On the generalized nonlinear ultra-hyperbolic heat equation related to the spectrum

AMNUAY KANANTHAI ${ }^{1}$ and KAMSING NONLAOPON ${ }^{2 *}$

${ }^{1}$ Department of Mathematics, Chiang Mai University, Chiang Mai 50200, Thailand
${ }^{2}$ Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand E-mails: malamnka@science.cmu.ac.th / nkamsi@kku.ac.th

Abstract. In this paper, we study the nonlinear equation of the form

$$
\frac{\partial}{\partial t} u(x, t)-c^{2} \square^{k} u(x, t)=f(x, t, u(x, t))
$$

where \square^{k} is the ultra-hyperbolic operator iterated k-times, defined by

$$
\square^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\frac{\partial^{2}}{\partial x_{p+2}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}
$$

$p+q=n$ is the dimension of the Euclidean space $\mathbb{R}^{n},(x, t)=\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in \mathbb{R}^{n} \times$ $(0, \infty), k$ is a positive integer and c is a positive constant.

On the suitable conditions for f, u and for the spectrum of the heat kernel, we can find the unique solution in the compact subset of $\mathbb{R}^{n} \times(0, \infty)$. Moreover, if we put $k=1$ and $q=0$ we obtain the solution of nonlinear equation related to the heat equation.

Mathematical subject classification: 35L30, 46F12, 32W30.
Key words: ultra-hyperbolic heat equation, the Dirac delta distribution, the spectrum, Fourier transform.

[^0]
1 Introduction

It is well known that for the heat equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=c^{2} \triangle u(x, t) \tag{1.1}
\end{equation*}
$$

with the initial condition

$$
u(x, 0)=f(x)
$$

where $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplace operator and $(x, t)=\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in$ $\mathbb{R}^{n} \times(0, \infty)$, and f is a continuous function, we obtain the solution

$$
\begin{equation*}
u(x, t)=\frac{1}{\left(4 c^{2} \pi t\right)^{n / 2}} \int_{\mathbb{R}^{n}} \exp \left[-\frac{|x-y|^{2}}{4 c^{2} t}\right] f(y) d y \tag{1.2}
\end{equation*}
$$

as the solution of (1.1).
Now, (1.2) can be written as $u(x, t)=E(x, t) * f(x)$ where

$$
\begin{equation*}
E(x, t)=\frac{1}{\left(4 c^{2} \pi t\right)^{n / 2}} \exp \left[-\frac{|x|^{2}}{4 c^{2} t}\right] \tag{1.3}
\end{equation*}
$$

$E(x, t)$ is called the heat kernel, where $|x|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ and $t>0$, see [1, p. 208-209].

Moreover, we obtain $E(x, t) \rightarrow \delta$ as $t \rightarrow 0$, where δ is the Dirac-delta distribution. We also have extended (1.1) to be the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=c^{2} \square u(x, t) \tag{1.4}
\end{equation*}
$$

whereis the ultra-hyperbolic operator, defined by

$$
\square=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\frac{\partial^{2}}{\partial x_{p+2}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)
$$

We obtain the ultra-hyperbolic heat kernel

$$
E(x, t)=\frac{(i)^{q}}{\left(4 c^{2} \pi t\right)^{n / 2}} \exp \left[\frac{\sum_{i=1}^{p} x_{i}^{2}-\sum_{j=p+1}^{p+q} x_{j}^{2}}{4 c^{2} t}\right]
$$

where $p+q=n$ is the dimension of the Euclidean space \mathbb{R}^{n} and $i=\sqrt{-1}$. For finding the kernel $E(x, t)$ see [4].

In this paper, we extend (1.4) to be the general of the nonlinear form

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)-c^{2} \square^{k} u(x, t)=f(x, t, u(x, t)) \tag{1.5}
\end{equation*}
$$

for $(x, t) \in \mathbb{R}^{n} \times(0, \infty)$ and with the following conditions on u and f as follows,
(1) $u(x, t) \in C^{(2 k)}\left(\mathbb{R}^{n}\right)$ for any $t>0$ where $C^{(2 k)}\left(\mathbb{R}^{n}\right)$ is the space of continuous function with $2 k$-derivatives.
(2) f satisfies the Lipchitz condition, that is

$$
|f(x, t, u)-f(x, t, w)| \leq A|u-w|
$$

where A is constant and $0<A<1$.
(3)

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}|f(x, t, u(x, t))| d x d t<\infty
$$

for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, t \in(0, \infty)$ and $u(x, t)$ is continuous function on $\mathbb{R}^{n} \times(0, \infty)$.

Under such conditions of f, u and for the spectrum of $E(x, t)$, we obtain the convolution

$$
u(x, t)=E(x, t) * f(x, t, u(x, t))
$$

as a unique solution in the compact subset of $\mathbb{R}^{n} \times(0, \infty)$ and $E(x, t)$ is an elementary solution defined by (2.5).

2 Preliminaries

Definition 2.1. Let $f(x) \in \mathbb{L}_{1}\left(\mathbb{R}^{n}\right)$-the space of integrable function in \mathbb{R}^{n}. The Fourier transform of $f(x)$ is defined by

$$
\begin{equation*}
\widehat{f}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i(\xi, x)} f(x) d x \tag{2.1}
\end{equation*}
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right), x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n},(\xi, x)=\xi_{1} x_{1}+\xi_{2} x_{2}+$ $\cdots+\xi_{n} x_{n}$ is the usual inner product in \mathbb{R}^{n} and $d x=d x_{1} d x_{2} \ldots d x_{n}$.

Also, the inverse of Fourier transform is defined by

$$
\begin{equation*}
f(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i(\xi, x)} \widehat{f}(\xi) d \xi \tag{2.2}
\end{equation*}
$$

Definition 2.2. The spectrum of the kernel $E(x, t)$ defined by (2.5) is the bounded support of the Fourier transform $\widehat{E(\xi, t)}$ for any fixed $t>0$.

Definition 2.3. Let $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ be a point in \mathbb{R}^{n} and we write

$$
u=\xi_{1}^{2}+\xi_{2}^{2}+\ldots+\xi_{p}^{2}-\xi_{p+1}^{2}-\xi_{p+2}^{2}-\ldots-\xi_{p+q}^{2}, \quad p+q=n .
$$

Denote by

$$
\Gamma_{+}=\left\{\xi \in \mathbb{R}^{n}: \xi_{1}>0 \text { and } u>0\right\}
$$

the set of an interior of the forward cone, and $\bar{\Gamma}_{+}$denotes the closure of Γ_{+}.
Let Ω be spectrum of $E(x, t)$ defined by Definition 2.2 for any fixed $t>0$ and $\Omega \subset \bar{\Gamma}_{+}$. Let $\widehat{E(\xi, t)}$ be the Fourier transform of $E(x, t)$ and define

$$
\widehat{E(\xi, t)}=\left\{\begin{array}{cl}
\frac{1}{(2 \pi)^{n / 2}} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}\right] & \text { for } \xi \in \Gamma_{+}, \tag{2.3}\\
0 & \text { for } \xi \notin \Gamma_{+} .
\end{array}\right.
$$

Lemma 2.1. Let L be the operator defined by

$$
\begin{equation*}
\mathrm{L}=\frac{\partial}{\partial t}-c^{2} \square^{k} \tag{2.4}
\end{equation*}
$$

where \square^{k} is the ultra-hyperbolic operator iterated k-times defined by

$$
\square^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\frac{\partial^{2}}{\partial x_{p+2}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}
$$

$p+q=n$ is the dimension of $\mathbb{R}^{n},\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, t \in(0, \infty), k$ is a positive integer and c is a positive constant. Then we obtain

$$
\begin{equation*}
E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}+i(\xi, x)\right] d \xi \tag{2.5}
\end{equation*}
$$

as a elementary solution of (2.4) in the spectrum $\Omega \subset \mathbb{R}^{n}$ for $t>0$.

Proof. Let $\operatorname{LE}(x, t)=\delta(x, t)$ where $E(x, t)$ is the kernel or the elementary solution of operator L and δ is the Dirac-delta distribution. Thus

$$
\frac{\partial}{\partial t} E(x, t)-c^{2} \square^{k} E(x, t)=\delta(x) \delta(t)
$$

Take the Fourier transform defined by (2.1) to both sides of the equation, we obtain

$$
\frac{\partial}{\partial t} \widehat{E(\xi, t)}-c^{2}\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k} \widehat{E(\xi, t)}=\frac{1}{(2 \pi)^{n / 2}} \delta(t)
$$

Thus

$$
\widehat{E(\xi, t)}=\frac{H(t)}{(2 \pi)^{n / 2}} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}\right]
$$

where $H(t)$ is the Heaviside function. Since $H(t)=1$ for $t>0$. Therefore,

$$
\widehat{E(\xi, t)}=\frac{1}{(2 \pi)^{n / 2}} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}\right]
$$

which has been already defined by (2.3). Thus

$$
E(x, t)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i(\xi, x)} \widehat{E(\xi, t)} d \xi=\frac{1}{(2 \pi)^{n / 2}} \int_{\Omega} e^{i(\xi, x)} \widehat{E(\xi, t)} d \xi
$$

where Ω is the spectrum of $E(x, t)$. Thus from (2.3)
$E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}+i(\xi, x)\right] d \xi \quad$ for $t>0$.

Definition 2.4. Let us extend $E(x, t)$ to $\mathbb{R}^{n} \times \mathbb{R}$ by setting
$E(x, t)=\left\{\begin{array}{cc}\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}+i(\xi, x)\right] d \xi & \text { for } t>0, \\ 0 & \text { for } t \leq 0,\end{array}\right.$

3 Main Results

Theorem 3.1. The kernel $E(x, t)$ defined by (2.5) have the following properties:
(1) $E(x, t) \in C^{\infty}$-the space infinitely differentiable.
(2) $\left(\frac{\partial}{\partial t}-c^{2} \square^{k}\right) E(x, t)=0$ for $t>0$.
(3)

$$
|E(x, t)| \leq \frac{2^{2-n}}{\pi^{n / 2}} \frac{M(t)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)}, \quad \text { for } t>0,
$$

where $M(t)$ is a function of t in the spectrum Ω and Γ denote the Gamma function. Thus $E(x, t)$ is bounded for any fixed $t>0$.
(4) $\lim _{t \rightarrow 0} E(x, t)=\delta$.

Proof.

(1) From (2.5), since

$$
\frac{\partial^{n}}{\partial x^{n}} E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \frac{\partial^{n}}{\partial x^{n}} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}+i(\xi, x)\right] d \xi .
$$

Thus $E(x, t) \in C^{\infty}$ for $x \in \mathbb{R}^{n}, t>0$.
(2) By computing directly, we obtain

$$
\left(\frac{\partial}{\partial t}-c^{2} \square^{k}\right) E(x, t)=0 .
$$

(3) We have

$$
\begin{gathered}
E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}+i(\xi, x)\right] d \xi . \\
|E(x, t)| \leq \frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}\right] d \xi .
\end{gathered}
$$

By changing to bipolar coordinates

$$
\begin{aligned}
& \xi_{1}=r \omega_{1}, \xi_{2}=r \omega_{2}, \ldots, \xi_{p}=r \omega_{p} \quad \text { and } \\
& \xi_{p+1}=s \omega_{p+1}, \xi_{p+2}=s \omega_{p+2}, \ldots, \xi_{p+q}=s \omega_{p+q}
\end{aligned}
$$

where $\sum_{i=1}^{p} \omega_{i}^{2}=1$ and $\sum_{j=p+1}^{p+q} \omega_{j}^{2}=1$. Thus

$$
|E(x, t)| \leq \frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(s^{2}-r^{2}\right)^{k}\right] r^{p-1} s^{q-1} d r d s d \Omega_{p} d \Omega_{q}
$$

where $d \xi=r^{p-1} s^{q-1} d r d s d \Omega_{p} d \Omega_{q}, d \Omega_{p}$ and Ω_{q} are the elements of surface area of the unit sphere in \mathbb{R}^{p} and \mathbb{R}^{q} respectively. Since $\Omega \subset \mathbb{R}^{n}$ is the spectrum of $E(x, t)$ and we suppose $0 \leq r \leq R$ and $0 \leq s \leq L$ where R and L are constants. Thus we obtain

$$
\begin{align*}
|E(x, t)| & \leq \frac{\Omega_{p} \Omega_{q}}{(2 \pi)^{n}} \int_{0}^{R} \int_{0}^{L} \exp \left[c^{2} t\left(s^{2}-r^{2}\right)^{k}\right] r^{p-1} s^{q-1} d s d r \\
& =\frac{\Omega_{p} \Omega_{q}}{(2 \pi)^{n}} M(t) \quad \text { for any fixed } t>0 \text { in the spectrum } \Omega \\
& =\frac{2^{2-n}}{\pi^{n / 2}} \frac{M(t)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)} \tag{3.1}
\end{align*}
$$

where

$$
\begin{equation*}
M(t)=\int_{0}^{R} \int_{0}^{L} \exp \left[c^{2} t\left(s^{2}-r^{2}\right)^{k}\right] r^{p-1} s^{q-1} d s d r \tag{3.2}
\end{equation*}
$$

is a function of

$$
t>0, \quad \Omega_{p}=\frac{2 \pi^{p / 2}}{\Gamma\left(\frac{p}{2}\right)} \quad \text { and } \quad \Omega_{q}=\frac{2 \pi^{p / 2}}{\Gamma\left(\frac{q}{2}\right)} .
$$

Thus, for any fixed $t>0, E(x, t)$ is bounded.
(4) $\mathrm{By}(2.5)$, we have

$$
E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}-\sum_{i=1}^{p} \xi_{i}^{2}\right)^{k}+i(\xi, x)\right] d \xi
$$

Since $E(x, t)$ exists, then

$$
\begin{aligned}
\lim _{t \rightarrow 0} E(x, t) & =\frac{1}{(2 \pi)^{n}} \int_{\Omega} e^{i(\xi, x)} d \xi \\
& =\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i(\xi, x)} d \xi \\
& =\delta(x), \quad \text { for } \quad x \in \mathbb{R}^{n}
\end{aligned}
$$

See [3, p. 396, Eq. (10.2.19b)].

Theorem 3.2. Given the nonlinear equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)-c^{2} \square^{k} u(x, t)=f(x, t, u(x, t)) \tag{3.3}
\end{equation*}
$$

for $(x, t) \in \mathbb{R}^{n} \times(0, \infty), k$ is positive number and with the following conditions on u and f as follows,
(1) $u(x, t) \in C^{(2 k)}\left(\mathbb{R}^{n}\right)$ for any $t>0$ where $C^{(2 k)}\left(\mathbb{R}^{n}\right)$ is the space of continuous function with $2 k$-derivatives.
(2) f satisfies the Lipchitz condition, that is

$$
|f(x, t, u)-f(x, t, w)| \leq A|u-w|
$$

where A is constant and $0<A<1$.
(3)

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}|f(x, t, u(x, t))| d x d t<\infty
$$

for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, t \in(0, \infty)$ and $u(x, t)$ is continuous function on $\mathbb{R}^{n} \times(0, \infty)$.

Then, for the spectrum of $E(x, t)$ we obtain the convolution

$$
\begin{equation*}
u(x, t)=E(x, t) * f(x, t, u(x, t)) \tag{3.4}
\end{equation*}
$$

as a unique solution of (3.3) for $x \in \Omega_{0}$ where Ω_{0} is an compact subset of $\mathbb{R}^{n}, 0 \leq t \leq T$ with T is constant and $E(x, t)$ is an elementary solution defined by (2.5) and also $u(x, t)$ is bounded.

In particular, if we put $k=1$ and $q=0$ in (3.3) then (3.3) reduces to the nonlinear heat equation.

Proof. Convolving both sides of (3.3) with $E(x, t)$ and then we obtain the solution

$$
u(x, t)=E(x, t) * f(x, t, u(x, t))
$$

or

$$
u(x, t)=\int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}} E(r, s) f(x-r, t-s, u(x-r, t-s)) d r d s
$$

where $E(r, s)$ is given by Definition 2.4
We next show that $u(x, t)$ is bounded on $\mathbb{R}^{n} \times(0, \infty)$. We have

$$
\begin{aligned}
|u(x, t)| & \leq \int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}}|E(r, s)||f(x-r, t-s, u(x-r, t-s))| d r d s \\
& \leq \frac{2^{2-n}}{\pi^{n / 2}} \frac{N \cdot M(t)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)}
\end{aligned}
$$

by the condition (3) and (3.1) where

$$
N=\int_{0}^{\infty} \int_{\mathbb{R}^{n}}|f(x, t, u(x, t))| d x d t
$$

Thus $u(x, t)$ is bounded on $\mathbb{R}^{n} \times(0, \infty)$.
To show that $u(x, t)$ is unique, suppose there is another solution $w(x, t)$ of equation (3.3). Let the operator

$$
\mathrm{L}=\frac{\partial}{\partial t}-c^{2} \square^{k}
$$

then (3.3) can be written in the form

$$
\mathrm{L} u(x, t)=f(x, t, u(x, t)) .
$$

Thus

$$
\mathrm{L} u(x, t)-\mathrm{L} w(x, t)=f(x, t, u(x, t))-f(x, t, w(x, t)) .
$$

By the condition (2) of the Theorem,

$$
\begin{equation*}
|\mathrm{L} u(x, t)-\mathrm{L} w(x, t)| \leq A|u(x, t)-w(x, t)| . \tag{3.5}
\end{equation*}
$$

Let $\Omega_{0} \times(0, T]$ be compact subset of $\mathbb{R}^{n} \times(0, \infty)$ and L: $C^{(2 k)}\left(\Omega_{0}\right) \longrightarrow$ $C^{(2 k)}\left(\Omega_{0}\right)$ for $0 \leq t \leq T$.

Now $\left(C^{(2 k)}\left(\Omega_{0}\right),\|\cdot\|\right)$ is a Banach space where $u(x, t) \in C^{(2 k)}\left(\Omega_{0}\right)$ for $0 \leq$ $t \leq T,\|\cdot\|$ given by

$$
\|u(x, t)\|=\sup _{x \in \Omega_{0}}|u(x, t)| .
$$

Then, from (3.5) with $0<A<1$, the operator L is a contraction mapping on $C^{(2 k)}\left(\Omega_{0}\right)$. Since $\left(C^{(2 k)}\left(\Omega_{0}\right),\|\cdot\|\right)$ is a Banach space and L: $C^{(2 k)}\left(\Omega_{0}\right) \longrightarrow$ $C^{(2 k)}\left(\Omega_{0}\right)$ is a contraction mapping on $C^{(2 k)}\left(\Omega_{0}\right)$, by Contraction Theorem, see [3, p. 300], we obtain the operator L has a fixed point and has uniqueness property. Thus $u(x, t)=w(x, t)$. It follows that the solution $u(x, t)$ of (3.3) is unique for $(x, t) \in \Omega_{0} \times(0, T]$ where $u(x, t)$ is defined by (3.4).

In particular, if we put $k=1$ and $q=0$ in (3.3) then (3.3) reduces to the nonlinear heat equation

$$
\frac{\partial}{\partial t} u(x, t)-c^{2} \Delta u(x, t)=f(x, t, u(x, t))
$$

which has solution

$$
u(x, t)=E(x, t) * f(x, t, u(x, t))
$$

where $E(x, t)$ is defined by (2.5) with $k=1$ and $q=0$. That is complete of proof.

Acknowledgement. The authors would like to thank The Thailand Research Fund for financial support.

REFERENCES

[1] F. John, "Partial Differential Equations", $4^{\text {th }}$ Edition, Springer-Verlag, New York (1982).
[2] R. Haberman, "Elementary Applied Partial Differential Equations", $2{ }^{\text {nd }}$ Edition, Prentice-Hall International, Inc. (1983).
[3] E. Kreyszig, "Introductory Functional Analysis with Applications", John Wiley \& Sons Inc. (1978).
[4] K. Nonlaopon and A. Kananthai, On the Ultrahyperbolic Heat Kernel, International Journal of Applied Mathematics, 13 (2) (2003), 215-225.

[^0]: \#752/08. Received: 07/III/08. Accepted: 08/III/09.
 *Supported by The Commission on Higher Education and the Thailand Research Fund (MRG5180058).

