Periodic solutions for nonlinear telegraph equation via elliptic regularization

G.M. DE ARAÚJO ${ }^{1}$, R.B. GÚZMAN ${ }^{1}$ and SILVANO B. DE MENEZES ${ }^{2}$
${ }^{1}$ Universidade Federal do Pará, FM, PA, Brasil
${ }^{2}$ Universidade Federal do Ceará, DM, CE, Brasil
E-mail: silvano@ufpa.br

Abstract

In this work we are concerned with the existence and uniqueness of T-periodic weak solutions for an initial-boundary value problem associated with nonlinear telegraph equations type in a domain $Q \subset \mathbb{R}^{N}$. Our arguments rely on elliptic regularization technics, tools from classical functional analysis as well as basic results from theory of monotone operators.

Mathematical subject classification: 35Q60, 35L15.
Key words: Telegraph equation, periodic solutions, elliptic regularization, Faedo - Galerkin method.

1 Introduction and description of the elliptic regularization method

In this paper we deal with the existence of time-periodic solutions for the nonlinear telegraph equation

$$
\begin{equation*}
\left.w^{\prime \prime}+w^{\prime}-\Delta w+w+\left|w^{\prime}\right|^{p-2} w^{\prime}=f, \quad(x, t) \in Q=\Omega \times\right] 0, T[\tag{1.1}
\end{equation*}
$$

Ω being a bounded domain in \mathbb{R}^{N} with a sufficiently regular boundary $\partial \Omega$.
All derivatives are in the sense of distributions, and by ξ^{\prime} it denotes $\frac{\partial \xi}{\partial t}$. The function f we will be assumed as regular as necessary.

We shall use, throughout this paper, the same terminology of the functional spaces used, for instance, in the books of Lions [6]. In particular, we denote by
$V=H_{0}^{1}(\Omega)$ and $H=L^{2}(\Omega)$. The Hilbert space V has inner product $((.,)$. and norm $\|$.$\| given by ((u, v))=\int_{\Omega} \nabla u . \nabla v d x,\|u\|^{2}=\int_{\Omega}|\nabla u|^{2} d x$. For the Hilbert space H we represent its inner product and norm, respectively, by (., .) and $|$.$| , defined by (u, v)=\int_{\Omega} u v d x,|u|^{2}=\int_{\Omega}|u|^{2} d x$.

The telegraph equation appears when we look for a mathematical model for the electrical flow in a metallic cable. From the laws of electricity we deduce a system of partial differential equations where the unknown are the intensity of current i and the voltage u, cf. Courant-Hilbert [4], p. 192-193, among others.

By algebraic calculations we eliminate i and we get the partial differential equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}-C^{2} \frac{\partial^{2} u}{\partial x^{2}}+(\alpha+\beta) \frac{\partial u}{\partial t}+\alpha \beta u=0
$$

called Telegraph Equation. In this case the coefficients C, α, β are constants.
Motivated by this model, Prodi [10] investigated the existence of periodic solution in t for the equations

$$
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u+u+\frac{\partial u}{\partial t}+\left|\frac{\partial u}{\partial t}\right| \frac{\partial u}{\partial t}=f
$$

in a bounded open set Ω of R^{N} with Dirichlet zero conditions on the boundary.
The problem posed by Prodi [10] was further developed by Lions [6] with the aid of elliptic regularization associated to the theory of monotonous operator, cf . Browder [3].

More precisely, Lions [6] investigate periodic solutions of the problem

$$
\begin{align*}
& \left.w^{\prime \prime}-\Delta w+\gamma\left(w^{\prime}\right)=f \text { in } Q=\Omega \times\right] 0, T[\tag{1.2}\\
& w=0 \text { on } \Sigma=\partial \Omega \times] 0, T[\\
& w(0)=w(T), \quad w^{\prime}(0)=w^{\prime}(T) \text { in } \Omega
\end{align*}
$$

with $\gamma\left(w^{\prime}\right)=\left|w^{\prime}\right|^{p-2} w^{\prime}$.
Because of this important physical background, the existence of time-periodic solutions of the telegraph equations with boundary condition for space variable x has been studied by many authors, see $[7,8,9,11]$ and the references therein.

We consider the existence of the solutions $w(x, t)$ of Eq. (1.1), which satisfy the time-periodic (or T-periodic) condition

$$
\begin{equation*}
w(0)=w(x, T), \quad w^{\prime}(x, 0)=w^{\prime}(T), \quad x \in \Omega \tag{1.3}
\end{equation*}
$$

subject to the Dirichlet condition

$$
\begin{equation*}
w(x, t)=0, \quad(x, t) \in \partial \Omega \times] 0, T[\tag{1.4}
\end{equation*}
$$

Based on physical considerations, we restrict our analysis to the two dimensional space and standard hypothesis on f is assumed. Arguments within this paper are inspired by the work by Lions [6].

However, the classical energy method approach cannot be employed straightly, giving raise to a new mathematical difficulty. In fact, multiplying both sides of the equation (1.1) by w^{\prime} and integrating on Q, we have, using the periodicity condition, that

$$
\int_{Q}\left|w^{\prime}(x, t)\right|^{2} d x d t+\int_{Q}\left|w^{\prime}(x, t)\right|^{p} d x d t=\int_{Q} f(x, t) w^{\prime}(x, t) d x d t
$$

In this way we obtain only estimates for

$$
\int_{Q}\left|w^{\prime}(x, t)\right|^{2} d x d t \text { and } \int_{Q}\left|w^{\prime}(x, t)\right|^{p} d x d t
$$

which is not sufficient to obtain solution for (1.1).
In view of this, as in Lions [6], we use an approach due to Prodi [10] which relies heavily on the following set of ideas: we investigate solutions for (1.1) of the type

$$
\left\lvert\, \begin{align*}
& w=u+u_{0} \tag{1.5}\\
& u_{0} \text { independent of } t \\
& \int_{0}^{T} u(t) d t=0, \text { the average of } u \text { is zero. }
\end{align*}\right.
$$

Substituting w given by (1.5) in (1.1), we obtain

$$
\begin{equation*}
u^{\prime \prime}+u^{\prime}-\Delta u+u+\left|u^{\prime}\right|^{p-2} u^{\prime}=f+\Delta u_{0}-u_{0} \tag{1.6}
\end{equation*}
$$

which contains a new unknown u_{0}, independent of t by definition.
To eliminate u_{0} in (1.6) we consider the derivative of (1.6) with respect to t obtaining

$$
\left\lvert\, \begin{align*}
& \frac{d}{d t}\left(u^{\prime \prime}+u^{\prime}-\Delta u+u+\left|u^{\prime}\right|^{p-2} u^{\prime}\right)=\frac{d f}{d t} \tag{1.7}\\
& \int_{0}^{T} u(t) d t=0 \\
& u(0)=u(T), \quad u^{\prime}(0)=u^{\prime}(T)
\end{align*}\right.
$$

Suppose that we have found u by (1.7). Observe that by (1.7) ${ }_{1}$,

$$
\frac{d}{d t}\left(u^{\prime \prime}+u^{\prime}-\Delta u+u+\left|u^{\prime}\right|^{p-2} u^{\prime}-f\right)=0
$$

Thus u is solution of

$$
\begin{equation*}
u^{\prime \prime}+u^{\prime}-\Delta u+u+\left|u^{\prime}\right|^{p-2} u^{\prime}-f=g_{0} \tag{1.8}
\end{equation*}
$$

g_{0} independent of t , in which g_{0} is a known function.
Then u_{0} is obtained as the solution of the Dirichlet problem:

$$
\left\lvert\, \begin{align*}
& -\Delta u_{0}+u_{0}=-g_{0} \tag{1.9}\\
& u_{0}=0 \text { on } \partial \Omega
\end{align*}\right.
$$

Therefore, $w=u+u_{0}$ is the $\mathrm{T}-$ periodic solution of (1.1). We are going to resolve problem (1.7) by using elliptic regularization.

Observe that Lions [6] investigate the problem (1.2) by elliptic regularization, reducing the problem to the theory of monotonous operators, cf. Lions [6].

In this work we consider the time - periodic problem (1.1), (1.3) and (1.4) and solve it by elliptic regularization as an application of the monotony type results, cf. Browder [3]. Thus our proof is a simpler alternative to the earlier approaches existing in the current literature.

In fact, we consider the periodic problem

$$
\begin{align*}
& \left.w^{\prime \prime}+w^{\prime}-\Delta w+w+\left|w^{\prime}\right|^{p-2} w^{\prime}=f \text { in } Q=\Omega \times\right] 0, T[\\
& w=0 \text { on } \partial \Omega \times] 0, T[\tag{1.10}\\
& w(x, 0)=w(x, T), \quad w^{\prime}(x, 0)=w^{\prime}(x, T) \quad \text { in } \Omega
\end{align*}
$$

Thus for $w=u+u_{0}$, the function u is determined by (1.7).
We begin the functional space

$$
\begin{align*}
& W=\left\{v ; v \in L^{2}(0, T ; V), v^{\prime} \in L^{2}(0, T ; V) \cap L^{p}(Q)\right. \\
& \left.v^{\prime \prime} \in L^{2}(0, T ; H), \int_{0}^{T} v(s) d s=0, v(0)=v(T), v^{\prime}(0)=v^{\prime}(T)\right\} \tag{1.11}
\end{align*}
$$

The Banach structure of W is defined by

$$
\|v\|_{W}=\|v\|_{L^{2}(0, T ; V)}+\left\|v^{\prime}\right\|_{L^{2}(0, T ; V)}+\left\|v^{\prime}\right\|_{L^{p}\left(0, T ; L^{p}(\Omega)\right)}+\left\|v^{\prime \prime}\right\|_{L^{2}(0, T ; H)}
$$

In the sequel by $\langle.,$.$\rangle we will represent the duality pairing between X$ and X^{\prime}, X^{\prime} being the topological dual of the space X, and by c (sometimes c_{1}, c_{2}, \ldots) we denote various positive constants.

Motivated by (1.7) we define the bilinear form $b(u, v)$ for $u, v \in W$ by

$$
b(u, v)=\int_{0}^{T}\left[\left(u^{\prime \prime}+u^{\prime}+u, v^{\prime}\right)+\left\langle A u, v^{\prime}\right\rangle+\left\langle\gamma\left(u^{\prime}\right), v^{\prime}\right\rangle\right] d t
$$

where $A=-\Delta$ and $\gamma\left(u^{\prime}\right)=\left|u^{\prime}\right|^{p-2} u^{\prime}$.
Then the weak formulation of (1.7) is to find $u \in W$ such that

$$
\begin{equation*}
b(u, v)=\int_{0}^{T}\left(f, v^{\prime}\right) d t \tag{1.12}
\end{equation*}
$$

for all $v \in W$.
Let us point out that the main difficulty in applying standard techniques from classical functional is due to the fact that the bilinear form $b(u, v)$ is not coercive. To resolve this issue, we perform an elliptic regularization on $b(u, v)$, following the ideas of Lions [6]. Subsequently we apply Theorem 2.1, p. 171 of Lions [6] to finally establish existence and uniqueness of solution to elliptic problem (1.12).

2 Main result

As we said in the Section 1, the method developed in this article is a variant of the elliptic regularization method introduced in Lions [6] in the context of the telegraph equation.

Indeed, following the same type of reasoning cf. Lions [6], to obtain the elliptic regularization, given $\mu>0$ and $u, v \in W$ we define

$$
\begin{align*}
\pi_{\mu}(u, v)= & \mu \int_{0}^{T}\left[\left(u^{\prime \prime}, v^{\prime \prime}\right)+\left(u^{\prime}, v^{\prime}\right)+\left(A u^{\prime}, v^{\prime}\right)\right] d t \\
& +\int_{0}^{T}\left(u^{\prime \prime}+u^{\prime}+A u+u+\gamma\left(u^{\prime}\right), v^{\prime}\right) d t \tag{2.1}
\end{align*}
$$

where $A=-\Delta$ and $\gamma\left(u^{\prime}\right)=\left|u^{\prime}\right|^{p-2} u^{\prime}$.

It is easy to see, cf . Lemma 2.2, that the application $v \rightarrow \pi_{\mu}(u, v)$ is continuous on W. This allows to build a linear operator $\mathcal{B}_{\mu}: W \longrightarrow W^{\prime},\left\langle\mathcal{B}_{\mu}(u), v\right\rangle=$ $\pi_{\mu}(u, v)$.

As we shall see, the linear operator \mathcal{B}_{μ} satisfies the following properties:
(a) \mathcal{B}_{μ} is a strictly monotonous operator; $\left\langle\mathcal{B}_{\mu}(v)-\mathcal{B}_{\mu}(z), v-z\right\rangle>0$ for all $v, z \in W, v \neq z ;$
(b) \mathcal{B}_{μ} is a hemicontinuous operator; $\lambda \rightarrow\left\langle\mathcal{B}_{\mu}(v+\lambda z), w\right\rangle$ is continuous in \mathbb{R};
(c) $\mathcal{B}_{\mu}(S)$ is bounded in W^{\prime} for all bounded set S in W;
(d) \mathcal{B}_{μ} is coercive; $\frac{\left\langle\mathcal{B}_{\mu}(v), v\right\rangle}{|v|_{W}} \rightarrow \infty$ as $|v|_{W} \rightarrow \infty$.

In view of these properties and as consequence of Theorem 2.1, p. 171 of Lions [6], the existence and uniqueness of a function $u_{\mu} \in W$ such that

$$
\begin{equation*}
\pi_{\mu}\left(u_{\mu}, v\right)=\int_{0}^{T}\left(f, v^{\prime}\right) d t, \quad \text { for all } v \in W \tag{2.2}
\end{equation*}
$$

follows immediately.
The Eq. (2.2) is called of elliptic regularization of problem (1.7).
Our main result is as follows
Theorem 2.1. Suppose $f \in L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right)$, with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $p>2$. Then there exists only one real function $w=w(x, t),(x, t) \in Q, w \in W$, such that

$$
\begin{gather*}
w=u+u_{0}, u_{0} \in H_{0}^{1}(\Omega) \tag{2.3}\\
u \in L^{2}(0, T ; V) \tag{2.4}\\
u^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)\right) \tag{2.5}
\end{gather*}
$$

and w satisfying (1.1) in the sense of $L^{2}\left(0, T ; V^{\prime}\right)+L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right)$.
Now, we begin by stating some lemmas that will be used in the proof of the Theorem 2.1.

Lemma 2.1. If $\int_{0}^{T} u(x, t) d t=0$ then

$$
\int_{0}^{T}\|u\|_{V}^{2} d t \leq C \int_{0}^{T}\left\|u^{\prime}\right\|_{V}^{2} d t \text { and } \int_{0}^{T}\|u\|_{L^{p}(\Omega)}^{p} d t \leq C \int_{0}^{T}\left\|u^{\prime}\right\|_{L^{p}(\Omega)}^{p} d t
$$

for u derivable with respect to t in $[0, T]$ and $u \in L^{2}(0, T ; V), u^{\prime} \in L^{2}(0, T$; $V) \cap L^{p}\left(0, T ; L^{p}(\Omega)\right)$.

Proof. The proof of Lemma 2.1 can be obtained with slight modifications from Lions [6] or Medeiros [8].

Lemma 2.2. The form $v \rightarrow \pi_{\mu}(u, v)$ defined in (2.1) is continuous on W.

Proof. By Cauchy-Schwarz inequality and Young's inequality we have

$$
\begin{equation*}
\left|\pi_{\mu}(u, v)\right| \leq c_{\mu}\|u\|_{W}\|v\|_{W^{\prime}} \tag{2.6}
\end{equation*}
$$

where c_{μ} is a constant positive that depend of μ. Then the result follows.

Lemma 2.3. The operator $\mathcal{B}_{\mu}: W \longrightarrow W^{\prime},\left\langle\mathcal{B}_{\mu}(u), v\right\rangle=\pi_{\mu}(u, v)$ is hemicontinuous, bounded, coercive and strictly monotonous from $W \rightarrow W^{\prime}$.

Proof. It follows of (2.6) that $\mathcal{B}_{\mu}(u)$ is bounded. From Lemma 2.1 and equality $\int_{0}^{T}\left(\gamma\left(u^{\prime}\right), u^{\prime}\right) d t=\left\|u^{\prime}\right\|_{L^{p}(Q)}^{p}$, we obtain

$$
\left\langle\mathcal{B}_{\mu}(v), v\right\rangle \geq c_{\eta}\|v\|_{W}^{2}
$$

because $\int_{0}^{T} u(x, t) d t=0$. Thus \mathcal{B}_{μ} is W-coercive. The hemicontinuity of the operator $v \rightarrow|v|^{p-2} v$ allow us to conclude that the operator \mathcal{B}_{μ} is hemicontinuous. Finally, the proof that the operator \mathcal{B}_{μ} is strictly monotonous follows as in Lions [6], p. 494.

Proof of Theorem 2.1. The arguments above show that there exists a unique solution $u_{\mu} \in W$ of the elliptic problem (2.2).
Explicitly the Eq. (2.2) has the form:

$$
\begin{align*}
& \mu \int_{0}^{T}\left[\left(u_{\mu}^{\prime \prime}, v^{\prime \prime}\right)+\left(u_{\mu}^{\prime}, v^{\prime}\right)+\left(\left(u_{\mu}^{\prime}, v^{\prime}\right)\right)\right] d t+\int_{0}^{T}\left(u_{\mu}^{\prime \prime}+u_{\mu}^{\prime}+u_{\mu}, v^{\prime}\right) d t \\
& \quad+\int_{0}^{T}\left(\left(u_{\mu}, v^{\prime}\right)\right) d t+\int_{0}^{T}\left\langle\gamma\left(u_{\mu}^{\prime}\right), v^{\prime}\right\rangle d t=\int_{0}^{T}\left(f, v^{\prime}\right) d t \tag{2.7}
\end{align*}
$$

We need let μ goes to zero in order to obtain $u_{\mu} \rightharpoonup u$ for the solution. Then we need estimates for u_{μ}.
In fact, setting $v=u_{\mu}$ in (2.7) and observing that u_{μ} and u_{μ}^{\prime} are periodic since they belongs to W, we obtain

$$
\begin{gather*}
\mu \int_{0}^{T}\left(\left|u_{\mu}^{\prime \prime}\right|^{2}+\left|u_{\mu}^{\prime}\right|^{2}+\left\|u_{\mu}^{\prime}\right\|^{2}\right) d t+\int_{0}^{T}\left|u_{\mu}^{\prime}\right|^{2} d t+\int_{0}^{T}\left\|u_{\mu}^{\prime}\right\|_{L^{p}(\Omega)}^{p} d t \\
\leq \frac{1}{\epsilon p^{\prime}} \int_{0}^{T} \|\left. f\right|_{L^{p^{\prime}(\Omega)}} ^{p^{\prime}} d t+\frac{\epsilon}{p} \int_{0}^{T}\left|u_{\mu}^{\prime}\right|_{L^{p}(\Omega)}^{p} d t \tag{2.8}
\end{gather*}
$$

This implies that

$$
\begin{align*}
& \left(u_{\mu}^{\prime}\right) \text { is bounded in } L^{2}(0, T ; H) \text { when } \mu \rightarrow 0 \tag{2.9}\\
& \left(u_{\mu}^{\prime}\right) \text { is bounded in } L^{p}\left(0, T ; L^{p}(\Omega)\right) \text { when } \mu \rightarrow 0 \tag{2.10}\\
& \mu \int_{0}^{T}\left(\left|u_{\mu}^{\prime \prime}\right|^{2}+\left|u_{\mu}^{\prime}\right|^{2}+\left\|u_{\mu}^{\prime}\right\|^{2}\right) d t \leq c_{1} \tag{2.11}
\end{align*}
$$

Since $\int_{0}^{T} u_{\mu} d t=0$, we have by Lemma 2.1 that

$$
\begin{align*}
& \left(u_{\mu}\right) \text { is bounded in } L^{p}\left(0, T ; L^{p}(\Omega)\right) \tag{2.12}\\
& \mu \int_{0}^{T}\left\|u_{\mu}\right\|^{2} d t \leq c_{2} \tag{2.13}
\end{align*}
$$

Setting

$$
\begin{equation*}
v(t)=\int_{0}^{t} u_{\mu}(\sigma) d \sigma-\frac{1}{T} \int_{0}^{T}(T-\sigma) u_{\mu}(\sigma) d \sigma \tag{2.14}
\end{equation*}
$$

it implies

$$
\left\lvert\, \begin{align*}
& \int_{0}^{T} v(t) d t=0, \quad \forall v \in W \tag{2.15}\\
& v^{\prime}=u_{\mu}
\end{align*}\right.
$$

In fact, integrating both sides of the equation (2.14) on $[0, T]$, we obtain

$$
\int_{0}^{T} v(t) d t=\int_{0}^{T} \int_{0}^{t} u_{\mu}(\sigma) d \sigma d t-\int_{0}^{T} \frac{1}{T} \int_{0}^{T}(T-\sigma) u_{\mu}(\sigma) d \sigma d t
$$

On the other hand,

$$
\begin{aligned}
& \int_{0}^{T} \frac{1}{T} \int_{0}^{T}(T-\sigma) u_{\mu}(\sigma) d \sigma d t=\int_{0}^{T} \frac{1}{T} d t \int_{0}^{T}(T-\sigma) u_{\mu}(\sigma) d \sigma \\
& =\left.(T-\sigma) \int_{0}^{\sigma} u_{\mu}(s) d s\right|_{0} ^{T}+\int_{0}^{T} \int_{0}^{\sigma} u_{\mu}(s) d s d \sigma=\int_{0}^{T} \int_{0}^{\sigma} u_{\mu}(s) d s d \sigma
\end{aligned}
$$

Therefore, we reach our aim (2.15).
Thus, taking into account (2.14) in (2.2) we get

$$
\begin{gather*}
\mu \int_{0}^{T}\left[\left(u_{\mu}^{\prime \prime}, u_{\mu}^{\prime}\right)+\left(u_{\mu}^{\prime}, u_{\mu}\right)+\left(A u_{\mu}^{\prime}, u_{\mu}\right)\right] d t \\
+\int_{0}^{T}\left[\left(u_{\mu}^{\prime \prime}, u_{\mu}\right)+\left(u_{\mu}^{\prime}, u_{\mu}\right)+\left(A u_{\mu}, u_{\mu}\right)+\left(u_{\mu}, u_{\mu}\right)+\left(\gamma\left(u_{\mu}^{\prime}\right), u_{\mu}\right)\right] d t \tag{2.16}\\
=\int_{0}^{T}\left(f, u_{\mu}\right) d t
\end{gather*}
$$

By using periodicity of $u_{\mu}, u_{\mu}^{\prime} \in W$, we obtain

$$
\begin{equation*}
\int_{0}^{T}\left(u_{\mu}^{\prime \prime}, u_{\mu}^{\prime}\right) d t=\int_{0}^{T}\left(u_{\mu}^{\prime}, u_{\mu}\right) d t=\int_{0}^{T}\left(A u_{\mu}^{\prime}, u_{\mu}\right) d t=0 \tag{2.17}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
\int_{0}^{T}\left(u_{\mu}^{\prime \prime}, u_{\mu}\right) d t= & \left(u_{\mu}^{\prime}(T), u_{\mu}(T)\right)-\left(u_{\mu}^{\prime}(0), u_{\mu}(0)\right) \tag{2.18}\\
& -\int_{0}^{T}\left(u_{\mu}^{\prime}, u_{\mu}^{\prime}\right) d t=-\int_{0}^{T}\left|u_{\mu}^{\prime}\right|^{2} d t
\end{align*}
$$

From (2.17), (2.18) and estimate (2.9), we have

$$
\begin{equation*}
\left|\int_{0}^{T}\left(u_{\mu}^{\prime \prime}, u_{\mu}\right) d t\right| \leq c_{2} \quad \text { when } \mu \rightarrow 0 \tag{2.19}
\end{equation*}
$$

Also, from (2.10) and (2.12) we obtain

$$
\begin{gather*}
\int_{0}^{T}\left|u_{\mu}\right|^{2} d t+\int_{0}^{T}\left(\gamma\left(u_{\mu}^{\prime}\right), u_{\mu}\right) d t \tag{2.20}\\
\leq \int_{0}^{T}\left|u_{\mu}\right|^{2} d t+\left\|\gamma\left(u_{\mu}^{\prime}\right)\right\|_{L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right)}\left\|u_{\mu}\right\|_{L^{p}\left(0, T ; L^{p}(\Omega)\right)} \leq c_{3}
\end{gather*}
$$

Combining (2.17), (2.19) and (2.20) with (2.16) we deduce

$$
\begin{equation*}
\int_{0}^{T}\left\|u_{\mu}\right\|^{2} d t \leq c_{4} \tag{2.21}
\end{equation*}
$$

It follows from (2.21) and (2.10) that there exists a subsequence from $\left(u_{\mu}\right)$, still denoted by $\left(u_{\mu}\right)$, such that

$$
\begin{align*}
& u_{\mu} \longrightarrow u \text { weak in } L^{2}(0, T ; V) \tag{2.22}\\
& u_{\mu}^{\prime} \longrightarrow u^{\prime} \text { weak in } L^{p}\left(0, T ; L^{p}(\Omega)\right) \tag{2.23}\\
& \gamma\left(u_{\mu}^{\prime}\right) \longrightarrow \chi \text { weak in } L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right) . \tag{2.24}
\end{align*}
$$

Our next goal is tho show that u verifies $(1.7)_{2}-(1.7)_{3}$.
Indeed, it follows from (2.22) and (2.23) that $u_{\mu} \in C^{0}([0, T] ; H)$ and

$$
\begin{align*}
& \lim _{\mu \rightarrow 0} \int_{0}^{T}\left(u_{\mu}^{\prime}, \varphi\right) d t=\int_{0}^{T}\left(u^{\prime}, \varphi\right) d t, \forall \varphi \in L^{2}(0, T ; H) \tag{2.25}\\
& \lim _{\mu \rightarrow 0} \int_{0}^{T}\left(u_{\mu}, \varphi\right) d t=\int_{0}^{T}(u, \varphi) d t, \forall \varphi \in L^{2}(0, T ; V) \tag{2.26}
\end{align*}
$$

Setting $\varphi=\theta v$ into (2.25) with $\theta \in C^{1}([0, T] ; \mathbb{R}), \theta(0)=\theta(T)$ and $v \in V$, we have

$$
\begin{align*}
& \int_{0}^{T}\left(u_{\mu}^{\prime}, \theta v\right) d t \longrightarrow \int_{0}^{T}\left(u^{\prime}, \theta v\right) d t \tag{2.27}\\
& \int_{0}^{T}\left(u_{\mu}, \theta^{\prime} v\right) d t \longrightarrow \int_{0}^{T}\left(u, \theta^{\prime} v\right) d t \tag{2.28}
\end{align*}
$$

Again, by using periodicity of u_{μ} and u_{μ}^{\prime} we obtain

$$
\int_{0}^{T} \frac{d}{d t}\left(u_{\mu}, \theta v\right) d t=\left(u_{\mu}(T), \theta(T) v\right)-\left(u_{\mu}(0), \theta(0) v\right)=0
$$

Thus

$$
\int_{0}^{T}\left(u_{\mu}^{\prime}, \theta v\right) d t+\int_{0}^{T}\left(u_{\mu}, \theta^{\prime} v\right) d t=0
$$

Since

$$
\int_{0}^{T}\left(u^{\prime}, \theta v\right) d t+\int_{0}^{T}\left(u, \theta^{\prime} v\right) d t=0
$$

as $\mu \rightarrow 0$, we obtain

$$
\int_{0}^{T} \frac{d}{d t}(u, \theta v) d t=0
$$

This implies that

$$
(u(T), \theta(T) v)-(u(0), \theta(0) v)=0
$$

that is,

$$
\begin{equation*}
u(T)=u(0) \tag{2.29}
\end{equation*}
$$

The proof that $u^{\prime}(0)=u^{\prime}(T)$ will be given later. Now, we go to prove that $\int_{0}^{T} u(t) d t=0$.
Taking the scalar product on H of $\int_{0}^{T} u_{\mu}(\sigma) d \sigma=0$ with $\varphi(t), \varphi \in L^{2}(0, T$; H), we find

$$
\left(\int_{0}^{T} u_{\mu}(\sigma) d \sigma, \varphi(t)\right)=0
$$

Thus

$$
\int_{0}^{T}\left(u_{\mu}(\sigma), \varphi(t)\right) d \sigma=0
$$

Therefore,

$$
\begin{equation*}
\int_{0}^{T}(u(\sigma), \varphi(t)) d \sigma=\left(\int_{0}^{T} u(\sigma) d \sigma, \varphi(t)\right)=0, \quad \forall \varphi(t) \in H \tag{2.30}
\end{equation*}
$$

as $\mu \rightarrow 0$.
It follows from (2.30) that

$$
\begin{equation*}
\int_{0}^{T} u(t) d t=0 \tag{2.31}
\end{equation*}
$$

From (2.9), (2.10), (2.11) and (2.13), we deduce

$$
\begin{align*}
& u_{\mu}^{\prime} \longrightarrow u^{\prime} \text { weak in } L^{2}(0, T ; H), \tag{2.32}\\
& u_{\mu}^{\prime} \longrightarrow u^{\prime} \text { weak in } L^{p}\left(0, T ; L^{p}(\Omega)\right), \tag{2.33}\\
& \sqrt{\mu} u_{\mu}^{\prime \prime} \longrightarrow \chi_{1} \text { weak in } L^{2}(0, T ; H), \tag{2.34}\\
& \sqrt{\mu} u_{\mu}^{\prime} \longrightarrow \chi_{2} \text { weak in } L^{2}(0, T ; H), \tag{2.35}\\
& \sqrt{\mu} u_{\mu}^{\prime} \longrightarrow \chi_{3} \text { weak in } L^{2}(0, T ; V) . \tag{2.36}
\end{align*}
$$

It follows from (2.34) that

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} \sqrt{\mu} \int_{0}^{T}\left(u_{\mu}^{\prime \prime}, \varphi\right) d t=\int_{0}^{T}\left(\chi_{1}, \varphi\right) d t \quad \forall \varphi \in L^{2}(0, T ; H) \tag{2.37}
\end{equation*}
$$

Hence, taking $\varphi=v^{\prime \prime}, v \in W$, in (2.37), we find

$$
\lim _{\mu \rightarrow 0} \sqrt{\mu} \int_{0}^{T}\left(u_{\mu}^{\prime \prime}, v^{\prime \prime}\right) d t=\int_{0}^{T}\left(\chi_{1}, v^{\prime \prime}\right) d t
$$

Therefore

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} \mu \int_{0}^{T}\left(u_{\mu}^{\prime \prime}, v^{\prime \prime}\right) d t=\lim _{\mu \rightarrow 0} \sqrt{\mu}\left(\sqrt{\mu} \int_{0}^{T}\left(u_{\mu}^{\prime \prime}, v^{\prime \prime}\right) d t\right)=0 \tag{2.38}
\end{equation*}
$$

By analogy, we prove that

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} \mu \int_{0}^{T}\left(u_{\mu}^{\prime}, v^{\prime}\right) d t=\lim _{\mu \rightarrow 0} \mu \int_{0}^{T}\left(A u_{\mu}^{\prime}, v^{\prime}\right) d t=0 \tag{2.39}
\end{equation*}
$$

By using periodicity of $u_{\mu}, v \in W$, we obtain

$$
\int_{0}^{T} \frac{d}{d t}\left(u_{\mu}^{\prime}, v^{\prime}\right) d t=0
$$

This implies that

$$
\begin{equation*}
\int_{0}^{T}\left(u_{\mu}^{\prime \prime}, v^{\prime}\right) d t=-\int_{0}^{T}\left(u_{\mu}^{\prime}, v^{\prime \prime}\right) d t \tag{2.40}
\end{equation*}
$$

It follows of (2.9) that

$$
\begin{equation*}
\int_{0}^{T}\left(u_{\mu}^{\prime}, \varphi\right) d t \longrightarrow \int_{0}^{T}\left(u^{\prime}, \varphi\right) d t \forall \varphi \in L^{2}(0, T ; H) \tag{2.41}
\end{equation*}
$$

Taking $\varphi=v^{\prime \prime} \in L^{2}(0, T ; H)$ in (2.41) we obtain

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} \int_{0}^{T}\left(u_{\mu}^{\prime}, v^{\prime \prime}\right) d t=\int_{0}^{T}\left(u^{\prime}, v^{\prime \prime}\right) d t \tag{2.42}
\end{equation*}
$$

From (2.2), we can write

$$
\begin{gather*}
\mu \int_{0}^{T}\left[\left(u_{\mu}^{\prime \prime}, v^{\prime \prime}\right)+\left(u_{\mu}^{\prime}, v^{\prime}\right)+\left(A u_{\mu}^{\prime}, v^{\prime}\right)\right] d t \\
+\int_{0}^{T}\left[\left(u_{\mu}^{\prime \prime}, v^{\prime}\right)+\left(u_{\mu}^{\prime}, v^{\prime}\right)+\left(A u_{\mu}, v^{\prime}\right)+\left(u_{\mu}, v^{\prime}\right)+\left(\gamma\left(u_{\mu}^{\prime}\right), v^{\prime}\right)\right] d t \tag{2.43}\\
=\int_{0}^{T}\left(f, v^{\prime}\right) d t
\end{gather*}
$$

From (2.9), (2.10), (2.22), (2.38), (2.39), (2.40) and (2.42), we can pass to the limit in (2.43) when $\mu \rightarrow 0$ and obtain

$$
\begin{align*}
\int_{0}^{T}\left[\left(-u^{\prime}, v^{\prime \prime}\right)+\right. & \left.\left(u^{\prime}, v^{\prime}\right)+\left(A u, v^{\prime}\right)+\left(u, v^{\prime}\right)+\left(\chi, v^{\prime}\right)\right] d t \tag{2.44}\\
& =\int_{0}^{T}\left(f, v^{\prime}\right) d t, \quad \forall v \in W
\end{align*}
$$

Let $\left(\rho_{v}\right)$ be a regularizing sequence of even periodic functions in t, with pe$\operatorname{riod} T$.

Denote by $\tilde{v}=u * \rho_{v} * \rho_{v}$, where $*$ is the convolution operator. Integrating by parts, we find $u^{\prime} * \rho_{\nu} * \rho_{\nu}=u * \rho_{\nu}^{\prime} * \rho_{\nu}$.

Observe by (2.12) and (2.21) that $\tilde{v} \in C^{\infty}(\mathbb{R} ; V), \widetilde{v}^{\prime} \in C^{\infty}\left(\mathbb{R} ; L^{p}(\Omega)\right), \widetilde{v}^{\prime \prime} \in$ $C^{\infty}(\mathbb{R} ; H), v$ and \widetilde{v}^{\prime} periodic in t.

As in Brézis [2], p. 67, we to show that

$$
\begin{equation*}
\int_{0}^{T}\left(u^{\prime}, \widetilde{v}^{\prime \prime}\right) d t=0 \tag{2.45}
\end{equation*}
$$

In fact, we have

$$
\begin{aligned}
\int_{0}^{T} \frac{d}{d t}\left(u^{\prime}, u^{\prime} * \rho_{\nu} * \rho_{\nu}\right) d t & =\int_{0}^{T}\left(u^{\prime \prime}, u^{\prime} * \rho_{\nu} * \rho_{\nu}\right)+\int_{0}^{T}\left(u^{\prime}, u^{\prime \prime} * \rho_{\nu} * \rho_{\nu}\right) d t \\
& =2 \int_{0}^{T}\left(u^{\prime}, u^{\prime} * \rho_{\nu}^{\prime} * \rho_{\nu}\right) d t=2 \int_{0}^{T}\left(u^{\prime}, \widehat{v}^{\prime \prime}\right) d t
\end{aligned}
$$

As

$$
\int_{0}^{T}\left(u^{\prime}, u^{\prime} * \rho_{v}^{\prime} * \rho_{v}\right) d t=\int_{0}^{T} \frac{1}{2} \frac{d}{d t}\left(u^{\prime}, u^{\prime} * \rho_{\nu} * \rho_{\nu}\right) d t=0
$$

due to periodicity of u^{\prime} and ρ_{v}, it follows (2.45).
Similarly, we show that

$$
\begin{align*}
& \int_{0}^{T}\left(u^{\prime}, \widetilde{v}^{\prime}\right) d t=0 \tag{2.46}\\
& \int_{0}^{T}\left(A u, \widetilde{v}^{\prime}\right) d t=0 \tag{2.47}\\
& \int_{0}^{T}\left(u, \widetilde{v}^{\prime}\right) d t=0 \tag{2.48}
\end{align*}
$$

From (2.44) to (2.48) we obtain

$$
\begin{equation*}
\int_{0}^{T}\left(\chi, u^{\prime}\right) d t=\int_{0}^{T}\left(f, u^{\prime}\right) d t \tag{2.49}
\end{equation*}
$$

Now, let us prove that $\chi=\gamma\left(u^{\prime}\right)$.
In fact, from (2.2) and (2.1) we get

$$
\begin{align*}
\mu \int_{0}^{T}\left[\left|u_{\mu}^{\prime \prime}\right|^{2}+\left|u_{\mu}^{\prime}\right|^{2}+\right. & \left.\left\|u_{\mu}^{\prime}\right\|^{2}\right] d t+\int_{0}^{T}\left[\left|u_{\mu}^{\prime}\right|^{2}+\left(\gamma\left(u_{\mu}^{\prime}\right), u_{\mu}^{\prime}\right)\right] d t \tag{2.50}\\
& =\int_{0}^{T}\left(f, u_{\mu}^{\prime}\right) d t
\end{align*}
$$

We define

$$
\begin{align*}
X_{\mu}= & \int_{0}^{T}\left(\gamma\left(u_{\mu}^{\prime}\right)-\gamma(\varphi), u_{\mu}^{\prime}-\varphi\right) d t \\
& +\mu \int_{0}^{T}\left[\left|u_{\mu}^{\prime \prime}\right|^{2}+\left|u_{\mu}^{\prime}\right|^{2}+\left\|u_{\mu}^{\prime}\right\|^{2}\right] d t \tag{2.51}\\
& +\int_{0}^{T}\left[\left|u_{\mu}^{\prime}\right|^{2} d t, \forall \varphi \in L^{p}\left(0, T ; L^{p}(\Omega)\right)\right.
\end{align*}
$$

It follows from (2.50) and (2.51) that

$$
\begin{equation*}
X_{\mu}=\int_{0}^{T}\left(f, u_{\mu}^{\prime}\right) d t-\int_{0}^{T}\left(\gamma(\varphi), u_{\mu}^{\prime}-\varphi\right) d t-\int_{0}^{T}\left(\gamma\left(u_{\mu}^{\prime}\right), \varphi\right) d t \tag{2.52}
\end{equation*}
$$

From the convergences above, we get

$$
\begin{equation*}
X_{\mu} \longrightarrow X=\int_{0}^{T}\left(f, u^{\prime}\right) d t-\int_{0}^{T}\left(\gamma(\varphi), u^{\prime}-\varphi\right) d t-\int_{0}^{T}(\chi, \varphi) d t \tag{2.53}
\end{equation*}
$$

Taking into account (2.53) into (2.49) yields

$$
\begin{equation*}
X=\int_{0}^{T}\left(\chi, u^{\prime}\right) d t-\int_{0}^{T}\left(\gamma(\varphi), u^{\prime}-\varphi\right) d t-\int_{0}^{T}(\chi, \varphi) d t \tag{2.54}
\end{equation*}
$$

Combining (2.53) and (2.54), we obtain

$$
\begin{equation*}
X=\int_{0}^{T}\left(\chi-\gamma(\varphi), u^{\prime}-\varphi\right) d t \tag{2.55}
\end{equation*}
$$

Since $X_{\mu} \geq 0$, for all $\varphi \in L^{p}\left(0, T ; L^{p}(\Omega)\right)$, then $X \geq 0$.
Thus,

$$
\begin{equation*}
\int_{0}^{T}\left(\chi-\gamma(\varphi), u^{\prime}-\varphi\right) d t \geq 0, \quad \forall \varphi \in L^{p}\left(0, T ; L^{p}(\Omega)\right) \tag{2.56}
\end{equation*}
$$

Since $\gamma: L^{p}\left(0, T ; L^{p}(\Omega)\right) \longrightarrow L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right), \gamma\left(u^{\prime}\right)=\left|u^{\prime}\right|^{p-2} u^{\prime}$, is hemicontinuous operator, the inequality above implies $\chi=\gamma\left(u^{\prime}\right)$. It is sufficient to set $\varphi(t)=u^{\prime}(t)-\lambda w(t), \lambda>0, w \in L^{p}\left(0, T ; L^{p}(\Omega)\right)$ arbitrarily and let $\lambda \rightarrow 0$.
We consider $\psi \in C^{\infty}\left([0, T] ; V \cap L^{p}(\Omega)\right)$ satisfying

$$
\begin{align*}
& \int_{0}^{T} \psi d t=0 \tag{2.57}\\
& \psi(0)=\psi(T)
\end{align*}
$$

Setting

$$
\begin{equation*}
v(t)=\int_{0}^{T} \psi d \sigma-\frac{1}{T} \int_{0}^{T}(T-\sigma) \psi(\sigma) d \sigma \tag{2.58}
\end{equation*}
$$

in (2.44), yields

$$
\begin{align*}
\int_{0}^{T} & {\left[\left(-u^{\prime}, \psi^{\prime}\right)+\left(u^{\prime}, \psi\right)+(A u, \psi)\right.} \tag{2.59}\\
& \left.+(u, \psi)+\left(\gamma\left(u^{\prime}\right), \psi\right)-(f, \psi)\right] d t=0
\end{align*}
$$

because $v^{\prime}(t)=\psi(t), v^{\prime \prime}(t)=\psi^{\prime}(t)$.

In particular, choosing $\psi=\theta^{\prime} v$, with $\left.\theta \in \mathcal{D}\right] 0, T\left[\right.$ and $v \in V \cap L^{p}(\Omega)$, in (2.59) we get

$$
\begin{align*}
& \int_{0}^{T}\left[\left(-u^{\prime}, \theta^{\prime \prime} v\right)+\left(u^{\prime}, \theta^{\prime} v\right)+\left(A u, \theta^{\prime} v\right)+\left(u, \theta^{\prime} v\right)\right. \tag{2.60}\\
& \left.\left.\quad+\left(\gamma\left(u^{\prime}\right), \theta^{\prime} v\right)-\left(f, \theta^{\prime} v\right)\right] d t=0, \quad \forall \theta \in \mathcal{D}\right] 0, T\left[, \quad v \in V \cap L^{p}(\Omega)\right.
\end{align*}
$$

or equivalently,

$$
\begin{equation*}
\int_{0}^{T}\left(u^{\prime \prime}+u^{\prime}+A u+u+\gamma\left(u^{\prime}\right)-f, v\right) \theta^{\prime} d t=0 \tag{2.61}
\end{equation*}
$$

for all $v \in V \cap L^{4}(\Omega)$ and $\left.\theta \in \mathcal{D}\right] 0, T[$.
Hence,

$$
\frac{d}{d t}\left[\left(u^{\prime \prime}+u^{\prime}+A u+u+\gamma\left(u^{\prime}\right)-f, v\right)\right]=0, \quad \forall v \in V \cap L^{p}(\Omega)
$$

Consequently, there exists a function g_{0} independent of t such that

$$
\begin{equation*}
u^{\prime \prime}+u^{\prime}+A u+u+\gamma\left(u^{\prime}\right)-f=g_{0}, \text { independent of } t \tag{2.62}
\end{equation*}
$$

We verify that

$$
\begin{gather*}
u^{\prime \prime}(\varphi)=\int_{0}^{T} u^{\prime \prime}(t) \varphi(t) d t=-\int_{0}^{T} u^{\prime}(t) \varphi^{\prime}(t) d t \in L^{p}(\Omega) \tag{2.63}\\
A u(\varphi)=\int_{0}^{T}(A u(t)) \varphi(t) d t \in V^{\prime} \tag{2.64}\\
\gamma\left(u^{\prime}\right)(\varphi)=\int_{0}^{T} \gamma\left(u^{\prime}\right) \varphi d t \in L^{p^{\prime}}(\Omega) \tag{2.65}\\
u^{\prime}(\varphi)=\int_{0}^{T} u^{\prime}(t) \varphi(t) d t \in L^{p}(\Omega) \tag{2.66}\\
u(\varphi)=\int_{0}^{T} u(t) \varphi(t) d t \in L^{2}(\Omega) \tag{2.67}\\
f(\varphi)=\int_{0}^{T} f(t) \varphi(t) d t \in L^{p^{\prime}}(\Omega) \tag{2.68}
\end{gather*}
$$

for all $\varphi \in \mathcal{D}] 0, T\left[\right.$, because $u^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)\right)$.
Thus, from (2.63) to (2.68) and (2.62), we can write

$$
g_{0} \int_{0}^{T} \varphi(t) d t \in V^{\prime}+L^{p^{\prime}}(\Omega)
$$

Therefore

$$
\begin{equation*}
g_{0} \in V^{\prime}+L^{p^{\prime}}(\Omega) \tag{2.69}
\end{equation*}
$$

It follows from (2.62) that

$$
\begin{align*}
u^{\prime \prime}= & f+g_{0}-u^{\prime}-A u-u-\gamma\left(u^{\prime}\right) \\
& \in L^{2}\left(0, T ; V^{\prime}\right)+L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right. \tag{2.70}
\end{align*}
$$

Hence, we deduce from (2.62) that,

$$
\begin{equation*}
\int_{0}^{T}\left(u^{\prime \prime}+u^{\prime}+A u+u+\gamma\left(u^{\prime}\right)-f-g_{0}, \psi\right) d t=0 \tag{2.71}
\end{equation*}
$$

with ψ given in (2.57).
Thus

$$
\begin{align*}
& \int_{0}^{T}\left(u^{\prime \prime}+u^{\prime}+A u+u+\gamma\left(u^{\prime}\right)-f-g_{0}, \psi\right) d t \\
& \quad\left.=\int_{0}^{T} \frac{d}{d t}\left(u^{\prime}(t), \psi\right)\right) d t+\int_{0}^{T}\left[\left(-u^{\prime}(t), \psi^{\prime}\right)+\left(u^{\prime}(t), \psi\right)\right. \tag{2.72}\\
&\left.+(A u(t), \psi)+(u, \psi)+\left(\gamma\left(u^{\prime}\right), \psi\right)-(f, \psi)-\left(g_{0}, \psi\right)\right] d t \\
& \quad=\left(u^{\prime}(T), \psi(T)\right)-\left(u^{\prime}(0), \psi(0)\right.
\end{align*}
$$

Substituting (2.72) into (2.57) we obtain

$$
\begin{equation*}
u^{\prime}(0)=u^{\prime}(T) . \tag{2.73}
\end{equation*}
$$

Note that $u^{\prime}(0)$ and $u^{\prime}(T)$ make sense because u^{\prime} an $u^{\prime \prime}$ belongs to $L^{p}(0, T$; $\left.L^{p}(\Omega)\right)$ and $L^{2}\left(0, T ; V^{\prime}\right)+L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right)$, respectively.

Let u_{0} be defined by

$$
\left\lvert\, \begin{align*}
& -\Delta u_{0}+u_{0}=-g_{0} \tag{2.74}\\
& u_{0}=0 \text { on } \partial \Omega
\end{align*}\right.
$$

We recall that because $n \leq 2$ and $p>2$, we have

$$
H_{0}^{1}(\Omega) \hookrightarrow L^{p}(\Omega) \hookrightarrow L^{2}(\Omega) \hookrightarrow L^{p^{\prime}}(\Omega) \hookrightarrow H^{-1}(\Omega)=V^{\prime}
$$

where each space is dense in the following one and the injections are continuous.
This and (2.69) implies that $g_{0} \in H^{-1}(\Omega)=V^{\prime}$.
Finally, we apply the Lax-Milgram Theorem to find a unique solution $u_{0} \in$ $H_{0}^{1}(\Omega)$ of the Dirichlet problem (2.74).
Thus, $w=u+u_{0} \in L^{2}(0, T ; V)$ with $w^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)\right)$ satisfies

$$
\left\lvert\, \begin{aligned}
& w^{\prime \prime}+w^{\prime}-\Delta w+w+\left|w^{\prime}\right|^{p-2} w^{\prime}=f \\
& \quad \text { in } L^{2}\left(0, T ; V^{\prime}\right)+L^{p^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right),} \\
& w(0)=w(T) \\
& w^{\prime}(0)=w^{\prime}(T),
\end{aligned}\right.
$$

that is, w is a T-periodic weak solutions of problem (1.1).

Uniqueness. Let us consider w_{1} and w_{2} be two functions satisfying Theorem 2.1 and let $\xi=w_{1}-w_{2}$.

We subtract the equations (1.1) corresponding to w_{1} and w_{2} and we obtain

$$
\begin{equation*}
\xi^{\prime \prime}+\xi^{\prime}+A \xi+\xi+\gamma\left(w_{1}^{\prime}\right)-\gamma\left(w_{2}^{\prime}\right)=0 . \tag{2.75}
\end{equation*}
$$

Denoting by (ρ_{μ}) the regularizing sequence defined above, by a similar argument used in the proof of existence of solutions for Theorem 2.1 we obtain

$$
\begin{equation*}
\xi^{\prime} * \rho_{\mu} * \rho_{\mu}=\xi * \rho_{\mu}^{\prime} * \rho_{\mu} \tag{2.76}
\end{equation*}
$$

Hence, by using (2.3) and (2.4), we can write

$$
\begin{equation*}
\xi=\psi+\xi_{0}, \text { with } \xi_{0} \in V \text { and } \psi \in L^{2}(0, T ; V) \tag{2.77}
\end{equation*}
$$

Also, from (2.76) we get

$$
\begin{equation*}
\xi^{\prime} * \rho_{\mu} * \rho_{\mu}=\xi * \rho_{\mu}^{\prime} * \rho_{\mu}=\psi^{\prime} * \rho_{\mu} * \rho_{\mu} . \tag{2.78}
\end{equation*}
$$

Thus, we have by (2.5) that $\psi^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)\right)$. Therefore $\xi^{\prime} * \rho_{\mu} * \rho_{\mu}$ is periodic and

$$
\begin{equation*}
\xi^{\prime} * \rho_{\mu} * \rho_{\mu} \in C^{\infty}\left([0, T] ; L^{p}(\Omega)\right) . \tag{2.79}
\end{equation*}
$$

Then by (2.70) we can write

$$
\xi^{\prime \prime} \in L^{2}\left(0, T ; V^{\prime}\right)+L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right)
$$

This and (2.79) show that $\int_{0}^{T}\left(\xi^{\prime \prime}, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t$ make sense and

$$
\begin{equation*}
\int_{0}^{T}\left(\xi^{\prime \prime}, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t=0 \tag{2.80}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
& \int_{0}^{T} \frac{d}{d t}\left(\xi^{\prime}, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t=\int_{0}^{T}\left(\xi^{\prime \prime}, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t \\
& \quad+\int_{0}^{T}\left(\xi^{\prime}, \xi^{\prime \prime} * \rho_{\mu} * \rho_{\mu}\right) d t=\int_{0}^{T}\left(\xi^{\prime \prime}, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t \tag{2.81}\\
& \quad+\int_{0}^{T}\left(\xi^{\prime \prime}, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\int_{0}^{T}\left(\xi^{\prime \prime}, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t=\frac{1}{2} \int_{0}^{T} \frac{d}{d t}\left(\xi^{\prime}, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t=0 \tag{2.82}
\end{equation*}
$$

because ξ^{\prime} and ρ_{μ} are periodic.
Similarly

$$
\begin{align*}
& \int_{0}^{T}\left(A \xi, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t=0 \tag{2.83}\\
& \int_{0}^{T}\left(\xi^{\prime}, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t=0 \tag{2.84}\\
& \int_{0}^{T}\left(\xi, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t=0 \tag{2.85}
\end{align*}
$$

Consequently, it follows from (2.75), (2.82), (2.83), (2.84) and (2.85) that

$$
\begin{equation*}
\int_{0}^{T}\left(\gamma\left(w_{1}^{\prime}\right)-\gamma\left(w_{2}^{\prime}\right), \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t=0 \tag{2.86}
\end{equation*}
$$

Hence using (2.86), letting μ tend to zero, we have

$$
\begin{equation*}
\int_{0}^{T}\left(\gamma\left(w_{1}^{\prime}\right)-\gamma\left(w_{2}^{\prime}\right), w_{1}^{\prime}-w_{2}^{\prime}\right) d t=0 \tag{2.87}
\end{equation*}
$$

that is, $w_{1}^{\prime}=w_{2}^{\prime}$.
This implies that

$$
\xi=w_{1}-w_{2}=\theta, \quad \theta \text { independent of } t .
$$

Integrating the last equality on $[0, T]$ and observing that $w_{i}=u_{i}+u_{0_{i}}$ yields

$$
\int_{0}^{T}\left(w_{1}-w_{2}\right) d t=\theta \int_{0}^{T} d t=\theta T=T\left(u_{0_{1}}-u_{0_{2}}\right)
$$

because $\int_{0}^{T} u_{i} d t=0$. Thus $\theta \in V$.
It follows from (2.83) that

$$
\begin{aligned}
\int_{0}^{T}\left(A \xi, \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t & =\int_{0}^{T}\left(A\left(w_{1}-w_{2}\right), \xi^{\prime} * \rho_{\mu} * \rho_{\mu}\right) d t \\
& =\int_{0}^{T}\left(A \theta, \theta * \rho_{\mu}^{\prime} * \rho_{\mu}\right) d t=0 .
\end{aligned}
$$

This implies that, when $\mu \longrightarrow 0$

$$
\int_{0}^{T}(A \theta, \theta)=0, \quad \forall \theta \in V
$$

Therefore

$$
\begin{equation*}
A \theta=0, \quad \forall \theta \in V . \tag{2.8}
\end{equation*}
$$

Employing Green's Theorem, we find

$$
\begin{equation*}
(A \theta, \theta)=\int_{\Omega}-\Delta \theta \theta d x=\int_{\Omega}(\nabla \theta)^{2} d x-\int_{\Gamma} \theta \frac{\partial \theta}{\partial \nu} d \Gamma=\|\theta\|^{2} \tag{2.89}
\end{equation*}
$$

Taking into account (2.89) into (2.88) yields $\theta=0$, which proves the uniqueness of solutions of problem (1.2). Thus, the proof of Theorem 2.1 is complete.

REFERENCES

[1] S. Agmon, The L_{p} approach to the Problem. I. Ann. Sc. Norm. Sup. Pisa, (1959), 405-448.
[2] H. Brézis, Analyse Functionelle, Théorie et applications, ed. Masson, Paris (1983).
[3] F.E. Browder, Problèmes Non Linéaires. Press de L’Université de Montreal (1966).
[4] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. III, Interscience Publ., N.Y. (1969).
[5] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, Germany (2000).
[6] J.L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod, Paris (1969).
[7] J. Mawhin, Periodic solution of nonlinear telegraph equations, in: A.R. Bedlarek, L. Cesari (Eds.), Dynamical Systems, Academic Press, New York (1977).
[8] L.A. Medeiros, Applications of Monotony Method. Instituto de Matemática - UFRJ, Lectures Notes (2005).
[9] R. Ortega and A.M. Robles-Pérez, A maximum principle for periodic solutions of the telegraph equations. J. Math. Anal. Appl., 221 (1998), 625-651.
[10] G. Prodi, Soluzioni periodiche dell'equazione delle onde com termine dissipativo nonlineare. Rend. Sem. Mat. Pandova, 35 (1965).
[11] O. Vejvoda, Partial Differential Equations: Time-Periodic Solutions, Martinus Nijhoff Publishers, Boston (1982).

