution for v(x, t) in Case 1 when a0 = −1, μ = 0.5, c2 = −1.
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“main” — 2009/3/5 — 18:26 — page 11 — #11

HASSAN A. ZEDAN 11

Figure 6 – The soliton solution for w(x, t) in Case 1 when a0 = −1, μ = 0.5, c2 = −1.

Case 2:

a1 = b2 = c2 = 0,

a2 = 2μ2,

b0 = ±
[
(a0μ + μ3)

c1 B

]
, b1 =

4μ2(a0 + μ2)

c1
,

c0 = ∓
c1 A

μB
, c = −3a0 − 2μ2,

where

A =
√

−9a2
0μ

2 − 4a0μ2 + 4μ4, B =
√

24a0 + 24μ2

and a0, c1 are arbitrary constants. Thus, the soliton solutions take the form:

u(x, t) = a0 + 2μ2 tanh2 [
μ(x + (3a0 + 2μ2)t)

]
,

v(x, t) =
(a0 + μ2)

c1

[
±

μ

B
+ 4μ2 tanh

[
μ(x + (3a0 + 2μ2)t)

]]
, (65)

w(x, t) = ∓
c1 A

μB
+ c1 tanh

[
μ(x + (3a0 + 2μ2)t)

]
,

where a0, c1 are arbitrary constants.
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Figs. (7)-(9) represent the soliton solutions for Eq. (64) as taking different

values for constants, for example a0 = −2.5, μ = 0.5, c1 = −1.

Figure 7 – The soliton solution for u(x, t) in Case 2 when a0 = −1.5, μ = 0.5, c1 = −1.

Figure 8 – The soliton solution for v(x, t) in Case 2 when a0 = −1.5, μ = 0.5, c1 = −1.
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Figure 9 – The soliton solution for w(x, t) in Case 2 when a0 = −1.5, μ = 0.5, c1 = −1.
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