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Abstract. We propose an infeasible interior proximal method for solving variational inequality

problems with maximal monotone operators and linear constraints. The interior proximal method

proposed by Auslender, Teboulle and Ben-Tiba [3] is a proximal method using a distance-like

barrier function and it has a global convergence property under mild assumptions. However, this

method is applicable only to problems whose feasible region has nonempty interior. The algorithm

we propose is applicable to problems whose feasible region may have empty interior. Moreover,

a new kind of inexact scheme is used. We present a full convergence analysis for our algorithm.
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1 Introduction

Let C ⊂ Rn be a closed and convex set, and T : Rn ⇒ Rn be a maximal monotone

point-to-set operator. We consider the variational inequality problem associated
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with T and C : Find x such that there exists v ∈ T (x) satisfying

〈v, y − x〉 ≥ 0, for all y ∈ C. (1.1)

This problem is denoted by V I P(T, C). In the particular case in which T is the

subdifferential of a proper, convex and lower semicontinuous function f : Rn →

R ∪ {∞}, (1.1) reduces to the constrained convex optimization problem: Find

x such that

f (x) ≤ f (y), for all y ∈ C. (1.2)

We are concerned with C a polyhedral set on Rn defined by

C :=
{

x ∈ Rn| Ax ≤ b
}
, (1.3)

where A is an m × n real matrix, b ∈ Rm and m ≥ n. Well-known methods

for solving V I P(T, C) are the so-called generalized proximal schemes, which

involve a regularization term that incorporates the constraint set C in such a way

that all the subproblems have solutions in the interior of C . For this reason, these

methods are also called interior proximal methods. Examples of these regular-

izing functionals are the Bregman distances (see, e.g. [1, 8, 13, 14, 20, 25]),

ϕ-divergences ([26, 5, 15, 18, 19, 27, 28]) and log-quadratic regularizations

([3, 4]). Being interior point methods, it is a basic assumption that the topo-

logical interior of C is nonempty. Otherwise, the iterates are not well-defined.

However, a set C as above may usually have empty interior. In order to solve

problem (1.2) for an arbitrary set C 6= ∅ of the kind given in (1.3), Yamasita et

al. [29] devised an interior-point scheme in which the subproblems deal with a

constraint set Ck given by

Ck :=
{

x ∈ Rn| Ax ≤ b + δk
}
, (1.4)

where the vectors δk have positive coordinates and are such that
∑∞

1 ‖δk‖ < ∞.

So, if C 6= ∅, it holds C ⊂ int Ck and hence a regularizing functional can be

associated with the set Ck . Denote by dk the regularization functional proposed

in [3, 4] (associated with the set Ck with non-empty interior) and by ∇1dk the

derivative of dk with respect to its first argument. The subproblems in [29] find

an approximate solution xk ∈ int Ck of the inclusion

0 ∈ λk∂εk f
(
xk

)
+ ∇1dk

(
xk, xk−1

)
,
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where λk > 0, ∂ε f is the ε-subdifferential of f [6]. Yamasita et al. prove in [29]

convergence under summability assumptions on the “error” sequences {εk} and

{δk}. One drawback of conditions of this kind is that there may be no constructive

way to enforce them. Indeed, there exist infinitely many summable sequences,

and it is not specified how to choose them at a specific iteration and for the given

problem, so as to ensure convergence. From the algorithmic standpoint, one

would prefer to have a computable error tolerance condition which is related

to the progress of the algorithm at every given step when applied to the given

problem. This is one of the main motivations of our approach (see condition

(3.10) below), where we choose each εk so as to verify a specific condition at

each iteration k.

Moreover, we also extend the scheme given in [29] to the more general problem

(1.1). Namely, we are concerned with iterations of the kind: Find an approximate

solution xk ∈ int Ck of

0 ∈ λk T εk (xk) + ∇1dk(xk, xk−1), (1.5)

where λk > 0 and T ε is an enlargement of the operator T [11, 10]. We im-

pose no summability assumption on the parameters {εk}. Instead, we define a

criterion which can be checked at each iteration. On the other hand, we do need

summability of the sequence {δk}.

Our relative error analysis is inspired by the one given in [12], which yields a

more practical framework. The convergence analysis presented in [29] (which

considers the optimization problem (1.2)) requires an assumption involving the

sequence of iterates generated by the method, and the function f , namely that
∑∞

k=0 | f (xk) − f (PC(xk))| < +∞, where PC stands for the orthogonal pro-

jection onto C . We make no assumptions of this kind in our analysis. Another

difference between [29] and the present paper is that we allow more degrees

of freedom in the definition of the inexact step. See Remark 3.6 for a detailed

comparison with [29].

The paper is organized as follows. In Section 2 we give some basic defini-

tions and properties of the family of regularizations, as well as some known

results on monotone operators. In the same section, the enlargement T ε is re-

viewed, together with its elementary features. In Section 3, we describe the
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algorithm, prove its well-definedness and give its inexact version. The con-

vergence analysis is presented in Section 3.1, and in Section 4 we give some

conclusions.

2 Basic assumptions and properties

A point-to-set valued map T : Rn ⇒ Rn is an operator which associates with

each point x ∈ Rn a set (possibly empty) T (x) ⊂ Rn . The domain and the graph

of a point-to-set valued map T are defined as:

D(T ) := {x ∈ Rn| T (x) 6= ∅},

G(T ) := {(x, v) ∈ Rn × Rn| x ∈ D(T ), v ∈ T (x)}.

A point-to-set operator T is said to be monotone if

〈u − v, x − y〉 ≥ 0, ∀ u ∈ T (x), v ∈ T (y).

A monotone operator T is said to be maximal when its graph is not properly

contained in the graph of any other monotone operator. The well-known result

below has been proved in [24, Theorem 1]. Denote by ir A the relative interior

of the set A.

Proposition 2.1. Let T1, T2 maximal monotone operators. If ir D(T1) ∩

ir D(T2) 6= ∅, then T1 + T2 is maximal monotone.

We denote by dom( f ) = {x ∈ Rn| f (x) < +∞} the domain of f : Rn →

R ∪ {+∞} and by f∞ the asymptotic function [2, Definition 2.5.1] associated

with the function f : Rn → R ∪ {+∞}.

It is well-known that the existence of solutions of inclusion (1.5) depends on

the properties of the distance dk . For a given distance D, a coercivity property

(namely surjectivity of ∇1 D(∙, y) for y fixed) is required (see, for instance [8,

Proposition 3]). The result we need to ensure well-definedness of our scheme,

which we state below, is [3, Proposition 3.1], which establishes the desired

surjectivity in our particular setting.
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Theorem 2.2 ([3, Proposition 3.1]). Let f : Rn → R ∪ {+∞} be a closed

proper convex function with dom( f ) open. Assume that f is differentiable on

dom( f ) and such that f∞(ξ) = +∞ ∀ ξ 6= 0. Let A be an m × n matrix with

m ≥ n and rank A = n, b̃ ∈ Rm with (b̃ − A(Rn)) ∩ dom( f ) 6= ∅, and set

h(x) := f (b̃ − Ax). Let T̃ : Rn ⇒ Rn be a maximal monotone operator such

that D(T̃ ) ∩ dom(h) 6= ∅ and set

U (x) :=

{
T̃ (x) + ∇h(x) if x ∈ D(T̃ ) ∩ D(∇h),

∅ otherwise.

Then ∇h(x) is onto. Moreover, there exist a solution x of equation 0 ∈ U (x),

which is unique if f is strictly convex on its domain.

We describe below the family of regularizations we use. From now on, the

function ϕ : R+ → (−∞, ∞] is given by

ϕ(t) := μh(t) +
(

ν

2

)
(t − 1)2, (2.1)

where h is a closed and proper convex function satisfying the following addi-

tional properties:

(1) h is twice continuously differentiable on int(dom h) = (0, +∞),

(2) h is strictly convex on its domain,

(3) limt→0+ h
′
(t) = −∞,

(4) h(1) = h
′
(1) = 0 and h

′′
(1) > 0, and

(5) for t > 0

h
′′
(1)

(
1 −

1

t

)
≤ h

′
(t) ≤ h

′′
(1)(t − 1). (2.2)

Items (1)–(4) and (1)–(5) were used in [4] to define, respectively, the families 8

and 82. The positive parameters μ, ν shall satisfy the following inequality

ν > μh
′′
(1) > 0. (2.3)

Note that conditions above and (2.2) imply

μh
′′
(1)

(
1 −

1

t

)
+ ν(t − 1) ≤ ϕ

′
(t) < 2ν(t − 1), (2.4)
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therefore limt→∞ϕ
′
(t) = +∞. The generalized distance induced by ϕ, is de-

noted by dϕ(x, y) and defined as:

dϕ(x, y) :=

{ ∑n
i=1 y2

i ϕ(xi/yi ), x, y ∈ Rn
++,

+∞, otherwise,
(2.5)

where Rn
++ := {z ∈ Rn | zi > 0 ∀ i = 1, . . . , n}. Since limt→∞ϕ

′
(t) = +∞

it follows that [dϕ(∙, y)]∞(ξ) = +∞, ∀ ξ 6= 0. Denoting by ∇1 the gradient

with respect to the first variable, it holds that [∇1dϕ(x, y)]i = yiϕ
′(xi/yi ) for all

i = 1, . . . , n.

The following lemma has a crucial role in the convergence analysis. Its first

part has been established in [3]. Define

θ := ν + ρμ, τ := ν − ρμ and ρ := h
′′
(1). (2.6)

Lemma 2.3. For all w, z ∈ Rn
++ and v ∈ Rn

+ := {z ∈ Rn | zi ≥ 0 ∀ i =

1, . . . , n}, it holds that

(i) 〈∇1dϕ(w, z), w − v〉 ≥
θ

2

(
‖w − v‖2 − ‖z − v‖2

)
+

τ

2
‖w − z‖2;

(ii) 〈v, ∇1dϕ(w, z)〉 ≤ θ‖v‖‖w − z‖.

Proof. For part (i), see [3, Lemma 3.4]. We proceed to prove (ii). Since

ϕ(t) = μh(t) + ν
2 (t − 1)2, we have that ϕ′(t) = μh′(t) + ν(t − 1). By (2.2)

and (2.6) we get ϕ′(t) ≤ (ν + ρμ)(t − 1). Letting t = wi
zi

and multiplying both

sides by vi zi yield

vi ziϕ
′

(
wi

zi

)
≤ θvi zi

(
wi

zi
− 1

)
,

for all i = 1, . . . , n. Therefore, 〈v, ∇1dϕ(w, z)〉 ≤ θ〈v,w − z〉. Using the

Cauchy-Schwartz inequality in the expression above, we get (ii). �

The result below is known as Hoffman’s lemma [16].
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Lemma 2.4. Let C = {x ∈ Rn| Ax ≤ b} and Ck = {x ∈ Rn| Ax ≤ b + δk}

where A is matrix m × n with m ≥ n and b, δk ∈ Rm. Given xk ∈ Ck there

exists a constant α > 0 such that

dist(xk, C) := inf
y∈C

‖y − xk‖ = ‖pk − xk‖ ≤ α‖δk‖

where pk is projection of xk in C.

We recall next two technical results on nonnegative sequences of real num-

bers. The first one was taken from [22, Chapter 2] and the second from [21,

Lemma 3.5].

Lemma 2.5. Let {σk} and {βk} be nonnegative sequences of real numbers

satisfying:

(i) σk+1 ≤ σk + βk;

(ii)
∑∞

k=1 βk < ∞.

Then the sequence {σk} converges.

Lemma 2.6. Let {λk} be a sequence of positive numbers, and {ak} be a sequence

of real numbers. Let σk :=
∑k

j=1 λ j and bk := σk
−1 ∑k

j=1 λ j a j . If σk → ∞,

then

(i) lim infk→∞ak ≤ lim infk→∞bk ≤ lim supk→∞bk ≤ lim supk→∞ak;

(ii) If limk→∞ak = a < ∞, then limk→∞bk = a.

In our analysis, we relax the inclusion vk ∈ T (xk), by means of an ε-en-

largement of the operator T introduced in [10]: Given T a monotone operator,

define

T ε(x) :=
{
v ∈ RN | 〈v − w, x − y〉 ≥ −ε ∀y ∈ RN , w ∈ T (y)

}
. (2.7)

This extension has many useful properties, similar to the ε-subdifferential of a

proper closed convex function f . Indeed, when T = ∂ f , we have

∂ε f (x) ⊆ T ε(x) = (∂ f )ε(x). (2.8)

Comp. Appl. Math., Vol. 28, N. 1, 2009
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For an arbitrary maximal monotone operator T , the relation T 0(x) = T (x) holds

trivially. Furthermore, for ε′ ≥ ε ≥ 0, we have T ε(x) ⊂ T ε′
(x). In particular,

for each ε ≥ 0, T (x) ⊂ T ε(x) (see [9, Chapter 5] for a detailed study of the

properties of T ε).

3 The algorithm

In this section, we propose an infeasible interior proximal method for the solu-

tion of V I P(T, C) (1.1). To state formally our algorithm, we consider

Ck =
{

x ∈ Rn| Ax ≤ b + δk
}

where δk ∈ Rm
++ and

∞∑

k=1

‖δk‖ < ∞,

which is considered a perturbation of the original constraint set C . Moreover, if

C 6= ∅, then C ⊂ int Ck 6= ∅ for all k. Since δk → 0 as k → ∞, the sequence

of sets {Ck} converges to the set C . Now, if ai denotes the row i of the matrix

A, for each x ∈ Ck we consider yk(x) =
(
yk

1(x), yk
2(x), . . . , yk

m(x)
)T

, where

yk
i (x) = bi + δk

i − 〈ai , x〉 with i = 1, 2, . . . , n.

Therefore, we have the function dk : int Ck × int Ck → R defined by

dk(x, z) = dϕ

(
yk(x), yk−1(z)

)
. (3.1)

From the definition of dϕ , for each xk ∈ int Ck, xk−1 ∈ int Ck−1, we have

∇1dk
(
xk, xk−1

)
= −AT ∇1dϕ

(
yk(xk), yk−1(xk−1)

)
. (3.2)

In the method proposed in [29] for the convex optimization problem (1.2) with

C defined as in (1.3), the exact algorithm of the iteration k is given by:

For λk > 0, δk > 0 and
(
xk−1, yk−1

)
∈ int Ck−1 × Rm

++, find (x, y) ∈ int Ck ×

Rm
++ and u ∈ Rn such that






u ∈ ∂ f (x),

λku + ∇1dk
(
x, xk−1

)
= 0,

y − (b − Ax) = δk,
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where y ∈ Rm
++ can be seen as a slack variable associated to x ∈ int Ck . The

corresponding inexact iteration in [29] is given by:






ũ ∈ ∂εk f (x̃),

λk ũ + ∇1dk
(
x̃, xk−1

)
= 0,

ỹ − (b − Ax̃) = δk .

(3.3)

Following the approach in (3.3), the exact version of our algorithm is obtained

replacing ∂ f by an arbitrary maximal monotone operator T . Namely, given

λk > 0, δk > 0 and
(
xk−1, yk−1

)
∈ int Ck−1 ×Rm

++, find (x, y) ∈ int Ck ×Rm
++

and u ∈ Rn such that





u ∈ T (x),

λku + ∇1dk
(
x, xk−1

)
= 0,

y − (b − Ax) = δk .

(3.4)

A detailed comparison with the method in [29] is given in Remark 3.6.

It is important to guarantee the existence of (xk, yk) ∈ int Ck × Rm
++ satis-

fying (3.4). In fact, the next proposition shows that there exists a unique pair

(xk, yk) ∈ int Ck × Rm
++ satisfying (3.4) under the following two assumptions:

(H1) ir C ∩ ir D(T ) 6= ∅;

(H2) rank(A) = n (and therefore, A injective).

Proposition 3.1. Suppose that (H1) and (H2) hold. For every λk > 0, δk > 0

and (xk−1, yk−1) ∈ int Ck ×Rm
++, there exists a unique pair (xk, yk) ∈ int Ck ×

Rm
++ satisfying (3.4).

Proof. Define the operator T̃ k(x) := T (x) + NCk (x) + λk
−1∇h(x), where

h := dk
(
∙, xk−1

)
. We prove first that we are in the conditions of Theorem 2.2

for T̃ := T + NCk , f (∙) := dϕ

(
∙, yk−1

)
and b̃ := b + δk . Indeed, the operator

T + NCk is maximal monotone by (H1) and the fact that C ⊆ Ck (we are using

here Proposition 2.1). The function dϕ

(
∙, yk−1

)
is by definition convex, proper

and differentiable on its (open) domain Rm
++ and

[
dϕ

(
∙, yk−1

)]
∞(ξ) = +∞,
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∀ ξ 6= 0. By (H2), A has maximal rank. We claim that (b + δk − A(Rn)) ∩

dom dϕ(∙, yk−1) 6= ∅. Indeed, fix x ∈ C . It holds that

b + δk − Ax ≥ δk > 0, (3.5)

and therefore b + δk − Ax ∈ Rn
++ = dom dϕ

(
∙, yk−1

)
.

The only hypothesis that remains to be checked is: D(T̃ ) ∩ dom(h) 6= ∅,

where dom(h) = int Ck . Indeed, by (H1) and by definition of the Ck we get

∅ 6= C ∩ D(T ) ⊂ int Ck ∩ D(T ) ⊂ D(T̃ ).

Hence ∅ 6= C ∩ D(T̃ ) ⊂ D(T̃ ) ∩ int Ck = D(T̃ ) ∩ dom(h). So the hypothe-

ses of Theorem 2.2 are satisfied and therefore there exists x∗ a solution of the

equation

0 ∈ T (x) + NCk (x) + λk
−1∇1dk

(
x, xk−1

)
. (3.6)

This solution is unique, because dϕ

(
∙, yk−1

)
is strictly convex on its domain.

So, there exists uk ∈ T (xk), vk ∈ NCk (xk) and zk = ∇1dk
(
xk, xk−1

)
=

∇1dϕ

(
b + δk − A(xk), yk−1

)
such that

0 = uk + vk + λk
−1zk . (3.7)

Taking b + δk − Axk =: yk we have that yk is also unique. Since yk ∈ Rm
++,

it holds that xk ∈ int Ck , thus vk = 0. Hence by (3.7) there exists a unique pair

(xk, yk) ∈ int Ck × Rm
++ satisfying






uk ∈ T (xk),

uk + λk
−1∇1dk

(
xk, xk−1

)
= 0,

yk − (b − Axk) = δk,

which completes the proof. �

Remark 3.2. We point out that the previous proposition can be established

(with essentially the same proof) if we replace (H1) by the weaker requirement

D(T ) ∩ int(Ck) 6= ∅. We will need (H1), however, for proving that our iterates

converge to a solution (see Theorem 3.11).
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To deal with approximations, we relax the inclusion and the equation of the

exact system (3.4) in a way similar to (3.3):






ũ ∈ T εk (x̃),

λk ũ + ∇1dk
(
x̃, xk−1

)
= ek,

ỹ − (b − Ax̃) = δk,

(3.8)

where T ε is the enlargement of T given in (2.7). In the exact solution, we have

εk = 0 and ek = 0. An approximate solution should have εk and ek “small”.

Our aim is to use a relative error criteria as the one used in [12] to control the

size of εk and ek . The intuitive idea is to perform an extragradient step from xk−1

to x , using the direction ũ (see (3.9)), and then check whether the “error terms”

of the iteration, given by εk + 〈ũ, x̃ − x〉 and ‖ỹ − y‖ are small enough with

respect to the previous step.

Definition 3.3. Let σ ∈ [0, 1) and γ > 0. We say that (x̃, ỹ, ũ, εk) in (3.8)

is an approximated solution of system (3.4) with tolerance σ and γ if for

(x, y) such that {
λk ũ + ∇1dk

(
x, xk−1

)
= 0,

y − (b − Ax) = δk .
(3.9)

it holds that

λk
(
εk + 〈ũ, x̃ − x〉

)
≤ σ

τ

2
‖y − yk−1‖2, (3.10)

‖ỹ − y‖ ≤ γ ‖y − yk−1‖, (3.11)

where τ > 0 is as in (2.6).

Remark 3.4.

(i) Since the domain of dϕ(∙, yk−1) is Rm
++, for x̃, ũ, εk and x as in Defini-

tion 3.3, it holds that x̃ , x ∈ int Ck .

(ii) If (x, y, u) verifies (3.4), then (x, y, u, 0) is an approximated solution of

system (3.4) with tolerance σ, γ for any σ ∈ [0, 1) and γ > 0. It is clear

that in this case ek = 0. Conversely, if (x̃, ỹ, ũ, εk) is an approximated

solution of system (3.4) with tolerance σ = 0 and γ > 0 arbitrary, then
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we must have εk = 0 and (x̃, ỹ, ũ) satisfying (3.4). Indeed, since γ > 0

is arbitrary, we get y = ỹ. Using the fact that A is one-to-one, we get

x = x̃ . From the fact that σ = 0, we conclude that εk = 0.

(iii) If (H1) and (H2) hold, by Proposition 3.1 the system (3.8) with ek = 0

and εk = 0 has a solution. By (ii) of this remark, this solution is also an

approximated solution.

We describe below our algorithm, called Extragradient Algorithm.

Extragradient Algorithm-EA

Initialize: Take ρ, λ > 0, σ ∈ [0, 1), γ > 0, x0 ∈ Rn and y0 ∈ Rm
++ such that

δ0 := y0 − (b − Ax0) ∈ Rm
++.

Iteration: For k = 1, 2, . . .,

Step 1. Take λk with ρ ≤ λk ≤ λ and 0 < δk < δk−1. Find (̃xk, ỹk, ũk, εk)

an approximated solution of system (3.4) with tolerance σ, γ (i.e., they verify

(3.8)).

Step 2. Compute (xk, yk) such that
{

λk ũk + ∇1dk(xk, xk−1) = 0,

yk − (b − Axk) = δk .
(3.12)

Step 3. Set k := k + 1, and return to Step 1.

Remark 3.5. The parameter ρ̄ > 0 ensures that the information on the original

problem is taken into account at each iteration. The requirement ρ̄ > 0 is

standard in the convergence analysis of proximal methods.

Remark 3.6. Our algorithm extends the one in [29]. More precisely, our step

coincides with the one in [29] when the following hold.

(i) T = ∂ f .

(ii) ek = 0 in (3.8) (so xk = x̃ k),

(iii) Choose ũk ∈ ∂εk f (x̃ k) = ∂εk f (xk), instead of taking ũk in the (poten-

tially) bigger set (∂ f )εk (x̃ k) as we do in (3.8).
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From (ii) and (iii), our step allows more freedom in the choice of the next

iterate xk . As mentioned earlier, a conceptual difference with the method in

[29] is the fact that the sequence {εk} is chosen in a constructive way, so as to

ensure convergence. Our choice of each εk is related with the progress of the

algorithm at every given step when applied to the given problem. It can be seen

that, if (i)–(iii) above hold, then (3.10) forces
∑∞

i=1 λkεk < +∞, the latter being

an assumption for the convergence results in [29]. Indeed, if (i)–(iii) hold, then

xk = x̃ k and (3.10) yields λkεk ≤ στ
2 ‖yk − yk−1‖2. Using now Proposition 3.7,

Corollary 3.8 (see the next section) and Lemma 2.5 we obtain
∑∞

i=1 ‖yk −

yk−1‖2 < +∞. Therefore,
∑∞

i=1 λkεk < +∞.

3.1 Convergence analysis

In this section, we prove convergence of the Algorithm above. From now on

{xk}, {̃xk}, {ỹk}, {yk}, {̃uk}, {εk}, {λk} and {δk} are sequences generated by EA

with approximating criteria (3.10)–(3.11). The main result we shall prove is that

the sequence {xk} converges to a solution of V I P(T, C).

The next proposition is essential for the convergence analysis, to show this we

need the following further assumptions

(H3) The solution set S of V I P(T, C) is nonempty.

Proposition 3.7. Suppose that (H3) holds and let x ∈ S and u ∈ T (x).

Define y := b − Ax. Then, for k = 1, 2, . . . ,

‖yk − y‖2 ≤ ‖yk−1 − y‖2 −
τ

θ
(1 − σ)‖yk − yk−1‖2

+ 2‖δk‖ ‖yk − yk−1‖ + α
2

θ
λk‖u‖ ‖δk‖,

(3.13)

where θ, τ are as in (2.6) and α is as in Lemma 2.4.

Proof. Fix k > 0 and take ũk ∈ T εk (̃xk). For all (x, u) ∈ G(T ) we have that

λk〈x − x̃ k, u − ũk〉 ≥ −λkεk .

Therefore,

λk〈x − x̃ k, u〉 ≥ λk〈x − x̃ k, ũk〉 − λkεk

= λk〈x − xk, ũk〉 + λk〈xk − x̃ k, ũk〉 − λkεk .
(3.14)
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Using (3.9), (3.10) and (3.12) in the inequality above, we get

λk〈x − x̃ k, u〉 ≥ 〈x − xk, −∇1dk(xk, xk−1)〉 − σ
τ

2
‖yk − yk−1‖2. (3.15)

Now, using (3.2) we have

〈x − xk, −∇1dk(xk, xk−1)〉 = 〈x − xk, AT ∇1dϕ(yk, yk−1)〉

= 〈A(x − xk), ∇1dϕ(yk, yk−1)〉

= 〈yk − y, ∇1dϕ(yk, yk−1)〉

− 〈δk, ∇1dϕ(yk, yk−1)〉,

where y = b − Ax . Combining the equality above with (3.15), we get

λk〈x − x̃ k, u〉 ≥ 〈yk − y, ∇1dϕ(yk, yk−1)〉

− 〈δk, ∇1dϕ(yk, yk−1)〉 − σ
τ

2
‖yk − yk−1‖2.

Applying Lemma 2.3 in this inequality yields

λk〈x − x̃ k, u〉 ≥
θ

2
(‖yk − y‖2 − ‖yk−1 − y‖2)

+
τ

2
(1 − σ)‖yk − yk−1‖2 − θ‖δk‖ ‖yk − yk−1‖.

(3.16)

The inequality above is valid in particular for (x, u) := (x, u) with x ∈ S

and y such that y = b − Ax . Therefore,

λk〈x − x̃ k, u〉 ≥
θ

2
(‖yk − y‖2 − ‖yk−1 − y‖2)

+
τ

2
(1 − σ)‖yk − yk−1‖2 − θ‖δk‖ ‖yk − yk−1‖.

(3.17)

On the other hand, for (x, u) with x ∈ S and u ∈ T (x), we have that

〈x − x, u〉 ≤ 0 ∀ x ∈ C. Let pk be the projection of x̃ k onto C . Since pk ∈ C ,

we have that 〈x − pk, u〉 ≤ 0, and therefore 〈x − x̃ k, u〉 ≤ 〈pk − x̃ k, u〉. Using

the Cauchy-Schwarz inequality and multiplying by λk > 0, we get

λk〈x − x̃ k, u〉 ≤ λk‖u‖‖x̃ k − pk‖.

By Lemma 2.4 we conclude that

λk〈x − x̃ k, u〉 ≤ λkα‖u‖‖δk‖, (3.18)
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for some α > 0. Combining (3.17) and (3.18), we get

‖yk − y‖2 ≤ ‖yk−1 − y‖2 −
τ

θ
(1 − σ)‖yk − yk−1‖2

+ 2‖δk‖ ‖yk − yk−1‖ + α
2

θ
λk‖u‖ ‖δk‖.

(3.19)

�

The next corollary guarantees boundedness of the sequence {yk − yk−1}.

Corollary 3.8. Suppose that (H3) holds, then the sequence {‖yk − yk−1‖} is

bounded.

Proof. Assume the sequence {‖yk − yk−1‖} is unbounded. Then there is a

subsequence {‖yk − yk−1‖}k∈K such that ‖yk − yk−1‖ → ∞ for k ∈ K ,

whereas the complementary subsequence {‖yk − yk−1‖}k /∈K is bounded (note

that this complementary subsequence could be finite or even empty). From

(3.19), we have

‖yk − yk−1‖
[τ

θ
(1 − σ)‖yk − yk−1‖ − 2‖δk‖

]

≤ ‖yk−1 − y‖2 − ‖yk − y‖2 + α
2

θ
λk‖u‖‖δk‖.

(3.20)

Summing up the inequalities (3.20) over k = 1, 2, . . . , n gives
∑

k = 1, . . . , n

k /∈ K

‖yk − yk−1‖
[τ

θ
(1 − σ)‖yk − yk−1‖ − 2‖δk‖

]

+
∑

k = 1, . . . , n

k ∈ K

‖yk − yk−1‖
[τ

θ
(1 − σ)‖yk − yk−1‖ − 2‖δk‖

]

≤ ‖y0 − y‖2 − ‖yn − y‖2 + α
2τ

θ
λ‖u‖

n∑

k=1

‖δk‖

≤ ‖y0 − y‖2 + α
2τ

θ
λ‖u‖

n∑

k=1

‖δk‖.
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Set

an =
∑

k = 1, . . . , n

k /∈ K

‖yk − yk−1‖
[τ

θ
(1 − σ)‖yk − yk−1‖ − 2‖δk‖

]
,

bn =
∑

k = 1, . . . , n

k ∈ K

‖yk − yk−1‖
[τ

θ
(1 − σ)‖yk − yk−1‖ − 2‖δk‖

]

and

cn = ‖y0 − y‖2 + α
2τ

θ
λ‖u‖

n∑

k=1

‖δk‖.

So the above inequality can be re-written as

an + bn ≤ cn. (3.21)

Because
∑n

k=1 ‖δk‖ < ∞ we conclude that cn ≤ c̄ for some c̄. We show now

that {an} is bounded below and lim
n→∞

bn = ∞, which is a contradiction with

(3.21). This will complete the proof. Since {‖yk − yk−1‖}k /∈K is bounded, there

is L such that ‖yk − yk−1‖ ≤ L for all k /∈ K , then

−2L‖δk‖ ≤ −2‖yk − yk−1‖ ‖δk‖ ≤
τ

θ
(1−σ)‖yk − yk−1‖2−2‖yk − yk−1‖ ‖δk‖,

summing up the inequalities, we have

−2L
∑

k = 1, . . . , n

k /∈ K

‖δk‖ ≤ an,

it follows that the sequence {an} is bounded below because
∑n

k=1 ‖δk‖ < ∞.

Since in K the sequence {‖yk − yk−1‖} is unbounded and {‖δk‖} converges to

zero, there exists an k0 ∈ K such that

τ

θ
(1 − σ)‖yk − yk−1‖ − 2‖δk‖ ≥ L > 0, for all k > k0
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therefore,

∞∑

k > k0

k ∈ K

‖yk − yk−1‖
[τ

θ
(1 − σ)‖yk − yk−1‖ − 2‖δk‖

]

≥ L
∞∑

k > k0

k ∈ K

‖yk − yk−1‖ = ∞

it follows that lim
n→∞

bn = ∞. �

Remark 3.9. We point out that the requirement λk ≤ λ̄ used in Corollary 3.8

can be weakened to the assumption
∑n

k=1 ‖δk‖λk < ∞. We have chosen

to use the stronger requirement λk ≤ λ̄k for simplicity of the presentation.

The assumption λk ≤ λ̄ is not used in any of the remaining results.

Corollary 3.10. Suppose that (H3) holds. Then, for x, u, y as in Proposi-

tion 3.7, it holds that

(i) {‖yk − y‖} converges (and hence {yk} is bounded);

(ii) limk ‖yk − yk−1‖ = 0;

(iii) {‖A(xk − x)‖} converges (hence {‖xk − x‖} converges and {xk} is

bounded);

(iv) limk ‖x̃ k − xk‖ = 0;

(v) {̃xk} is bounded.

Proof.

(i) From (3.13) we have that

‖yk −y‖2 ≤ ‖yk−1−y‖2+2‖δk‖‖yk −yk−1‖+α
2

θ
λk‖u‖‖δk‖ ∀ k. (3.22)
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Define

σk+1 := ‖yk − y‖2 and βk := 2‖δk‖‖yk − yk−1‖ + α
2

θ
λk‖u‖‖δk‖.

Since {‖yk − yk−1‖} is bounded by Corollary 3.8 and
∑∞

k=1 ‖δk‖ < ∞,

then
∑∞

k=1 ‖βk‖ < ∞. Therefore the sequences {σk} and {βk} are in the

conditions of Lemma 2.5. This implies that {‖yk − y‖} converges and

therefore {yk} is bounded.

(ii) It follows from (i) and Proposition 3.7 that
∑∞

k=1 ‖yk − yk−1‖2 < ∞,

therefore limk ‖yk − yk−1‖ = 0.

(iii) Since yk − y = A(x − xk) + δk , we get that

‖yk − y‖ − ‖δk‖ ≤ ‖A(x − xk)‖ ≤ ‖yk − y‖ + ‖δk‖.

Being {‖yk − y‖} convergent and {‖δk‖} convergent to zero, we conclude

from the expression above that {‖A(x −xk)‖} is also convergent. By (H2),

the function u −→ ‖u‖A := ‖Au‖ is a norm in Rn , and then it follows

that {‖xk − x‖} converges and therefore {xk} is bounded.

(iv) From (ii) and (3.11), it follows that limk→∞ ‖ỹk − yk‖ = 0. Therefore

limk→∞ ‖A(̃xk − xk)‖ = 0. Again, the assumptions on A imply that

limk→∞ ‖x̃ k − xk‖ = 0. Item (v) Follows from (iii) and (iv). �

We show below that the sequence {xk} converges to a solution of V I P(T, C).

Denote by Acc(zk) the set of accumulation points of the sequence {zk}.

Theorem 3.11. Suppose that (H1)–(H3) hold. Then {xk} converges to an

element of S.

Proof. By Corollary 3.10(iii) and (iv) then Acc(̃xk) = Acc(xk) 6= ∅.

We prove first that every element of Acc(̃xk) = Acc(xk) is a solution of

V I P(T, C). Indeed, by (3.16), for all (x, u) ∈ G(T ) it holds

〈x − x̃ k, u〉 ≥ (λk)
−1

[
θ

2
(‖yk − y‖2 − ‖yk−1 − y‖2)

+ (1 − σ)
τ

2
‖yk − yk−1‖2 − θ‖δk‖ ‖yk − yk−1‖

]
.

(3.23)
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Using Corollary 3.10(i)-(iii), we have that {xk} and {yk} are bounded and

limk ‖yk − yk−1‖ = 0. These facts, together with the identity

‖yk − y‖2 − ‖yk−1 − y‖2 = ‖yk − yk−1‖2 + 2〈yk − yk−1, yk−1 − y〉,

yield

lim
k→∞

‖yk − y‖2 − ‖yk−1 − y‖2 = 0.

Let {̃xk j } ⊆ {̃xk} be a subsequence converging to x∗, we have that

〈x − x∗, u〉 = lim
j

〈x − x̃ k j , u〉 ≥ lim inf
k

〈x − x̃ k, u〉. (3.24)

Using the above inequality and the fact that λk ≥ ρ > 0, we obtain the follow-

ing expression by taking limits for k → ∞ in (3.23):

〈x − x∗, u〉 ≥ 0 ∀ (x, u) ∈ G(T ). (3.25)

By definition, yk j = b+δk j − Axk j with yk j > 0. We know that {yk j } converges

to y∗ = b − Ax∗, with y∗ ≥ 0. Therefore Ax∗ ≤ b. Equivalently, x∗ ∈ C . By

definition of NC , we have

〈x − x∗, w〉 ≥ 0 ∀ (x, w) ∈ G(NC). (3.26)

Combining (3.25) and (3.26), we conclude that

〈x − x∗, u + w〉 ≥ 0 ∀ (x, u + w) ∈ G(T + NC).

By (H1) and Proposition 2.1, T + NC is maximal monotone. Then the above

inequality implies that 0 ∈ (T + NC)(x∗), i.e, x∗ ∈ S. Recall that x∗ is also

an accumulation point of {xk}. Using Corollary 3.10(iii), we have that the se-

quence {‖x∗ − xk‖} is convergent. Since it has a subsequence that converges to

zero , the whole sequence {‖x∗ − xk‖} must converge to zero. This completes

the proof. �

4 Conclusion

We propose an infeasible interior point method with log-quadratic proximal

regularization for solving variational inequality problems. Our algorithm can
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start from any point of the space (note that the first δ0 can be chosen arbitrarily

large, as long as the sequence {‖δk‖} is summable). We also introduce a relative

error analysis which can be checked at each iteration, as the one in [12].

Moreover, our method can be applied even when the interior of C is empty.

We show convergence under similar assumptions as those in the classical log-

quadratic proximal, where the set C is required to have nonempty interior.

We acknowledge the fact that the scheme we propose is mainly theoretical.

We point out that no numerical results are available for the method in [29].

However, from Remark 3.6, our inexact iteration includes the one in [29] as a

particular case, and thus our step is likely to be computationally cheaper than

that in [29]. A full numerical implementation of our method and a comparison

with [29] is a fundamental question, which is the subject of future investigations.
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