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Abstract. In this work we are concerned with the existence and uniqueness of T -periodic weak

solutions for an initial-boundary value problem associated with nonlinear telegraph equations type

in a domain Q ⊂ RN . Our arguments rely on elliptic regularization technics, tools from classical

functional analysis as well as basic results from theory of monotone operators.
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1 Introduction and description of the elliptic regularization method

In this paper we deal with the existence of time-periodic solutions for the non-

linear telegraph equation

w′′ + w′ −1w + w + |w′|p−2w′ = f, (x, t) ∈ Q = �×]0, T [, (1.1)

� being a bounded domain in RN with a sufficiently regular boundary ∂�.

All derivatives are in the sense of distributions, and by ξ ′ it denotes
∂ξ

∂t
. The

function f we will be assumed as regular as necessary.

We shall use, throughout this paper, the same terminology of the functional

spaces used, for instance, in the books of Lions [6]. In particular, we denote by
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V = H 1
0 (�) and H = L2(�). The Hilbert space V has inner product ((. , .))

and norm ‖.‖ given by ((u, v)) =
∫
�

∇u.∇vdx, ‖u‖2 =
∫
�

|∇u|2dx . For the

Hilbert space H we represent its inner product and norm, respectively, by (. , .)

and |.|, defined by (u, v) =
∫
�

uvdx, |u|2 =
∫
�

|u|2 dx .

The telegraph equation appears when we look for a mathematical model for

the electrical flow in a metallic cable. From the laws of electricity we deduce a

system of partial differential equations where the unknown are the intensity of

current i and the voltage u, cf. Courant-Hilbert [4], p. 192–193, among others.

By algebraic calculations we eliminate i and we get the partial differential

equation:
∂2u

∂t2
− C2 ∂

2u

∂x2
+ (α + β)

∂u

∂t
+ αβu = 0,

called Telegraph Equation. In this case the coefficients C , α, β are constants.

Motivated by this model, Prodi [10] investigated the existence of periodic

solution in t for the equations

∂2u

∂t2
− 4u + u +

∂u

∂t
+ |
∂u

∂t
|
∂u

∂t
= f,

in a bounded open set � of RN with Dirichlet zero conditions on the boundary.

The problem posed by Prodi [10] was further developed by Lions [6] with the

aid of elliptic regularization associated to the theory of monotonous operator, cf.

Browder [3].

More precisely, Lions [6] investigate periodic solutions of the problem
∣
∣
∣
∣
∣
∣
∣
∣

w′′ −1w + γ (w′) = f in Q = �×]0, T [,

w = 0 on 6 = ∂�×]0, T [,

w(0) = w(T ), w′(0) = w′(T ) in �,

(1.2)

with γ (w′) = |w′|p−2w′.

Because of this important physical background, the existence of time-periodic

solutions of the telegraph equations with boundary condition for space variable

x has been studied by many authors, see [7, 8, 9, 11] and the references therein.

We consider the existence of the solutions w(x, t) of Eq. (1.1), which satisfy

the time-periodic (or T -periodic) condition

w(0) = w(x, T ), w′(x, 0) = w′(T ), x ∈ �, (1.3)
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subject to the Dirichlet condition

w(x, t) = 0, (x, t) ∈ ∂�×]0, T [. (1.4)

Based on physical considerations, we restrict our analysis to the two dimensional

space and standard hypothesis on f is assumed. Arguments within this paper

are inspired by the work by Lions [6].

However, the classical energy method approach cannot be employed straightly,

giving raise to a new mathematical difficulty. In fact, multiplying both sides of

the equation (1.1) by w′ and integrating on Q, we have, using the periodicity

condition, that
∫

Q
|w′(x, t)|2dxdt +

∫

Q
|w′(x, t)|pdxdt =

∫

Q
f (x, t)w′(x, t)dxdt .

In this way we obtain only estimates for
∫

Q
|w′(x, t)|2dxdt and

∫

Q
|w′(x, t)|pdxdt,

which is not sufficient to obtain solution for (1.1).

In view of this, as in Lions [6], we use an approach due to Prodi [10] which

relies heavily on the following set of ideas: we investigate solutions for (1.1) of

the type ∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

w = u + u0,

u0 independent of t
∫ T

0
u(t) dt = 0, the average of u is zero.

(1.5)

Substituting w given by (1.5) in (1.1), we obtain

u′′ + u′ −1u + u + |u′|p−2u′ = f +1u0 − u0, (1.6)

which contains a new unknown u0, independent of t by definition.

To eliminate u0 in (1.6) we consider the derivative of (1.6) with respect to t

obtaining ∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

d

dt
(u′′ + u′ −1u + u + |u′|p−2u′) =

d f

dt
∫ T

0
u(t)dt = 0

u(0) = u(T ), u′(0) = u′(T ).

(1.7)
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Suppose that we have found u by (1.7). Observe that by (1.7)1,

d

dt
(u′′ + u′ −1u + u + |u′|p−2u′ − f ) = 0.

Thus u is solution of

u′′ + u′ −1u + u + |u′|p−2u′ − f = g0, (1.8)

g0 independent of t, in which g0 is a known function.

Then u0 is obtained as the solution of the Dirichlet problem:
∣
∣
∣
∣
∣
∣

−1u0 + u0 = −g0

u0 = 0 on ∂�.
(1.9)

Therefore, w = u + u0 is the T – periodic solution of (1.1). We are going to

resolve problem (1.7) by using elliptic regularization.

Observe that Lions [6] investigate the problem (1.2) by elliptic regularization,

reducing the problem to the theory of monotonous operators, cf. Lions [6].

In this work we consider the time – periodic problem (1.1), (1.3) and (1.4) and

solve it by elliptic regularization as an application of the monotony type results,

cf. Browder [3]. Thus our proof is a simpler alternative to the earlier approaches

existing in the current literature.

In fact, we consider the periodic problem
∣
∣
∣
∣
∣
∣
∣
∣

w′′ + w′ −1w + w + |w′|p−2w′ = f in Q = �×]0, T [,

w = 0 on ∂�×]0, T [,

w(x, 0) = w(x, T ), w′(x, 0) = w′(x, T ) in �.

(1.10)

Thus for w = u + u0, the function u is determined by (1.7).

We begin the functional space

W =
{
v; v ∈ L2(0, T ; V ), v′ ∈ L2(0, T ; V ) ∩ L p(Q),

v′′ ∈ L2(0, T ; H),
∫ T

0
v(s)ds = 0, v(0) = v(T ), v′(0) = v′(T )

}
.

(1.11)

The Banach structure of W is defined by

‖v‖W = ‖v‖L2(0,T ;V ) + ‖v′‖L2(0,T ;V ) + ‖v′‖L p(0,T ;L p(�)) + ‖v′′‖L2(0,T ;H).
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In the sequel by 〈. , .〉 we will represent the duality pairing between X and X ′,

X ′ being the topological dual of the space X , and by c (sometimes c1, c2, . . .)

we denote various positive constants.

Motivated by (1.7) we define the bilinear form b(u, v) for u, v ∈ W by

b(u, v) =
∫ T

0

[
(u′′ + u′ + u, v′)+ 〈Au, v′〉 + 〈γ (u′), v′〉

]
dt,

where A = −1 and γ (u′) = |u′|p−2u′.

Then the weak formulation of (1.7) is to find u ∈ W such that

b(u, v) =
∫ T

0

(
f, v′

)
dt, (1.12)

for all v ∈ W .

Let us point out that the main difficulty in applying standard techniques from

classical functional is due to the fact that the bilinear form b(u, v) is not coercive.

To resolve this issue, we perform an elliptic regularization on b(u, v), following

the ideas of Lions [6]. Subsequently we apply Theorem 2.1, p. 171 of Lions

[6] to finally establish existence and uniqueness of solution to elliptic problem

(1.12).

2 Main result

As we said in the Section 1, the method developed in this article is a variant of

the elliptic regularization method introduced in Lions [6] in the context of the

telegraph equation.

Indeed, following the same type of reasoning cf. Lions [6], to obtain the ellip-

tic regularization, given μ > 0 and u, v ∈ W we define

πμ(u, v) = μ

∫ T

0

[
(u′′, v′′)+ (u′, v′)+ (Au′, v′)

]
dt

+
∫ T

0

(
u′′ + u′ + Au + u + γ (u′), v′

)
dt,

(2.1)

where A = −1 and γ (u′) = |u′|p−2u′.
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It is easy to see, cf. Lemma 2.2, that the application v → πμ(u, v) is continu-

ous on W . This allows to build a linear operator Bμ : W −→ W ′, 〈Bμ(u), v〉 =

πμ(u, v).

As we shall see, the linear operator Bμ satisfies the following properties:

(a) Bμ is a strictly monotonous operator; 〈Bμ(v)−Bμ(z), v − z〉 > 0 for all

v, z ∈ W , v 6= z;

(b) Bμ is a hemicontinuous operator; λ → 〈Bμ(v + λz), w〉 is continuous

in R;

(c) Bμ(S) is bounded in W ′ for all bounded set S in W ;

(d) Bμ is coercive;
〈Bμ(v), v〉

|v|W
→ ∞ as |v|W → ∞.

In view of these properties and as consequence of Theorem 2.1, p. 171 of

Lions [6], the existence and uniqueness of a function uμ ∈ W such that

πμ(uμ, v) =
∫ T

0
( f, v′) dt, for all v ∈ W, (2.2)

follows immediately.

The Eq. (2.2) is called of elliptic regularization of problem (1.7).

Our main result is as follows

Theorem 2.1. Suppose f ∈ L p′
(0, T ; L p′

(�)), with
1

p
+

1

p′
= 1 and p > 2.

Then there exists only one real function w = w(x, t), (x, t) ∈ Q, w ∈ W ,

such that

w = u + u0, u0 ∈ H 1
0 (�) (2.3)

u ∈ L2(0, T ; V ) (2.4)

u′ ∈ L p(0, T ; L p(�)) (2.5)

and w satisfying (1.1) in the sense of L2(0, T ; V ′)+ L p′
(0, T ; L p′

(�)).

Now, we begin by stating some lemmas that will be used in the proof of the

Theorem 2.1.
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Lemma 2.1. If
∫ T

0
u(x, t)dt = 0 then

∫ T

0
‖u‖2

V dt ≤ C
∫ T

0
‖u′‖2

V dt and
∫ T

0
‖u‖p

L p(�)dt ≤ C
∫ T

0
‖u′‖p

L p(�)dt,

for u derivable with respect to t in [0, T ] and u ∈ L2(0, T ; V ), u′ ∈ L2(0, T ;

V ) ∩ L p(0, T ; L p(�)).

Proof. The proof of Lemma 2.1 can be obtained with slight modifications

from Lions [6] or Medeiros [8].

Lemma 2.2. The form v → πμ(u, v) defined in (2.1) is continuous on W .

Proof. By Cauchy-Schwarz inequality and Young’s inequality we have

|πμ(u, v)| ≤ cμ‖u‖W ‖v‖W ′, (2.6)

where cμ is a constant positive that depend of μ. Then the result follows. �

Lemma 2.3. The operator Bμ : W −→ W ′, 〈Bμ(u), v〉 = πμ(u, v) is hemi-

continuous, bounded, coercive and strictly monotonous from W → W ′.

Proof. It follows of (2.6) that Bμ(u) is bounded. From Lemma 2.1 and equal-

ity
∫ T

0

(
γ (u′), u′

)
dt = ‖u′‖p

L p(Q), we obtain

〈Bμ(v), v〉 ≥ cη‖v‖
2
W ,

because
∫ T

0
u(x, t)dt = 0. Thus Bμ is W -coercive. The hemicontinuity of the

operator v → |v|p−2v allow us to conclude that the operator Bμ is hemicontin-

uous. Finally, the proof that the operator Bμ is strictly monotonous follows as

in Lions [6], p. 494. �
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Proof of Theorem 2.1. The arguments above show that there exists a unique

solution uμ ∈ W of the elliptic problem (2.2).

Explicitly the Eq. (2.2) has the form:

μ

∫ T

0

[
(u′′
μ, v

′′)+ (u′
μ, v

′)+ ((u′
μ, v

′))
]

dt +
∫ T

0
(u′′
μ + u′

μ + uμ, v
′) dt

+
∫ T

0
((uμ, v

′)) dt +
∫ T

0
〈γ (u′

μ), v
′〉 dt =

∫ T

0

(
f, v′) dt.

(2.7)

We need let μ goes to zero in order to obtain uμ ⇀ u for the solution. Then

we need estimates for uμ.

In fact, setting v = uμ in (2.7) and observing that uμ and u′
μ are periodic since

they belongs to W , we obtain

μ

∫ T

0

(
|u′′
μ|

2 + |u′
μ|

2 + ‖u′
μ‖

2
)

dt +
∫ T

0
|u′
μ|

2dt +
∫ T

0
‖u′

μ‖
p
L p(�)dt

≤
1

εp′

∫ T

0
|| f |p′

L p′
(�)

dt +
ε

p

∫ T

0
|u′
μ|

p
L p(�) dt.

(2.8)

This implies that

(u′
μ) is bounded in L2(0, T ; H) when μ → 0 (2.9)

(u′
μ) is bounded in L p(0, T ; L p(�)) when μ → 0 (2.10)

μ

∫ T

0

(
|u′′
μ|

2 + |u′
μ|

2 + ‖u′
μ‖

2
)

dt ≤ c1 (2.11)

Since
∫ T

0
uμdt = 0, we have by Lemma 2.1 that

(uμ) is bounded in L p(0, T ; L p(�)) (2.12)

μ

∫ T

0
‖uμ‖

2dt ≤ c2. (2.13)

Setting

v(t) =
∫ t

0
uμ(σ ) dσ −

1

T

∫ T

0
(T − σ)uμ(σ ) dσ, (2.14)
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it implies ∣
∣
∣
∣
∣
∣
∣

∫ T

0
v(t) dt = 0, ∀v ∈ W

v′ = uμ.

(2.15)

In fact, integrating both sides of the equation (2.14) on [0, T ], we obtain
∫ T

0
v(t) dt =

∫ T

0

∫ t

0
uμ(σ ) dσdt −

∫ T

0

1

T

∫ T

0
(T − σ)uμ(σ ) dσdt.

On the other hand,
∫ T

0

1

T

∫ T

0
(T − σ)uμ(σ ) dσdt =

∫ T

0

1

T
dt

∫ T

0
(T − σ)uμ(σ ) dσ

= (T − σ)

∫ σ

0
uμ(s) ds|

T

0
+

∫ T

0

∫ σ

0
uμ(s) dsdσ =

∫ T

0

∫ σ

0
uμ(s) dsdσ.

Therefore, we reach our aim (2.15).

Thus, taking into account (2.14) in (2.2) we get

μ

∫ T

0

[
(u′′
μ, u′

μ)+ (u′
μ, uμ)+ (Au′

μ, uμ)
]

dt

+
∫ T

0

[
(u′′
μ, uμ)+ (u′

μ, uμ)+ (Auμ, uμ)+ (uμ, uμ)+ (γ (u′
μ), uμ)

]
dt

=
∫ T

0
( f, uμ) dt.

(2.16)

By using periodicity of uμ, u′
μ ∈ W , we obtain

∫ T

0
(u′′
μ, u′

μ) dt =
∫ T

0
(u′
μ, uμ) dt =

∫ T

0
(Au′

μ, uμ) dt = 0. (2.17)

On the other hand,
∫ T

0
(u′′
μ, uμ) dt = (u′

μ(T ), uμ(T ))− (u′
μ(0), uμ(0))

−
∫ T

0
(u′
μ, u′

μ) dt = −
∫ T

0
|u′
μ|

2dt.

(2.18)

From (2.17), (2.18) and estimate (2.9), we have
∣
∣
∣
∣

∫ T

0
(u′′
μ, uμ) dt

∣
∣
∣
∣ ≤ c2 when μ → 0. (2.19)
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Also, from (2.10) and (2.12) we obtain
∫ T

0
|uμ|

2dt +
∫ T

0
(γ (u′

μ), uμ) dt

≤
∫ T

0
|uμ|

2dt + ‖γ (u′
μ)‖L p′

(0,T ;L p′
(�))‖uμ‖L p(0,T ;L p(�)) ≤ c3.

(2.20)

Combining (2.17), (2.19) and (2.20) with (2.16) we deduce
∫ T

0
‖uμ‖

2dt ≤ c4. (2.21)

It follows from (2.21) and (2.10) that there exists a subsequence from (uμ),

still denoted by (uμ), such that

uμ −→ u weak in L2(0, T ; V ) (2.22)

u′
μ −→ u′ weak in L p(0, T ; L p(�)) (2.23)

γ (u′
μ) −→ χ weak in L p′

(0, T ; L p′
(�)). (2.24)

Our next goal is tho show that u verifies (1.7)2 – (1.7)3.

Indeed, it follows from (2.22) and (2.23) that uμ ∈ C0([0, T ]; H) and

lim
μ→0

∫ T

0
(u′
μ, ϕ) dt =

∫ T

0
(u′, ϕ) dt, ∀ϕ ∈ L2(0, T ; H) (2.25)

lim
μ→0

∫ T

0
(uμ, ϕ) dt =

∫ T

0
(u, ϕ) dt, ∀ϕ ∈ L2(0, T ; V ) (2.26)

Setting ϕ = θv into (2.25) with θ ∈ C1([0, T ];R), θ(0) = θ(T ) and v ∈ V ,

we have
∫ T

0
(u′
μ, θv) dt −→

∫ T

0
(u′, θv) dt (2.27)

∫ T

0
(uμ, θ

′v) dt −→
∫ T

0
(u, θ ′v) dt. (2.28)

Again, by using periodicity of uμ and u′
μ we obtain

∫ T

0

d

dt
(uμ, θv) dt = (uμ(T ), θ(T )v)− (uμ(0), θ(0)v) = 0.
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Thus ∫ T

0
(u′
μ, θv) dt +

∫ T

0
(uμ, θ

′v) dt = 0.

Since ∫ T

0
(u′, θv) dt +

∫ T

0
(u, θ ′v) dt = 0,

as μ → 0, we obtain ∫ T

0

d

dt
(u, θv) dt = 0.

This implies that

(u(T ), θ(T )v)− (u(0), θ(0)v) = 0,

that is,

u(T ) = u(0). (2.29)

The proof that u′(0) = u′(T ) will be given later. Now, we go to prove that∫ T

0
u(t) dt = 0.

Taking the scalar product on H of
∫ T

0
uμ(σ ) dσ = 0 with ϕ(t), ϕ ∈ L2(0, T ;

H), we find (∫ T

0
uμ(σ ) dσ, ϕ(t)

)
= 0.

Thus ∫ T

0

(
uμ(σ ), ϕ(t)

)
dσ = 0.

Therefore,

∫ T

0
(u(σ ), ϕ(t)) dσ =

(∫ T

0
u(σ ) dσ, ϕ(t)

)
= 0, ∀ϕ(t) ∈ H, (2.30)

as μ → 0.

It follows from (2.30) that

∫ T

0
u(t) dt = 0. (2.31)
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From (2.9), (2.10), (2.11) and (2.13), we deduce

u′
μ −→ u′ weak in L2(0, T ; H), (2.32)

u′
μ −→ u′ weak in L p(0, T ; L p(�)), (2.33)

√
μu′′

μ −→ χ1 weak in L2(0, T ; H), (2.34)

√
μu′

μ −→ χ2 weak in L2(0, T ; H), (2.35)

√
μu′

μ −→ χ3 weak in L2(0, T ; V ). (2.36)

It follows from (2.34) that

lim
μ→0

√
μ

∫ T

0
(u′′
μ, ϕ) dt =

∫ T

0
(χ1, ϕ) dt ∀ϕ ∈ L2(0, T ; H). (2.37)

Hence, taking ϕ = v′′, v ∈ W, in (2.37), we find

lim
μ→0

√
μ

∫ T

0
(u′′
μ, v

′′) dt =
∫ T

0
(χ1, v

′′) dt.

Therefore

lim
μ→0

μ

∫ T

0
(u′′
μ, v

′′) dt = lim
μ→0

√
μ

(
√
μ

∫ T

0
(u′′
μ, v

′′)dt
)

= 0. (2.38)

By analogy, we prove that

lim
μ→0

μ

∫ T

0
(u′
μ, v

′) dt = lim
μ→0

μ

∫ T

0
(Au′

μ, v
′) dt = 0. (2.39)

By using periodicity of uμ, v ∈ W , we obtain
∫ T

0

d

dt
(u′
μ, v

′) dt = 0.

This implies that
∫ T

0
(u′′
μ, v

′) dt = −
∫ T

0
(u′
μ, v

′′) dt. (2.40)

It follows of (2.9) that
∫ T

0
(u′
μ, ϕ)dt −→

∫ T

0
(u′, ϕ) dt ∀ϕ ∈ L2(0, T ; H). (2.41)
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Taking ϕ = v′′ ∈ L2(0, T ; H) in (2.41) we obtain

lim
μ→0

∫ T

0
(u′
μ, v

′′) dt =
∫ T

0
(u′, v′′) dt. (2.42)

From (2.2), we can write

μ

∫ T

0

[
(u′′
μ, v

′′)+ (u′
μ, v

′)+ (Au′
μ, v

′)
]

dt

+
∫ T

0

[
(u′′
μ, v

′)+ (u′
μ, v

′)+ (Auμ, v
′)+ (uμ, v

′)+ (γ (u′
μ), v

′)
]

dt

=
∫ T

0
( f, v′) dt.

(2.43)

From (2.9), (2.10), (2.22), (2.38), (2.39), (2.40) and (2.42), we can pass to the

limit in (2.43) when μ → 0 and obtain

∫ T

0

[
(−u′, v′′)+ (u′, v′)+ (Au, v′)+ (u, v′)+ (χ, v′)

]
dt

=
∫ T

0
( f, v′) dt, ∀v ∈ W.

(2.44)

Let (ρν) be a regularizing sequence of even periodic functions in t , with pe-

riod T .

Denote by ṽ = u ∗ ρν ∗ ρν , where ∗ is the convolution operator. Integrating

by parts, we find u′ ∗ ρν ∗ ρν = u ∗ ρ ′
ν ∗ ρν .

Observe by (2.12) and (2.21) that ṽ ∈ C∞(R; V ), ṽ′ ∈ C∞(R; L p(�)), ṽ′′ ∈

C∞(R; H), v and ṽ′ periodic in t .

As in Brézis [2], p. 67, we to show that

∫ T

0
(u′, ṽ′′) dt = 0. (2.45)

In fact, we have

∫ T

0

d

dt
(u′, u′ ∗ ρν ∗ ρν) dt =

∫ T

0
(u′′, u′ ∗ ρν ∗ ρν)+

∫ T

0
(u′, u′′ ∗ ρν ∗ ρν) dt

= 2
∫ T

0
(u′, u′ ∗ ρ ′

ν ∗ ρν) dt = 2
∫ T

0
(u′, v̂′′) dt.
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As
∫ T

0
(u′, u′ ∗ ρ ′

ν ∗ ρν) dt =
∫ T

0

1

2

d

dt
(u′, u′ ∗ ρν ∗ ρν) dt = 0,

due to periodicity of u′ and ρν , it follows (2.45).

Similarly, we show that
∫ T

0
(u′, ṽ′) dt = 0. (2.46)

∫ T

0
(Au, ṽ′) dt = 0. (2.47)

∫ T

0
(u, ṽ′) dt = 0. (2.48)

From (2.44) to (2.48) we obtain
∫ T

0
(χ, u′) dt =

∫ T

0
( f, u′) dt. (2.49)

Now, let us prove that χ = γ (u′).

In fact, from (2.2) and (2.1) we get

μ

∫ T

0
[|u′′

μ|
2 + |u′

μ|
2 + ‖u′

μ‖
2] dt +

∫ T

0
[|u′

μ|
2 + (γ (u′

μ), u′
μ)] dt

=
∫ T

0
( f, u′

μ) dt.

(2.50)

We define

Xμ =
∫ T

0
(γ (u′

μ)− γ (ϕ), u′
μ − ϕ) dt

+ μ

∫ T

0
[|u′′

μ|
2 + |u′

μ|
2 + ‖u′

μ‖
2] dt

+
∫ T

0
[|u′

μ|
2 dt, ∀ϕ ∈ L p(0, T ; L p(�))

(2.51)

It follows from (2.50) and (2.51) that

Xμ =
∫ T

0
( f, u′

μ) dt −
∫ T

0
(γ (ϕ), u′

μ − ϕ)dt −
∫ T

0
(γ (u′

μ), ϕ) dt. (2.52)
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From the convergences above, we get

Xμ −→ X =
∫ T

0
( f, u′) dt −

∫ T

0
(γ (ϕ), u′ − ϕ) dt −

∫ T

0
(χ, ϕ) dt. (2.53)

Taking into account (2.53) into (2.49) yields

X =
∫ T

0
(χ, u′) dt −

∫ T

0
(γ (ϕ), u′ − ϕ) dt −

∫ T

0
(χ, ϕ) dt. (2.54)

Combining (2.53) and (2.54), we obtain

X =
∫ T

0
(χ − γ (ϕ), u′ − ϕ) dt. (2.55)

Since Xμ ≥ 0, for all ϕ ∈ L p(0, T ; L p(�)), then X ≥ 0.

Thus,
∫ T

0
(χ − γ (ϕ), u′ − ϕ) dt ≥ 0, ∀ϕ ∈ L p(0, T ; L p(�)). (2.56)

Since γ : L p(0, T ; L p(�)) −→ L p′
(0, T ; L p′

(�)), γ (u′) = |u′|p−2u′, is

hemicontinuous operator, the inequality above implies χ = γ (u′). It is suffi-

cient to set ϕ(t) = u′(t) − λw(t), λ > 0, w ∈ L p(0, T ; L p(�)) arbitrarily and

let λ → 0.

We consider ψ ∈ C∞([0, T ]; V ∩ L p(�)) satisfying
∣
∣
∣
∣
∣
∣
∣

∫ T

0
ψ dt = 0,

ψ(0) = ψ(T ).

(2.57)

Setting

v(t) =
∫ T

0
ψ dσ −

1

T

∫ T

0
(T − σ)ψ(σ) dσ (2.58)

in (2.44), yields

∫ T

0

[
(−u′, ψ ′)+ (u′, ψ)+ (Au, ψ)

+ (u, ψ)+ (γ (u′), ψ)− ( f, ψ)
]
dt = 0,

(2.59)

because v′(t) = ψ(t), v′′(t) = ψ ′(t).
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In particular, choosing ψ = θ ′v, with θ ∈ D]0, T [ and v ∈ V ∩ L p(�),

in (2.59) we get

∫ T

0

[
(−u′, θ ′′v)+ (u′, θ ′v)+ (Au, θ ′v)+ (u, θ ′v)

+ (γ (u′), θ ′v)− ( f, θ ′v)
]
dt = 0, ∀θ ∈ D]0, T [, v ∈ V ∩ L p(�),

(2.60)

or equivalently,

∫ T

0

(
u′′ + u′ + Au + u + γ (u′)− f, v

)
θ ′dt = 0, (2.61)

for all v ∈ V ∩ L4(�) and θ ∈ D]0, T [.

Hence,

d

dt
[(u′′ + u′ + Au + u + γ (u′)− f, v)] = 0, ∀v ∈ V ∩ L p(�).

Consequently, there exists a function g0 independent of t such that

u′′ + u′ + Au + u + γ (u′)− f = g0, independent of t. (2.62)

We verify that

u′′(ϕ) =
∫ T

0
u′′(t)ϕ(t) dt = −

∫ T

0
u′(t)ϕ′(t) dt ∈ L p(�) (2.63)

Au(ϕ) =
∫ T

0
(Au(t))ϕ(t) dt ∈ V ′ (2.64)

γ (u′)(ϕ) =
∫ T

0
γ (u′)ϕ dt ∈ L p′

(�) (2.65)

u′(ϕ) =
∫ T

0
u′(t)ϕ(t) dt ∈ L p(�) (2.66)

u(ϕ) =
∫ T

0
u(t)ϕ(t) dt ∈ L2(�) (2.67)

f (ϕ) =
∫ T

0
f (t)ϕ(t) dt ∈ L p′

(�), (2.68)
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for all ϕ ∈ D]0, T [, because u′ ∈ L p(0, T ; L p(�)).

Thus, from (2.63) to (2.68) and (2.62), we can write

g0

∫ T

0
ϕ(t) dt ∈ V ′ + L p′

(�).

Therefore

g0 ∈ V ′ + L p′
(�). (2.69)

It follows from (2.62) that

u′′ = f + g0 − u′ − Au − u − γ (u′)

∈ L2(0, T ; V ′)+ L p′
(0, T ; L p′

(�).
(2.70)

Hence, we deduce from (2.62) that,

∫ T

0

(
u′′ + u′ + Au + u + γ (u′)− f − g0, ψ

)
dt = 0, (2.71)

with ψ given in (2.57).

Thus
∫ T

0
(u′′ + u′ + Au + u + γ (u′)− f − g0, ψ) dt

=
∫ T

0

d

dt

(
u′(t), ψ)

)
dt +

∫ T

0

[
(−u′(t), ψ ′)+ (u′(t), ψ)

+ (Au(t), ψ)+ (u, ψ)+ (γ (u′), ψ)− ( f, ψ)− (g0, ψ)
]

dt

= (u′(T ), ψ(T ))− (u′(0), ψ(0).

(2.72)

Substituting (2.72) into (2.57) we obtain

u′(0) = u′(T ). (2.73)

Note that u′(0) and u′(T ) make sense because u′ an u′′ belongs to L p(0, T ;

L p(�)) and L2(0, T ; V ′)+ L p′
(0, T ; L p′

(�)), respectively.

Let u0 be defined by ∣
∣
∣
∣
∣

−1u0 + u0 = −g0,

u0 = 0 on ∂�.
(2.74)
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We recall that because n ≤ 2 and p > 2, we have

H 1
0 (�) ↪→ L p(�) ↪→ L2(�) ↪→ L p′

(�) ↪→ H−1(�) = V ′,

where each space is dense in the following one and the injections are continuous.

This and (2.69) implies that g0 ∈ H−1(�) = V ′.

Finally, we apply the Lax-Milgram Theorem to find a unique solution u0 ∈

H 1
0 (�) of the Dirichlet problem (2.74).

Thus, w = u + u0 ∈ L2(0, T ; V ) with w′ ∈ L p(0, T ; L p(�)) satisfies
∣
∣
∣
∣
∣
∣
∣
∣
∣

w′′ + w′ −1w + w + |w′|p−2w′ = f

in L2(0, T ; V ′)+ L p′
(0, T ; L p′

(�)),

w(0) = w(T )

w′(0) = w′(T ),

that is, w is a T-periodic weak solutions of problem (1.1).

Uniqueness. Let us consider w1 and w2 be two functions satisfying Theo-

rem 2.1 and let ξ = w1 − w2.

We subtract the equations (1.1)1 corresponding to w1 and w2 and we obtain

ξ ′′ + ξ ′ + Aξ + ξ + γ (w′
1)− γ (w′

2) = 0. (2.75)

Denoting by (ρμ) the regularizing sequence defined above, by a similar argu-

ment used in the proof of existence of solutions for Theorem 2.1 we obtain

ξ ′ ∗ ρμ ∗ ρμ = ξ ∗ ρ ′
μ ∗ ρμ. (2.76)

Hence, by using (2.3) and (2.4), we can write

ξ = ψ + ξ0, with ξ0 ∈ V and ψ ∈ L2(0, T ; V ). (2.77)

Also, from (2.76) we get

ξ ′ ∗ ρμ ∗ ρμ = ξ ∗ ρ ′
μ ∗ ρμ = ψ ′ ∗ ρμ ∗ ρμ. (2.78)

Thus, we have by (2.5) that ψ ′ ∈ L p(0, T ; L p(�)). Therefore ξ ′ ∗ ρμ ∗ ρμ
is periodic and

ξ ′ ∗ ρμ ∗ ρμ ∈ C∞([0, T ]; L p(�)). (2.79)
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Then by (2.70) we can write

ξ ′′ ∈ L2(0, T ; V ′)+ L p′
(0, T ; L p′

(�)).

This and (2.79) show that
∫ T

0
(ξ ′′, ξ ′ ∗ ρμ ∗ ρμ) dt make sense and

∫ T

0
(ξ ′′, ξ ′ ∗ ρμ ∗ ρμ) dt = 0. (2.80)

Indeed,
∫ T

0

d

dt
(ξ ′, ξ ′ ∗ ρμ ∗ ρμ) dt =

∫ T

0
(ξ ′′, ξ ′ ∗ ρμ ∗ ρμ) dt

+
∫ T

0
(ξ ′, ξ ′′ ∗ ρμ ∗ ρμ) dt =

∫ T

0
(ξ ′′, ξ ′ ∗ ρμ ∗ ρμ) dt

+
∫ T

0
(ξ ′′, ξ ′ ∗ ρμ ∗ ρμ) dt.

(2.81)

Therefore,
∫ T

0
(ξ ′′, ξ ′ ∗ ρμ ∗ ρμ) dt =

1

2

∫ T

0

d

dt
(ξ ′, ξ ′ ∗ ρμ ∗ ρμ) dt = 0, (2.82)

because ξ ′ and ρμ are periodic.

Similarly
∫ T

0
(Aξ, ξ ′ ∗ ρμ ∗ ρμ) dt = 0 (2.83)

∫ T

0
(ξ ′, ξ ′ ∗ ρμ ∗ ρμ) dt = 0 (2.84)

∫ T

0
(ξ, ξ ′ ∗ ρμ ∗ ρμ) dt = 0. (2.85)

Consequently, it follows from (2.75), (2.82), (2.83), (2.84) and (2.85) that
∫ T

0
(γ (w′

1)− γ (w′
2), ξ

′ ∗ ρμ ∗ ρμ) dt = 0. (2.86)

Hence using (2.86), letting μ tend to zero, we have
∫ T

0
(γ (w′

1)− γ (w′
2), w

′
1 − w′

2) dt = 0, (2.87)
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that is, w′
1 = w′

2.

This implies that

ξ = w1 − w2 = θ, θ independent of t.

Integrating the last equality on [0, T ] and observing that wi = ui + u0i yields

∫ T

0
(w1 − w2) dt = θ

∫ T

0
dt = θT = T (u01 − u02),

because
∫ T

0
ui dt = 0. Thus θ ∈ V .

It follows from (2.83) that
∫ T

0
(Aξ, ξ ′ ∗ ρμ ∗ ρμ) dt =

∫ T

0
(A(w1 − w2), ξ

′ ∗ ρμ ∗ ρμ) dt

=
∫ T

0
(Aθ, θ ∗ ρ ′

μ ∗ ρμ) dt = 0.

This implies that, when μ −→ 0

∫ T

0
(Aθ, θ) = 0, ∀θ ∈ V .

Therefore

Aθ = 0, ∀θ ∈ V . (2.88)

Employing Green’s Theorem, we find

(Aθ, θ) =
∫

�

−1θ θ dx =
∫

�

(∇θ)2dx −
∫

0

θ
∂θ

∂ν
d0 = ‖θ‖2. (2.89)

Taking into account (2.89) into (2.88) yields θ = 0, which proves the un-

iqueness of solutions of problem (1.2). Thus, the proof of Theorem 2.1 is

complete. �
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