

On the generalized nonlinear ultra-hyperbolic heat equation related to the spectrum

AMNUAY KANANTHAI¹ and KAMSING NONLAOPON^{2*}

¹Department of Mathematics, Chiang Mai University, Chiang Mai 50200, Thailand

²Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand

E-mails: malamnka@science.cmu.ac.th / nkamsi@kku.ac.th

Abstract. In this paper, we study the nonlinear equation of the form

$$\frac{\partial}{\partial t}u(x,t) - c^2 \Box^k u(x,t) = f(x,t,u(x,t))$$

where \Box^k is the ultra-hyperbolic operator iterated k-times, defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k},$$

p + q = n is the dimension of the Euclidean space \mathbb{R}^n , $(x, t) = (x_1, x_2, \dots, x_n, t) \in \mathbb{R}^n \times (0, \infty)$, k is a positive integer and c is a positive constant.

On the suitable conditions for f, u and for the spectrum of the heat kernel, we can find the unique solution in the compact subset of $\mathbb{R}^n \times (0, \infty)$. Moreover, if we put k = 1 and q = 0 we obtain the solution of nonlinear equation related to the heat equation.

Mathematical subject classification: 35L30, 46F12, 32W30.

Key words: ultra-hyperbolic heat equation, the Dirac delta distribution, the spectrum, Fourier transform.

^{#752/08.} Received: 07/III/08. Accepted: 08/III/09.

^{*}Supported by The Commission on Higher Education and the Thailand Research Fund (MRG5180058).

1 Introduction

It is well known that for the heat equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Delta u(x,t) \tag{1.1}$$

with the initial condition

u(x,0) = f(x)

where $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator and $(x, t) = (x_1, x_2, \dots, x_n, t) \in \mathbb{R}^n \times (0, \infty)$, and *f* is a continuous function, we obtain the solution

$$u(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left[-\frac{|x-y|^2}{4c^2t}\right] f(y)dy$$
(1.2)

as the solution of (1.1).

Now, (1.2) can be written as u(x, t) = E(x, t) * f(x) where

$$E(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \exp\left[-\frac{|x|^2}{4c^2t}\right].$$
 (1.3)

E(x, t) is called *the heat kernel*, where $|x|^2 = x_1^2 + x_2^2 + \dots + x_n^2$ and t > 0, see [1, p. 208–209].

Moreover, we obtain $E(x, t) \rightarrow \delta$ as $t \rightarrow 0$, where δ is the Dirac-delta distribution. We also have extended (1.1) to be the equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Box u(x,t) \tag{1.4}$$

where \Box is the ultra-hyperbolic operator, defined by

$$\Box = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}\right).$$

We obtain the ultra-hyperbolic heat kernel

$$E(x,t) = \frac{(i)^q}{(4c^2\pi t)^{n/2}} \exp\left[\frac{\sum_{i=1}^p x_i^2 - \sum_{j=p+1}^{p+q} x_j^2}{4c^2t}\right]$$

where p + q = n is the dimension of the Euclidean space \mathbb{R}^n and $i = \sqrt{-1}$. For finding the kernel E(x, t) see [4].

In this paper, we extend (1.4) to be the general of the nonlinear form

$$\frac{\partial}{\partial t}u(x,t) - c^2 \Box^k u(x,t) = f(x,t,u(x,t))$$
(1.5)

for $(x, t) \in \mathbb{R}^n \times (0, \infty)$ and with the following conditions on *u* and *f* as follows,

- (1) $u(x, t) \in C^{(2k)}(\mathbb{R}^n)$ for any t > 0 where $C^{(2k)}(\mathbb{R}^n)$ is the space of continuous function with 2k-derivatives.
- (2) f satisfies the Lipchitz condition, that is

$$|f(x, t, u) - f(x, t, w)| \le A|u - w|$$

where A is constant and 0 < A < 1.

$$\int_0^\infty \int_{\mathbb{R}^n} |f(x,t,u(x,t))| \, dx \, dt < \infty$$

for $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $t \in (0, \infty)$ and u(x, t) is continuous function on $\mathbb{R}^n \times (0, \infty)$.

Under such conditions of f, u and for the spectrum of E(x, t), we obtain the convolution

$$u(x,t) = E(x,t) * f(x,t,u(x,t))$$

as a unique solution in the compact subset of $\mathbb{R}^n \times (0, \infty)$ and E(x, t) is an elementary solution defined by (2.5).

2 Preliminaries

Definition 2.1. Let $f(x) \in \mathbb{L}_1(\mathbb{R}^n)$ -the space of integrable function in \mathbb{R}^n . The Fourier transform of f(x) is defined by

$$\widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi, x)} f(x) \, dx \tag{2.1}$$

where $\xi = (\xi_1, \xi_2, ..., \xi_n)$, $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $(\xi, x) = \xi_1 x_1 + \xi_2 x_2 + ... + \xi_n x_n$ is the usual inner product in \mathbb{R}^n and $dx = dx_1 dx_2 ... dx_n$.

Also, the inverse of Fourier transform is defined by

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi, x)} \widehat{f}(\xi) \, d\xi.$$
(2.2)

Definition 2.2. The spectrum of the kernel E(x, t) defined by (2.5) is the bounded support of the Fourier transform $\widehat{E(\xi, t)}$ for any fixed t > 0.

Definition 2.3. Let $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ be a point in \mathbb{R}^n and we write

$$u = \xi_1^2 + \xi_2^2 + \ldots + \xi_p^2 - \xi_{p+1}^2 - \xi_{p+2}^2 - \ldots - \xi_{p+q}^2, \quad p+q = n.$$

Denote by

$$\Gamma_+ = \left\{ \xi \in \mathbb{R}^n \colon \xi_1 > 0 \text{ and } u > 0 \right\}$$

the set of an interior of the forward cone, and $\overline{\Gamma}_+$ denotes the closure of Γ_+ .

Let Ω be spectrum of E(x, t) defined by Definition 2.2 for any fixed t > 0 and $\Omega \subset \overline{\Gamma}_+$. Let $\widehat{E(\xi, t)}$ be the Fourier transform of E(x, t) and define

$$\widehat{E(\xi,t)} = \begin{cases} \widehat{\frac{1}{(2\pi)^{n/2}}} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^{p} \xi_i^2\right)^k\right] & \text{for } \xi \in \Gamma_+, \\ 0 & \text{for } \xi \notin \Gamma_+. \end{cases}$$
(2.3)

Lemma 2.1. Let L be the operator defined by

$$\mathbf{L} = \frac{\partial}{\partial t} - c^2 \Box^k \tag{2.4}$$

where \Box^k is the ultra-hyperbolic operator iterated k-times defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k},$$

p + q = n is the dimension of \mathbb{R}^n , $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $t \in (0, \infty)$, k is a positive integer and c is a positive constant. Then we obtain

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi \quad (2.5)$$

as a elementary solution of (2.4) in the spectrum $\Omega \subset \mathbb{R}^n$ for t > 0.

Proof. Let $LE(x, t) = \delta(x, t)$ where E(x, t) is the kernel or the elementary solution of operator L and δ is the Dirac-delta distribution. Thus

$$\frac{\partial}{\partial t}E(x,t) - c^2 \Box^k E(x,t) = \delta(x)\delta(t).$$

Take the Fourier transform defined by (2.1) to both sides of the equation, we obtain

$$\frac{\partial}{\partial t}\widehat{E(\xi,t)} - c^2 \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k \widehat{E(\xi,t)} = \frac{1}{(2\pi)^{n/2}} \delta(t).$$

Thus

$$\widehat{E(\xi,t)} = \frac{H(t)}{(2\pi)^{n/2}} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k\right]$$

where H(t) is the Heaviside function. Since H(t) = 1 for t > 0. Therefore,

$$\widehat{E(\xi,t)} = \frac{1}{(2\pi)^{n/2}} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k\right]$$

which has been already defined by (2.3). Thus

$$E(x,t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi,x)} \widehat{E(\xi,t)} \, d\xi = \frac{1}{(2\pi)^{n/2}} \int_{\Omega} e^{i(\xi,x)} \widehat{E(\xi,t)} \, d\xi$$

where Ω is the spectrum of E(x, t). Thus from (2.3)

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi \quad \text{for } t > 0.$$

Definition 2.4. Let us extend E(x, t) to $\mathbb{R}^n \times \mathbb{R}$ by setting

$$E(x,t) = \begin{cases} \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi & \text{for } t > 0, \\ 0 & \text{for } t \le 0, \end{cases}$$

3 Main Results

Theorem 3.1. The kernel E(x, t) defined by (2.5) have the following properties:

- (1) $E(x, t) \in C^{\infty}$ -the space infinitely differentiable.
- (2) $\left(\frac{\partial}{\partial t} c^2 \Box^k\right) E(x, t) = 0$ for t > 0.
- (3)

$$|E(x,t)| \leq \frac{2^{2-n}}{\pi^{n/2}} \frac{M(t)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)}, \quad for \ t > 0,$$

where M(t) is a function of t in the spectrum Ω and Γ denote the Gamma function. Thus E(x, t) is bounded for any fixed t > 0.

(4) $\lim_{t \to 0} E(x, t) = \delta.$

Proof.

(1) From (2.5), since

$$\frac{\partial^n}{\partial x^n} E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \frac{\partial^n}{\partial x^n} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi.$$
Thus, $E(x,t) \in C^\infty$ for $x \in \mathbb{R}^n$, $t > 0$.

Thus $E(x, t) \in C^{\infty}$ for $x \in \mathbb{R}^n, t > 0$.

(2) By computing directly, we obtain

$$\left(\frac{\partial}{\partial t} - c^2 \Box^k\right) E(x, t) = 0$$

(3) We have

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi.$$
$$|E(x,t)| \le \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k\right] d\xi.$$

By changing to bipolar coordinates

$$\xi_1 = r\omega_1, \xi_2 = r\omega_2, \dots, \xi_p = r\omega_p \quad \text{and}$$

$$\xi_{p+1} = s\omega_{p+1}, \xi_{p+2} = s\omega_{p+2}, \dots, \xi_{p+q} = s\omega_{p+q}$$

where $\sum_{i=1}^{p} \omega_i^2 = 1$ and $\sum_{j=p+1}^{p+q} \omega_j^2 = 1$. Thus

$$|E(x,t)| \leq \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(s^2 - r^2\right)^k\right] r^{p-1} s^{q-1} dr \, ds \, d\Omega_p \, d\Omega_q$$

where $d\xi = r^{p-1}s^{q-1} dr ds d\Omega_p d\Omega_q$, $d\Omega_p$ and Ω_q are the elements of surface area of the unit sphere in \mathbb{R}^p and \mathbb{R}^q respectively. Since $\Omega \subset \mathbb{R}^n$ is the spectrum of E(x, t) and we suppose $0 \le r \le R$ and $0 \le s \le L$ where *R* and *L* are constants. Thus we obtain

$$|E(x,t)| \leq \frac{\Omega_p \,\Omega_q}{(2\pi)^n} \int_0^R \int_0^L \exp\left[c^2 t \left(s^2 - r^2\right)^k\right] r^{p-1} s^{q-1} \, ds \, dr$$

$$= \frac{\Omega_p \,\Omega_q}{(2\pi)^n} M(t) \quad \text{for any fixed } t > 0 \quad \text{in the spectrum } \Omega$$

$$= \frac{2^{2-n}}{\pi^{n/2}} \frac{M(t)}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})}$$
(3.1)

where

$$M(t) = \int_0^R \int_0^L \exp\left[c^2 t \left(s^2 - r^2\right)^k\right] r^{p-1} s^{q-1} \, ds \, dr \qquad (3.2)$$

is a function of

$$t > 0, \quad \Omega_p = \frac{2\pi^{p/2}}{\Gamma\left(\frac{p}{2}\right)} \text{ and } \Omega_q = \frac{2\pi^{p/2}}{\Gamma\left(\frac{q}{2}\right)}$$

Thus, for any fixed t > 0, E(x, t) is bounded.

(4) By (2.5), we have

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi.$$

Since E(x, t) exists, then

$$\lim_{t \to 0} E(x, t) = \frac{1}{(2\pi)^n} \int_{\Omega} e^{i(\xi, x)} d\xi$$
$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(\xi, x)} d\xi$$
$$= \delta(x), \quad \text{for } x \in \mathbb{R}^n.$$

See [3, p. 396, Eq. (10.2.19b)].

Theorem 3.2. Given the nonlinear equation

$$\frac{\partial}{\partial t}u(x,t) - c^2 \Box^k u(x,t) = f(x,t,u(x,t))$$
(3.3)

for $(x, t) \in \mathbb{R}^n \times (0, \infty)$, k is positive number and with the following conditions on u and f as follows,

- (1) $u(x, t) \in C^{(2k)}(\mathbb{R}^n)$ for any t > 0 where $C^{(2k)}(\mathbb{R}^n)$ is the space of continuous function with 2k-derivatives.
- (2) f satisfies the Lipchitz condition, that is

$$|f(x,t,u) - f(x,t,w)| \le A|u - w|$$

where A is constant and 0 < A < 1.

(3)

$$\int_0^\infty \int_{\mathbb{R}^n} |f(x,t,u(x,t))| \, dx \, dt < \infty$$

for $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $t \in (0, \infty)$ and u(x, t) is continuous function on $\mathbb{R}^n \times (0, \infty)$.

Then, for the spectrum of E(x, t) we obtain the convolution

$$u(x,t) = E(x,t) * f(x,t,u(x,t))$$
(3.4)

as a unique solution of (3.3) for $x \in \Omega_0$ where Ω_0 is an compact subset of \mathbb{R}^n , $0 \le t \le T$ with T is constant and E(x, t) is an elementary solution defined by (2.5) and also u(x, t) is bounded.

In particular, if we put k = 1 and q = 0 in (3.3) then (3.3) reduces to the nonlinear heat equation.

Comp. Appl. Math., Vol. 28, N. 2, 2009

Proof. Convolving both sides of (3.3) with E(x, t) and then we obtain the solution

$$u(x,t) = E(x,t) * f(x,t,u(x,t))$$

or

$$u(x,t) = \int_{-\infty}^{\infty} \int_{\mathbb{R}^n} E(r,s) f(x-r,t-s,u(x-r,t-s)) dr ds$$

where E(r, s) is given by Definition 2.4.

We next show that u(x, t) is bounded on $\mathbb{R}^n \times (0, \infty)$. We have

$$\begin{aligned} |u(x,t)| &\leq \int_{-\infty}^{\infty} \int_{\mathbb{R}^n} |E(r,s)| \left| f(x-r,t-s,u(x-r,t-s)) \right| \, dr \, ds \\ &\leq \frac{2^{2-n}}{\pi^{n/2}} \frac{N.M(t)}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})} \end{aligned}$$

by the condition (3) and (3.1) where

$$N = \int_0^\infty \int_{\mathbb{R}^n} |f(x, t, u(x, t))| \, dx \, dt.$$

Thus u(x, t) is bounded on $\mathbb{R}^n \times (0, \infty)$.

To show that u(x, t) is unique, suppose there is another solution w(x, t) of equation (3.3). Let the operator

$$\mathbf{L} = \frac{\partial}{\partial t} - c^2 \Box^k$$

then (3.3) can be written in the form

$$\mathcal{L} u(x,t) = f(x,t,u(x,t)).$$

Thus

$$L u(x, t) - L w(x, t) = f(x, t, u(x, t)) - f(x, t, w(x, t)).$$

By the condition (2) of the Theorem,

$$|L u(x, t) - L w(x, t)| \le A|u(x, t) - w(x, t)|.$$
(3.5)

Let $\Omega_0 \times (0, T]$ be compact subset of $\mathbb{R}^n \times (0, \infty)$ and L: $C^{(2k)}(\Omega_0) \longrightarrow C^{(2k)}(\Omega_0)$ for $0 \le t \le T$.

Now $(C^{(2k)}(\Omega_0), \|\cdot\|)$ is a Banach space where $u(x, t) \in C^{(2k)}(\Omega_0)$ for $0 \le t \le T$, $\|\cdot\|$ given by

$$||u(x,t)|| = \sup_{x \in \Omega_0} |u(x,t)|.$$

Then, from (3.5) with 0 < A < 1, the operator L is a contraction mapping on $C^{(2k)}(\Omega_0)$. Since $(C^{(2k)}(\Omega_0), \|\cdot\|)$ is a Banach space and L: $C^{(2k)}(\Omega_0) \longrightarrow C^{(2k)}(\Omega_0)$ is a contraction mapping on $C^{(2k)}(\Omega_0)$, by Contraction Theorem, see [3, p. 300], we obtain the operator L has a fixed point and has uniqueness property. Thus u(x, t) = w(x, t). It follows that the solution u(x, t) of (3.3) is unique for $(x, t) \in \Omega_0 \times (0, T]$ where u(x, t) is defined by (3.4).

In particular, if we put k = 1 and q = 0 in (3.3) then (3.3) reduces to the nonlinear heat equation

$$\frac{\partial}{\partial t}u(x,t) - c^2 \Delta u(x,t) = f(x,t,u(x,t))$$

which has solution

$$u(x,t) = E(x,t) * f(x,t,u(x,t))$$

where E(x, t) is defined by (2.5) with k = 1 and q = 0. That is complete of proof.

Acknowledgement. The authors would like to thank The Thailand Research Fund for financial support.

REFERENCES

- [1] F. John, "Partial Differential Equations", 4th Edition, Springer-Verlag, New York (1982).
- [2] R. Haberman, "Elementary Applied Partial Differential Equations", 2nd Edition, Prentice-Hall International, Inc. (1983).
- [3] E. Kreyszig, "Introductory Functional Analysis with Applications", John Wiley & Sons Inc. (1978).
- [4] K. Nonlaopon and A. Kananthai, On the Ultrahyperbolic Heat Kernel, International Journal of Applied Mathematics, 13 (2) (2003), 215–225.