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1 Introduction

Support Vector Machines (SVM) [7, 12, 38] has been used in the past years

for solving many real life applications. Some of them are pattern recognition

and classification problems as for example isolated handwritten digit recog-

nition [9, 10, 12, 33, 34] object recognition [6], speaker identification [32],

face detection images [27, 28], text categorization [24] and some nonlinear least

squares problems as the inverse density estimation problem [40]. The SVM tech-

nique is based on finding the minimal of a single linear constrained quadratic

problem subject to lower and upper bounds. Because of the nature of the appli-

cations, the quadratic problem to solve is large with dense (and mostly bad

conditioned) Hessian. Therefore, efficient low cost optimization algorithms

are required.

Different techniques and methods have been used (e.g. [14, 19, 27, 35]), some

of them are projected gradient types. However, dealing with dense large scale

problems is not easy. Besides, the difficulty when using projected gradient

type methods is that the exact projection over the whole constrained set is not

explicitly available.

In this paper we consider the Spectral Projected Gradient (SPG) method [5]

to solve the SVM optimization problem. The SPG method is a low computa-

tional cost and storage since only requires first order information, few floating

point operations per iteration, and few function evaluations since it does not

required an exhaustive line search strategy as other projected type methods.

It utilizes a nonmonotone line search globalization scheme that guarantees con-

vergence without requiring the objective function to decrease at every iteration.

These properties of the SPG method make it very attractive for solving large

scale problems as it is shown in [5].

In order to solve the projection problem arising at each iteration of the SPG

method, we present a new algorithm based on the solution of the Karush-Kuhn-

Tucker (KKT) conditions, the so-called Projected-KKT algorithm. The idea

is to solve a reduction of the linear system associated to the KKT conditions

by using a partition into three sets of indices. If the partition is optimal, the

solution of the projection problem is found. When the partition is not optimal,

the sets are updated trying to satisfy the strict complementarity conditions and a
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new linear system is solved. Exact formulas can be derived for the solution of

the linear system so each inner iteration is very cheap. The algorithm iterates

until a solution is found. This idea is of the same spirit as that of the algorithm

presented by Júdice and Pires in [25] but the Projected-KKT algorithm allows

to handle lower and upper bounds in contrast with the Júdice and Pires scheme.

Besides, comparing both algorithms in the case of two index sets we observe

that they follow completely different strategies for moving the indices between

sets. Therefore, both algorithms generate different sequence of iterates.

Because there is not a mathematical equation for the projection over the whole

constrained set but the projection over each restriction is easy to compute with

exact formulations we also consider, following Birgin et al. [3], a version of the

Dykstra’s alternating method for solving the projection problem.

Dai and Fletcher in [14] propose an algorithm based on secant approxima-

tion to solve quadratic programming problems with single linear constraints and

bounds in the case that the Hessian matrix of the quadratic function is diagonal

and positive definite. Therefore, this algorithm can be also used to solve the

projection problem as it is illustrated in [14].

In this work we propose to solve the SVM problem with the Spectral Projected

Gradient (SPG) method but computing the projection over the whole constrained

set by three different projection techniques: the proposed Projected-KKT algo-

rithm, a version of the Dykstra’s algorithm, and the recently developed algorithm

based on secant approximations due to Dai and Fletcher. The nature of these

methods is different but we consider that their comparison is fair since they are all

viable, and potentially low cost, approaches for solving the quadratic problem.

The SPG method assures convergence to a stationary point of the constrained

quadratic problem from any initial guess (see [3, 5]). Also, the SPG algorithm

utilizes a nonmonotone line search strategy that does not force the objective

function to decrease at each iteration which reduces the number of function

evaluations when it is compared with a monotone line search.

The SPG method has also been used in the SVM context in [35, 41]. In [35]

the inner quadratic subproblems (arising when using GVP or SPG methods) are

solved via the bisection-like algorithm proposed by Pardalos and Kovoor [29].

In [41] the emphasis relies on the decomposition techniques and the develop-
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ment of parallel software. There, the secant-based algorithm by Dai and Fletcher

is used for solving the large size projection subproblems. Our work studies dif-

ferent alternatives for solving the projection subproblem and the impact on the

SPG method by performing extensive numerical experiments with SVM-type

problems. We show that the Projected-KKT algorithm we propose is competi-

tive with the secant-based algorithm introduced in [14].

The outline of the paper is the following. In the next two sections we give a

brief introduction to SVM, we describe the optimization problem to be solved

and we introduce the SPG method when applied to the SVM optimization

problem. The following section is devoted to present the projection strategies.

The last section presents numerical results with the three strategies for randomly

generated problems and for several interesting real life problems as detecting

face images, object recognition, text categorization problems, and isolated hand-

written digit recognition among others.

2 The Support Vector Machine Problem

The Support Vector Machines (SVM) is an interesting classification technique

developed by Vapnik and his group at AT&T Bell laboratories [12, 38]. In this

section, we give a brief introduction to this technique and describe the quadratic

optimization problem to be solved when using SVM. The notation adopted in

this section is, with slight modifications, that of [27].

Let us consider the given data set {(xi , yi ), i = 1, . . . , m with xi ∈ Rn and

yi ∈ Z}. In the SVM context, the optimization problem corresponding to the

case in which the given data is linearly separable is the following

min(w,b)
1
2‖w‖2

subject to yi (w
T xi + b) ≥ 1 ∀ i = 1, . . . , m,

(1)

where w ∈ Rn and b ∈ R.

In order to motivate this optimization problem let us consider, for simplicity,

only the cases where yi = 1 or yi = −1, for all i . In fact, we will consider only

these cases in the whole paper. Therefore, we have two index sets, these are:

I1 = {i : yi = 1} and I−1 = {i : yi = −1} corresponding to two classes, say
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Class 1 and Class 2, respectively, according to which class each xi belongs to.

Notice that I1
⋃

I−1 = {1, . . . , m}.

To solve problem (1) means to find the hyperplane with normal vector w that

maximizes the separation margin between Class 1 and Class 2. Once a solution

(w∗, b∗) of (1) is found, given any point x ∈ Rn , the value of the function

f (x) = sign(w∗T x + b∗) indicates to which class this point belongs. Observe

that the number of constraints of problem (1) is equal to the number of data

samples which, for real life problems, is large.

The support vectors are called the vectors from the given data set where at

least one of the constraints in the feasible set of (1) is satisfied as equality. It is

easy to see that these support vectors necessarily exist. Indeed, if

w∗T xi + b∗ > 1 ∀ i ∈ I1 or w∗T xi + b∗ < −1 ∀ i ∈ I−1,

then there exists a pair (w̃, b̃) with ‖w̃‖ = ‖w∗‖ such that, for any i ∈ I1,

w̃T xi + b̃ = 1 and, for any i ∈ I−1, w̃T xi + b̃ = −1.

The dual problem corresponding to problem (1) is a quadratic program

of the form
maxλ eT λ − 1

2λT Dλ

subject to yT λ = 0

λ ≥ 0,

(2)

where λ = (λ1, . . . , λm)T are the Lagrange multipliers, y = (y1, . . . , ym)T , e is

the m-vector of all ones, and D ∈ Rm×m is the symmetric positive semi-definite

matrix defined as Di j = (yi xi )
T (y j x j ). Let us call λ∗ a solution of (2). Then we

can recover the solution (w∗, b∗) of (1) by using duality theory. That is,

w∗ =
m∑

i=1

λ∗
i yi x̂i (3)

where the support vectors x̂i are the ones corresponding to λ∗
i > 0, so b∗ solves

the equation

w∗T x̂i + b∗ = yi (4)

for any support vector.
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Then, the decision function, that is the function that says if a given point x is

in Class 1 or 2, can be written as

f (x) = sign

(
m∑

i=1

λ∗
i yi x̂

T
i x + b∗

)

,

with λ∗ the optimal multiplier vector. This is saying that for any x ∈ Rn if

f (x) > 0, then x is on Class 1, and if f (x) < 0, then x is on Class 2.

Hence, in order to solve (1) we can just solve the dual problem (2). One ad-

vantage of doing this is that constraints in (2) are simpler than in the original

problem. Another important advantage is that working with the dual problem

the dimension of the feature space for the classification can be increased with-

out increasing the dimension of the optimization problem to solve. This last

comment will become clearer in the following.

If the data set is linearly nonseparable ([13], this is, that there does not ex-

ist a solution of problem (1)) then two variants are considered. On one hand,

(1) is changed to

min(w,b,ξ)
1
2‖w‖2 + C

∑m
i=1 ξ h

i

subject to yi (w
T xi + b) ≥ 1 − ξi i = 1, . . . , m,

ξi ≥ 0, i = 1, . . . , m,

(5)

where h and C are positive constants to be chosen and ξ = (ξ1, . . . , ξm) is a

vector with variables that measure the amount of violation of the constraints.

Additionally, in the nonseparable case, the nonlinear decision surface is com-

puted by mapping the input variable x into a higher dimensional “feature space”

and by working with linear classification in that space. In other words, we define

an application for x ∈ Rn into a “feature vector”:

x −→ 8(x) =
(
a1φ1(x), a2φ2(x), . . . , anφn(x), . . .

)T
,

where ai ∈ R and {φn}∞n=1 are some real functions. So, in the nonseparable

case, the primal problem is obtained by substituting the variable x with the new

“feature vector” 8(x) in (5).
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The dual problem corresponding to (5) (for h = 1) is given by

maxλ eT λ − 1
2λT Dλ

subject to yT λ = 0

0 ≤ λi ≤ C for i = 1, . . . , m

(6)

where D ∈ Rm×m is a symmetric positive semi-definite matrix with positive

diagonal, defined as Di j = yi y j8(xi )
T 8(x j ).

Observe that the dimension of problem (6) is the same of problem (2) and

therefore, the computational effort for solving it is the same.

In practice, an explicit description of 8 is not needed. This is avoided by

using the concept of kernel function K . Let K be defined as K (x, y) =

8(x)T 8(y). Therefore, in problem (6) the matrix D is given by Di j =

yi y j K (xi , x j ). Using the kernel definition, the decision function can be re-

written as

f (x) = sign

(
m∑

i=1

yiλ
∗
i K (x, xi ) + b∗

)

,

which is now a nonlinear function given by linear superposition of kernel func-

tions (one for each support vector). Therefore, in theory, what is really needed

is to find a function that preserves, in higher dimensional spaces, the properties

of the inner product, these are the kernel functions. We refer to [9] for the in-

terested reader. In practice, different kernel functions are known and they are

used for SVM problems. Some work has even been performed with non positive

semi-definite Kernels as the sigmoid (see [23]). Experimental knowledge and

data distribution may suggest the kernel function to use. But to find the right

kernel for each application is a difficult task that goes beyond our work. In our

numerical experimentation we use the suggested kernels in the literature.

In this work we are interested in solving the convex quadratic Problem (6).

Observe that the Hessian of the objective function has dimension m × m being

m the number of data samples, therefore it is usually large for real applications.

Besides, the matrix is dense. Therefore, low cost and storage methods are prefer-

able for solving it. We propose to solve it with the SPG method which is de-

scribed in the next section.

Finally, observe that if the data is linearly separable, rank(D) = n if n < m

(which is usually the case in practice). Therefore, in these instances the matrix
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is singular. In the case of using the kernel, the rank of the matrix D depends

on the dimension of the feature space given by the kernel. Larger this dimen-

sion is, larger is the rank of D. We will show that our proposal Projected-KKT

is very competitive when used with SPG in the case the matrix D is (or nearly)

singular.

3 Application of the Spectral Projected Gradient Method

to the SVM Problem

Let � be a closed and convex set. The Spectral Projected Gradient (SPG)

method [5] applied to any constrained optimization problem of the form

min f (λ)

subject to λ ∈ �
(7)

are recently developed iterative techniques, based on the Spectral Gradient

(SG) method, that allow to minimize a nonlinear function over a convex set.

The SG method solves unconstrained optimization problems by using as a search

direction the negative gradient with a particular choice of the steplength named

spectral length (for more details see [30]). This direction is called the spec-

tral gradient step. The SG method has shown to be an efficient technique for

solving large scale problems as is shown in [30] where the authors compare

the SG method with the popular extensions of the conjugate gradient meth-

ods PR+ and CONMIN developed by Gilbert and Nocedal [20] and Shanno

and Phua [36] respectively. They conclude that the SG method outperforms

CONMIN and PR+ in number of gradient evaluations and CPU time for most

of the problems tested.

The SPG method finds a solution of problem (7) by using the projection

of the spectral gradient step over the convex set �, as any projection gradient

method. That is:

λk+1 = λk + ρkdk (8)

where the superscript k corresponds to the iteration, and

dk = P�

(
λk − αk∇ f (λk)

)
− λk,
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with P� denoting the projection operator onto the convex set �. The parameter

αk is the spectral steplength at iteration k, and it is given by

αk =
(sk)T sk

(sk)T zk
, (9)

where

sk = λk − λk−1 and zk = ∇ f (λk) − ∇ f (λk−1).

The steplength ρk is chosen at each iteration such that convergence is guar-

anteed from any initial guess by satisfying, for some M > 0 the following

nonmonotone condition

f (λk+1) ≤ max
0≤ j≤min{k,M−1}

f (λk− j ) + γρk∇ f (λk)
T

dk, (10)

with γ ∈ (0, 1) a chosen parameter.

The SPG method does not guarantee descent of the objective function at ev-

ery iteration in contrast with the classic Projected Gradient method (see [26]),

because of the spectral steplength (9) and the nonmonotone condition (10).

In [5], the authors show that for many examples or applications, this nonmono-

tone behavior of the objective function makes the method very competitive and

sometimes preferable than other optimization techniques. Also, in the SPG

method, the spectral choice of the steplength is the essential feature that adds

efficiency in the projected gradient methodology. The SPG method is a low cost

and storage technique since few floating point operations and only first order

information are required. Moreover, the nonmonotone condition (10) allows the

objective function to increase at some iterations, which implies less function

evaluations than the Armijo type condition (see [15]), used frequently in the

classical projected gradient method or gradient type methods.

For solving the SVM problem (6), we are interested in projecting onto the set

of restrictions � = B ∩H , where

B =
{
λ ∈ Rm : 0 ≤ λi ≤ C for i = 1, . . . , m

}
and

H =
{
λ ∈ Rm : yT λ = 0

}
,

(11)

where y ∈ Rm satisfies |yi | = 1, for all i , and it corresponds to the problem (6).

It is clear that � is a convex set.
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The projection of any u ∈ Rn onto the set B (denoted by PB) does not require

additional floating point operations, and it is given, for i = 1, . . . , m, by

(PB(u))i =






0 if ui < 0

C if ui > C

ui if 0 ≤ ui ≤ C.

(12)

and the projection onto the set H (denoted by PH ), only requires 2 inner prod-

ucts and it is given by:

PH (u) = u +
yT u

yT y
y. (13)

It is important to stress that there is not an explicit mathematical equation for

the projection of any vector over the whole set �. In this work, we propose to

use three different strategies for projection over the set �. One strategy uses the

Dykstra’s algorithm given in [8] and [16], the second one is based on the Karush-

Kuhn-Tucker optimality conditions together with a combinatorial approach, in

the same spirit of the Júdice and Pires algorithm [25], and the third one uses the

Dai and Fletcher secant scheme [14]. We call the second approach the Projected-

KKT algorithm, and it is the one developed in this work.

In the next section, we describe the Dykstra’s and Projected-KKT methods,

and comment on the Dai and Fletcher’s strategy.

4 Projection Strategies

Given u ∈ Rm , we are interested in solving the projection problem

minλ
1
2‖λ − u‖2

2

subject to λ ∈ � = B ∩H .
(14)

Problem (14) is a particular case of a quadratic programming problem, where

the Hessian of the objective function is the identity matrix.

In the following we describe the three methods used for solving this problem.

4.1 Dykstra’s Algorithm

Problem (14) is the minimization of a strictly convex quadratic function over the

intersection of a finite collection of closed and convex sets in the vector space
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Rm . From this point of view, problem (14) can be solved by means of the alter-

nating projection method, first proposed by Dykstra [16] for closed and convex

cones, and later extended by Boyle and Dykstra [8] for closed and convex sets.

Here we consider a particular case, due to Escalante and Raydan ([17, 18]), of

a more general application of Dykstra’s algorithm for solving the least-squares

matrix problem.

The alternating projection method dates back to von Neumann [39] who

treated the problem of finding the projection of a given point in a Hilbert space

onto the intersection of two closed subspaces. Later, Cheney and Goldstein [11]

extended the analysis of von Neumann’s alternating projection scheme to the

case of two closed and convex sets. In particular, they established convergence

under mild assumptions. However, the limit point is not necessarily the clos-

est one in the intersection set. Therefore, the alternating projection method,

proposed by von Neumann, is not useful for problem (14).

Dykstra [16] found a clever modification of von Neumann’s scheme. It guar-

antees convergence to the closest point in the intersection of closed and convex

sets that are not necessarily closed subspaces. Dykstra’s algorithm can also be

obtained via duality (see [22]).

Next we present a version of Dykstra’s algorithm ([17] and [18]) applied to

problem (14).

Algorithm 1 (Dykstra’s algorithm):

Given u ∈ Rm , set λ0 = u, and I 0
B = 0 ∈ Rm .

For k = 0, 1, 2, . . .,

λk = PH (λk) − I k
B

I k+1
B = PB(λk) − λk (15)

λk+1 = PB(λk)

Here I k
B plays the role of the increments introduced by Dykstra [16]. There the

vector of increments I k
H = 0 for all k, since in this case H is a hyperplane (i.e.

a translated subspace).

It is important to note that the numerical performance of Algorithm 1 may be

influenced by the angle between the sets H and B. Next proposition addresses

this topic.
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Proposition 4.1. Let us denote θ the angle formed by the hyperplane defined

by the equation yT λ = 0 and the box constraints. Then, | cos θ | = 1√
m .

Proof. The normal vectors to the box constraints are the coordinate vectors

e j with j = 1, . . . , m. In the SVM application, |y j | = 1 for all j . Therefore,

1 = |(e j )T y| = ‖e j‖‖y‖| cos θ | =
√

m| cos θ | for all j . �

This result shows that for large values of m, the angle between the hyper-

plane and the box constraints is close to π
2 , which may imply that Algorithm 1

requires many iterations for convergence. However, this angle is not the only

element that influence on the behavior of Algorithm 1. The choice of stopping

criteria in Algorithm 1 is also very important. Birgin and Raydan in [4] present

a simple example, where many of the stopping criteria used for alternating pro-

jection methods fail to converge and they propose a robust one. The example

presented in [4] consists of two convex sets: one hyperplane and a set containing

lower and upper bounds of the variables as problem (14). Therefore, project-

ing over simple convex and closed sets as the optimization problem (14) could

take many iterations to converge.

4.2 Projected-KKT Algorithm

The Lagrangian function associated to the problem (14) is given by

L(λ, μ,w, v) =
1

2

m∑

i=1

(ui − λi )
2 + μ

m∑

i=1

yiλi −
m∑

i=1

wiλi −
m∑

i=1

vi (C − λi ).

where μ, w and v are the Lagrange multiplier vectors associated with the equal-

ity constraints, the lower bound constraints and the upper bound constraints

respectively. Therefore, the Karush-Kuhn-Tucker (KKT) conditions of prob-

lem (14) are

−(ui − λi ) + μyi − wi + vi = 0 (16)
m∑

i=1

yiλi = 0 (17)

wiλi = 0 (18)
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vi (C − λi ) = 0 (19)

wi ≥ 0 (20)

vi ≥ 0 (21)

C − λi ≥ 0 (22)

λi ≥ 0 (23)

for all i = 1, . . . , m. Given λ ∈ B let (L , U, I ) be a partition of the index

set N = {1, . . . , m} such that

L =
{

i ∈ N : λi = 0
}
,

U =
{

i ∈ N : λi = C
}
, and

I =
{

i ∈ N : 0 < λi < C
}
.

Solving (14) means to find an optimal partition L , U, I such that equations

(16) to (21) are satisfied.

Let us denote the dimensions of the sets L and U as l and s respectively, so

the dimension of the set I is m − l − s.

From now on we use zB to denote the vector which components are the zi

entries with i ∈ B. So, from the definitions of the sets L ,U and I , and the

equations (18) and (19), we have that

λL = vL = 0 ∈ Rl, wU = 0 ∈ Rs, wI = vI = 0 ∈ Rm−l−s

and λU = CU = (C, C, . . . , C)T ∈ Rs .

Using this notation, we can reduce the KKT system to a system of equations

of order (m + 1) × (m + 1) instead of order (3m + 1) × (3m + 1) and the

unknowns of the reduced KKT system are μ, wL , vU and λI . The reduced

KKT equations can be written as

−uL + μyL − wL = 0 (24)

−uU + CU + μyU + vU = 0 (25)

−uI + λI + μyI = 0 (26)

yT
U CU + yT

I λI = 0. (27)
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The Projected-KKT method is an iterative method that tries to find an optimal

partition by starting with λ0 ∈ B and solving the equations (24) to (27) by

computing

μ =
yU

T CU + yI
T u I

‖yI ‖2
2

(28)

wL = −uL + μyL (29)

vU = −CU + uU − μyU (30)

λI = uI − μyI (31)

The partition (L , U, I ) is optimal if the following conditions are satisfied

0 ≤ λi = ui − μyi , for all i ∈ I (32)

C ≥ λi = ui − μyi , for all i ∈ I (33)

0 ≤ vi = −C + ui − μyi , for all i ∈ U (34)

0 ≤ wi = −ui + μyi , for all i ∈ L (35)

Thus, the idea behind the proposed Projected-KKT algorithm is to rearrange

the indices in the sets L , U and I that do not satisfy equations (32), (33), (34)

and (35). The way that these indices are eliminated from one set and added to

another one is very simple, and it is explained in the following algorithm, where

the expression λk
i denotes the i th component of the vector λ at iteration k.

Algorithm 2 (Projected-KKT algorithm):

• Step 0: Given u ∈ Rm , let N = {1, 2, . . . , m} and k = 0

• Step 1: λk = PH (u),

• Step 2: If 0 ≤ λk
i ≤ C, for all i ∈ N , stop λk is the solution of prob-

lem (14).

• Step 3: λk = PB(λk)

• Step 4: Let Lk = {i ∈ N : λk
i = 0}, U k = {i ∈ N : λk

i = C} and

I k = N − (Lk ⋃
U k),
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• Step 5: If I k = ∅ then

– Step 5.1: If yT λk = 0, stop λk is a vertex solution.

– Step 5.2: If yT λk 6= 0, do:

∗ Step 5.2.1: λk+1 = PH (λk),

∗ Step 5.2.2: k = k + 1 and repeat Step 3 and Step 4.

• Step 6: Compute the solution of the KKT system μk , wLk , vU k and

λI k , using equations (28), (29), (30) and (31)

• Step 7: If conditions (32), (33), (34) and (35) are satisfied, then stop:

λk is the solution of problem (14).

• Step 8: Let

V1 =
{
i ∈ I k : (32) is not satisfied

}

V2 =
{
i ∈ I k : (33) is not satisfied

}

V3 =
{
i ∈ U k : (34) is not satisfied

}

V4 =
{
i ∈ Lk : (35) is not satisfied

}

• Step 9: Lk+1 = (Lk − V4)
⋃

V1, U k+1 = (U k − V3)
⋃

V2, I k+1 =

N − (Lk+1 ⋃
U k+1)

λk+1
i =






0 if i ∈ Lk+1

C if i ∈ U k+1

PB(λk
I ) if i ∈ I k+1

(36)

• Step 10: If I k+1 = ∅ then

– Step 10.1: If yT λk+1 = 0, then stop: λk+1 is the solution of prob-

lem (14).

– Step 10.2: If yT λk+1 6= 0, eliminate an index from Lk+1 or U k+1

and add it to the set I k+1.

• Step 11: k = k + 1 and go to Step 6.
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As we mentioned in the introduction the proposed Projected-KKT algorithm

can be viewed as a finite termination algorithm in the sense that three finite

index sets are defined at each iteration. The indices move from one set to an-

other depending on the solution of the KKT first order optimality conditions.

This idea is of the same spirit as that of the active set method or the algo-

rithm presented by Júdice and Pires in [25]. The Projected-KKT algorithm

allows to handle lower and upper bounds in contrast with the Júdice an Pires

scheme. Comparing both algorithms in the case of two index sets we observe

that they follow completely different strategies for moving the indices between

sets. Therefore, both algorithms generate different sequence of iterates. Also,

the initial iterate in the Projected-KKT algorithm is found by making use of the

type of problem being solved. This choice, which is relevant to the performance

of the algorithm, is different from the choice of the initial index set in [25].

Moreover, the Projected-KKT algorithm exploits the fact that the Hessian of the

objective function is the identity.

The algorithm is well defined since every iteration has a solution and because

there is a finite choice for the index sets the algorithm terminates in a finite num-

ber of iterations unless cycling occurs. In practice for diagonal positive definite

Hessians, as in the projection problem, cycling never occurs. In fact, we have

performed extensive experimentation using the algorithm for solving quadratic

problems with any positive semi-definitive Hessian and we have observed that

cycling is associated with the deficient rank of this matrix.

4.3 Dai and Fletcher method

Dai and Fletcher in [14] presented an optimization method for solving lin-

early constrained quadratic programming problems, where the Hessian matrix

is diagonal and positive definite as the projected problem (14). This optimiza-

tion strategy is based on secant approximations. The authors show numeri-

cal results that illustrate the performance of a modification of the SPG method

and their projection strategy for some randomly generated problems and real

life SVM problems. Details on the Dai and Fletcher algorithm can be found

in [14]. The Dai and Fletcher scheme will be used in this work as another

projection strategy for solving problem (14) together with the SPG method pre-

sented by Raydan in [5].
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5 Numerical Experimentation

In this section we present the numerical results obtained by applying the SPG

method for solving the SVM quadratic programming problem (6). For this

quadratic problem the convex constrained set is denoted by � = B∩H , where

the sets B andH are given in equation (11). The projection over the convex set

� is computed by three different methods: The Dykstra’s algorithm presented

in Section 4.1, the Projected-KKT algorithm presented in Section 4.2, and the

recently developed method by Dai and Fletcher [14]. Our aim in this section

is to compare the performance of the three different projection schemes when

using SPG method for solving random and real life SVM problems.

5.1 Test Problems

We consider two different kind of test problems: the first class consists of syn-

thetic data randomly generated and the second class is taken from real applica-

tions databases. The kernels considered in this work are polynomials of degree

d given by K (x, y) = (1 + x T y)
d and a Gaussian function with parameter σ

given by

K (x, y) = exp
(

−
‖x − y‖2

σ

)
.

Randomly generated test problems: the first four databases of this group

consist of 250 nonlinearly separable samples of dimension two, where each

component of the sample was randomly generated in the interval [−0.5, 0.5]

and has an uniform distribution. The classification of each sample xi is given by

yi =






−1 if f j (xi ) ≤ 0, i ≤ 245

−1 if f j (xi ) > 0, i ≥ 245

1 if f j (xi ) > 0, i < 245

1 if f j (xi ) ≤ 0, i > 245,

(37)

where j = 1, 2, 3, 4. For these randomly generated problems, the mathematical

expressions of the real separators and their level curves are known, so they can

be drawn in R3 or in R2. From now on xi (k) denotes the k-th component of the

vector xi . Each value of j generates a database as follows:
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lineal_wk: corresponds to j = 1 and f1(xi ) = xi (1) + xi (2).

No kernel is considered for this database.

sinoid_kp5: corresponds to j = 2 and f2(xi ) = xi (2) − 0.25 sin(8xi (1)).

A polynomial of degree five is considered as the kernel for this database.

polin3_kp3: corresponds to j = 3 and f3(xi ) = xi (2) − 10(xi (1))3.

A polynomial of degree three is used as the kernel for this database.

norm2_kg: corresponds to j = 4 and f4(xi ) = ‖xi‖2
2 − (0.35)2.

A Gaussian kernel with σ = 0.3 is considered for this database.

The remaining databases of this group are:

Riply database: this database is taken from the Statistical Pattern Recognition

Toolbox for Matlab and was proposed by Riply in [31]. It consists of 250

samples non linearly separable of dimension two, with 125 samples in class 1

and 125 samples in class 2. We denote by riply_wk this database without any

kernel, and by riply_kp5 when a polynomial of degree five is used as a kernel.

Madelom database: this database belongs to the NIPS 2003 Feature Selection

Challenge [1]. It consists of 2000 samples of dimension 500, in which 1000

samples belong to class 1 and the other 1000 samples belong to class 2. We

denote by madelom_wk this database without any kernel and by madelom_kg

when a Gaussian kernel with σ = 1 is used.

Real applications databases:

Sonar database: this data was used by Gorman and Sejnowski [21] in their

study of the classification of sonar signals using a neural network. It consists

of 208 non linearly separable samples of dimension 60, but polynomially sep-

arable, representing data from sonar signals bouncing off a metal cylinder and

sonar signals bouncing off a roughly cylindrical rock. Here 111 samples be-

long to class 1 and 97 samples belong to class 2. We denote this database by

sonar_kp3, since we use a polynomial of degree three as a kernel.

Images database: it contains 6977 non linearly separable samples represent-

ing human (2429 samples) and non human (4548 samples) faces taken from

CBCL MIT [37]. Since the number of samples is large we generated four

sets of samples: image500_kp2 containing 500 samples randomly selected
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from the original database; image1500_kp2 with 1500 samples randomly se-

lected from the original database; image4500_kp2 consisting of 4500 samples

randomly taken from the original database; and image6977_kp2 the whole

database. Each sample set maintains the human to non human faces propor-

tion of the complete database. For this database a polynomial of degree two

is used as a kernel.

Arcene database: this database consists of 100 samples of dimension 10000,

where 56 samples are in class 1 and 44 samples are in class 2. These samples

come from mass spectrometry and contain information about cancerigenic and

non cancerigenic cells [1]. Since no kernel is used for this database, we denote

it by arcene_wk.

Dexter database: this set of data belongs to text type classification, since it

tries to determine which of the Reuters articles talk about “corporate acquisi-

tions”. It contains 300 samples of dimension 20000 with 150 samples in class

1 and 150 samples in class 2. We denote it by dexter_wk because no kernel

is used.

Gisette database: the objective of this database is to distinguish the handwrit-

ing images of the digits “9” and “4”. In this database there are 6000 samples

of dimension 5000 with 3000 samples in class 1 and the other 3000 samples in

class 2. We denote it by gisette_kp2 since a polynomial of degree two is used

as a kernel.

The Arcene, Dexter and Gisette databases can be found in NIPS 2003 Feature

Selection Challenge [1].

Ada database: this database intends to determine persons with high income

from census data. It is composed by 4147 samples of dimension 48, where 318

of those are in class 1 and the remaining ones are in class 2. We denote by

ada_wk the database without kernel and by ada_kg the same database when a

Gaussian kernel with σ = 0.5 is used.

Gina database: it is considered as a handwriting digit recognition problem,

since it tries to find out if the handwriting image of a digit is odd or even. This

database has 3153 samples of dimension 970, where 1603 samples are in class

1 and 1550 are in class 2. We denote it by gina_wk since no kernel is used.
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Hiva database: it is related to data representing active and non active compo-

nents again HIV AIDS. It consists of 3845 samples of dimension 1617, where

3710 are in class 1 and 135 are in class 2. We denote it by hiva_wk.

Sylva database: samples in this database contains information about forest

types. It has 13086 samples of dimension 216. We select a subset of 7500

samples from this database, such that 7047 samples are in class 1 and 453 are

in class 2. We denote this subset of data by sylva_kp2 since a polynomial of

degree two is used as a kernel.

The Ada, Gina, Hiva and Sylva databases are part of the WCCI Performance

Prediction Challenge [2].

5.2 Numerical Results

The stopping criterium used in the SPG method is given by

‖P�

(
λk − ∇ f (λk)

)
− λk‖p ≤ tolp for p = 2, ∞, (38)

where tol2 = 10−4 and tol∞ = 10−8. The other input parameters for the SPG

method are: αmin = 10−10, αmax = 1010, M = 10, γ = 10−10, σ1 = 0.1 and

σ2 = 0.9. For more details about these input parameters see [5]. Additionally,

the maximum number of function evaluations and iterations are 750000 and

500000 respectively.

In order to compare the numerical results attained by the SPG method with

the three different projection strategies, we set: in the general Dykstra algo-

rithm, the following stopping criteria,

‖I i−1
B − I i

B‖2
F 6 10−12,

and the maximum number of projections for iteration to 10000. For the Dai

and Fletcher projection scheme, we used |r(λ)| ≤ 10−12 or 1λ ≤ 10−14 as

tolerances for the two criteria proposed by these authors in [14]. The proposed

Projected-KKT is stopped when conditions (32), (33), (34) and (35) are satisfied

or the maximum number of iterations per iteration is 5000.

The initial iterate for the SPG method is randomly generated and is the same

for the three projection strategies used.
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The algorithms were implemented using a fortran 90 compiler and double

precision. The experiments were run in a PC with Intel Core 2 Duo processor,

2.13 MHz and 2 GB RAM memory.

The Table 1 summarizes the main features of the databases considered in

this work. The variables m and n represent the number of samples in each

database and their dimension respectively; class 1 and class 2 in columns 4

and 5 correspond to the amount of samples in each class. In the column 6

denoted by kernel, the words: wk means no kernel is used, kpd means a

polynomial kernel of degree d is considered, and kg(σ ) means that a Gaus-

sian kernel with parameter σ is utilized. This table also includes the rank of

the matrix D in problem (6) for each database, and it is denoted by rankD.

The last column, denoted by condD, shows the condition number of matrix D

for each database.

Database m n class 1 class 2 kernel rankD condD

lineal_wk 250 2 126 124 wk 2 3.77E+14

sinoid_kp5 250 2 123 127 kp5 21 4.38E+14

polin3_kp3 250 2 118 132 kp3 10 3.81E+14

norm2_kg 250 2 144 106 kg(0.30) 126 3.01E+15

riply_wk 250 2 125 125 wk 2 4.70E+14

riply_kp5 250 2 125 125 kp5 21 4.42E+14

madelon_wk 2000 500 1000 1000 wk 500 1.86E+14

madelon_kg 2000 500 1000 1000 kg(1.00) 2000 3.86E+04

sonar_kp3 208 60 111 97 kp3 208 6.84E+05

image500_kp2 500 283 326 174 kp2 499 1.41E+17

image1500_kp2 1500 283 977 523 kp2 1412 1.07E+16

image4500_kp2 4500 283 2933 1567 kp2 4497 1.30E+18

image6977_kp2 6977 283 4548 2429 kp2 6886 1.76E+17

arcene_wk 100 10000 44 56 wk 100 4.30E+03

dexter_wk 300 20000 150 150 wk 300 2.20E+02

gisette_kp2 6000 5000 3000 3000 kp2 6000 3.99E+03

ada_wk 4147 48 1029 3118 wk 42 2.19E+14

ada_kg 4147 48 1029 3118 kg(0.50) 1929 8.84E+15

gina_wk 3153 970 1550 1603 wk 970 3.33E+14

hiva_wk 3845 1617 135 3710 wk 1410 5.99E+14

sylva7500_kp2 7500 216 453 7047 kp2 3861 4.85E+14

Table 1 – Database features.
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The Table 2 shows the CPU time required for the SPG method with the three

projection strategies. The columns denoted by Dykstra, DaiFlet and ProjKKT

contain the CPU time for SPG method with Dykstra’s method, Dai and Fletcher

projection scheme and the proposed Projected-KKT algorithm, respectively.

The numbers inside parenthesis represent the percentage of CPU time con-

sumed by each projection strategy in the SPG method. The best CPU time

for each database and for each value of C is highlighted on Table 2. The asterisk

mark (*) on the right side of CPU times means that the maximum number of

iterations established in the SPG method was reached before convergence.

Tables 3, 4 and 5 show the performance of the SPG method for different

values of the parameter C when the projection over the set � is computed by

Dykstra method, Dai and Fletcher strategy and the proposed Projected-KKT,

respectively. The third column in these tables is denoted by Flag and the values

of this parameter could be 0 (meaning problem (6) was solved); 4 (meaning

that the projection algorithm reached the maximum number of iterations al-

lowed; 2 (the SPG method reached the maximum number of iterations allowed);

and 3 (meaning the SPG method requires more than the maximum number of

function evaluations allowed). In these tables the variables #Iter in column 4,

#EvalF in column 5, MaxPIter in column 6, indicate the number of iterations,

number of function evaluations utilized for the SPG method, and the maximum

number of iterations used by the projection strategy, respectively. The number

appearing in column 7, denoted by MeanPIter gives the average number of

iterations for the projection algorithm. Finally, columns 8 and 9, denoted by

pgtwon and pginfn, represent the values of the stopping criteria given by ex-

pression (38) when p = 2 and p = ∞, respectively.

The last table, Table 6, illustrates the type of solution obtained by the SPG

method with different values of the parameter C for the three algorithms for

projecting over the set �. Columns 4, 5 and 6 show the number of support

vectors that the optimal solution contains for each projection strategy. The last

three columns of this table present the percentage of samples badly classified

i.e., samples that appear located on the wrong hyperplane.

In all the tables presented in this work, observe that for some databases, we

do not present the numerical results for all C , since the numerical behavior of
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the the optimization technique is the same as the one obtained with the biggest

value of C shown in the tables for each database.

Database C Dykstra DaiFlet ProjKKT

lineal_wk 10 1.812 (96.91) (*) 0.116 (24.14) 0.236 (74.58)

lineal_wk 100 17.269 (97.80) 0.604 (30.46) 0.688 (31.98)

lineal_wk 1000 97.662 (97.58) (*) 4.104 (31.38) 2.292 (25.48)

lineal_wk 10000 0.832 (80.77) (*) 36.774 (44.16) 31.306 (24.97)

sinoid_kp5 10 15.989 (98.37) 0.328 (32.93) 0.492 (39.84)

sinoid_kp5 100 54.823 (97.21) 2.008 (27.29) 2.048 (29.49)

sinoid_kp5 1000 325.988 (97.31) 11.189 (28.85) 10.077 (27.43)

sinoid_kp5 10000 1125.946 (96.88) (*) 61.856 (35.25) 57.644 (28.80)

polin3_kp3 10 6.968 (98.51) 0.148 (29.73) 0.160 (35.00)

polin3_kp3 100 21.085 (97.42) 0.800 (31.50) 0.884 (35.29)

polin3_kp3 1000 246.543 (97.72) (*) 10.365 (28.44) 10.813 (23.60)

polin3_kp3 10000 182.647 (90.37) (*) 114.367 (35.76) 134.192 (27.74)

norm2_kg 10 4.916 (97.80) 0.152 (50.00) 0.132 (18.18)

norm2_kg 100 11.237 (96.94) 0.388 (30.93) 0.436 (26.61)

norm2_kg 1000 89.650 (97.07) 4.256 (32.61) 22.997 (29.78)

norm2_kg 10000 203.869 (96.39) 14.065 (39.93) 13.049 (34.49)

riply_wk 10 6.196 (98.32) (*) 0.220 (40.00) 0.356 (55.06)

riply_wk 100 18.165 (97.20) 0.732 (37.16) 0.560 (23.57)

riply_wk 1000 148.537 (97.21) 7.536 (45.22) 5.028 (26.25)

riply_wk 10000 13.561 (73.69) (*) 68.348 (51.07) 47.239 (23.93)

riply_kp5 10 26.734 (97.58) 1.248 (34.30) 1.076 (39.78)

riply_kp5 100 286.534 (97.21) 13.741 (36.01) 12.013 (40.39)

riply_kp5 1000 4030.092 (97.16) (*) 255.900 (44.60) (*) 152.574 (39.96)

riply_kp5 10000 136.653 (82.71) (*) 260.588 (48.43) (*) 199.184 (31.51) (*)

madelon_wk 10 64.812 (58.46) 31.098 (6.55) 33.562 (3.67)

madelon_wk 100 604.186 (53.08) 300.703 (7.03) 304.187 (3.66)

madelon_wk 1000 4665.764 (48.00) (*) 7881.801 (4.26) (*) 3116.455 (3.36) (*)

madelon_wk 10000 5194.993 (38.58) (*) 11391.840 (11.02) (*) 10506.413 (3.58) (*)

madelon_kg 10 14.993 (31.16) 12.789 (4.44) 11.285 (4.08)

madelon_kg 100 17.017 (14.41) 16.245 (3.30) 15.153 (4.12)

sonar_kp3 10 4.588 (88.75) 0.868 (33.18) 0.932 (38.63)

image500_kp2 10 4.036 (90.19) 0.436 (22.94) 0.440 (30.00)

image1500_kp2 10 61.596 (84.26) 11.257 (6.75) 11.905 (7.90)

image4500_kp2 10 1195.367 (64.18) 385.496 (2.48) 412.634 (2.85)

image6977_kp2 10 5580.069 (60.60) 2161.987 (1.65) 2400.370 (2.12)

arcene_wk 10 0.116 (100.00) 0.036 (55.56) 0.036 (77.78)

dexter_wk 10 0.044 (63.64) 0.020 (40.00) 0.020 (20.00)

gisette_kp2 10 56.552 (26.00) 41.791 (1.68) 40.547 (1.81)

ada_wk 10 915.349 (87.49) (*) 166.138 (4.32) 180.827 (5.31)

ada_kg 10 11564.371 (87.71) 1432.045 (3.87) 1437.710 (5.68)

gina_wk 10 2141.522 (38.53) 1341.688 (2.62) 1331.595 (2.29)

gina_wk 100 3101.570 (39.80) 2458.054 (2.90) 1999.141 (2.22)

hiva_wk 10 1856.160 (52.88) 962.012 (2.76) 990.402 (3.87)

hiva_wk 100 12773.686 (54.11) 6055.622 (2.69) 6243.914 (3.89)

sylva7500_kp2 10 10731.107 (68.64) 3026.937 (1.24) 3178.783 (2.22)

sylva7500_kp2 100 26107.464 (66.87) 8151.021 (1.20) 7837.650 (2.18)

sylva7500_kp2 1000 25235.285 (66.52) 7628.405 (1.21) 7839.946 (2.17)

Table 2 – CPU time in seconds used for the SPG method with the three projecting techniques.
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Database C flag # iter # Evalf MaxPIter MeanPIter pgtwon pginfn

lineal_wk 10 4 149 195 10001 338.20 6.93E-08 2.13E-04

lineal_wk 100 0 1104 1720 4042 443.98 1.76E-09 3.38E-05

lineal_wk 1000 4 8090 13004 10001 340.09 3.07E-04 1.20E-02

lineal_wk 10000 4 565 957 10001 32.23 1.41E+06 1.79E+02

sinoid_kp5 10 0 1102 1612 4228 411.02 2.76E-08 9.47E-05

sinoid_kp5 100 0 5287 7886 1303 292.64 7.07E-09 5.17E-05

sinoid_kp5 1000 0 30981 47114 3187 304.96 3.06E-08 9.81E-05

sinoid_kp5 10000 4 124690 180433 10001 263.55 1.40E-01 2.44E-01

polin3_kp3 10 0 416 594 4715 482.31 6.09E-09 5.43E-05

polin3_kp3 100 0 1985 2850 1087 304.42 5.18E-09 4.04E-05

polin3_kp3 1000 4 19275 30896 10001 372.00 3.29E-06 1.40E-03

polin3_kp3 10000 4 63626 92143 10001 73.64 8.80E-01 4.57E-01

norm2_kg 10 0 405 576 743 344.61 1.25E-08 6.19E-05

norm2_kg 100 0 986 1507 701 329.10 3.36E-08 8.97E-05

norm2_kg 1000 0 9046 14553 2856 287.65 1.63E-08 8.32E-05

norm2_kg 10000 0 25671 39051 790 230.08 2.75E-08 8.96E-05

riply_wk 10 4 310 421 10001 559.02 8.95E-06 2.19E-03

riply_wk 100 0 1727 2498 3625 289.84 2.73E-12 1.18E-06

riply_wk 1000 0 15092 21686 4090 270.53 2.90E-14 1.39E-07

riply_wk 10000 4 13099 18988 10001 21.00 1.42E+02 2.15E+00

riply_kp5 10 0 2305 3383 1210 325.66 1.58E-08 6.68E-05

riply_kp5 100 0 28173 42603 4552 283.82 1.80E-08 9.26E-05

riply_kp5 1000 4 400159 606886 10001 280.17 1.08E-06 7.84E-04

riply_kp5 10000 4 89954 115015 10001 34.21 8.89E+01 1.98E+00

madelon_wk 10 0 1168 1832 356 109.95 2.91E-07 9.87E-05

madelon_wk 100 0 11977 19696 688 89.04 5.84E-07 1.00E-04

madelon_wk 1000 4 101695 169778 10001 72.63 2.07E-05 6.40E-04

madelon_wk 10000 4 150051 231844 10001 45.05 2.95E+00 2.05E-01

madelon_kg 10 0 462 691 56 34.15 7.59E-07 9.87E-05

madelon_kg 100 0 634 992 44 14.23 1.68E-07 9.96E-05

sonar_kp3 10 0 2734 4428 112 50.02 1.41E-07 9.83E-05

image500_kp2 10 0 310 461 592 179.85 3.96E-08 6.03E-05

image1500_kp2 10 0 786 1236 910 345.44 9.78E-08 8.27E-05

image4500_kp2 10 0 3738 5929 752 358.00 1.73E-07 9.77E-05

image6977_kp2 10 0 8225 12606 975 465.32 2.10E-08 9.90E-05

arcene_wk 10 0 329 504 80 19.26 6.34E-08 9.97E-05

dexter_wk 10 0 44 46 19 14.00 3.62E-08 5.58E-05

gisette_kp2 10 0 209 296 220 87.27 5.37E-08 9.28E-05

ada_wk 10 4 1229 1817 10001 1104.82 1.88E-05 2.82E-03

ada_kg 10 0 14796 22983 2794 1176.12 8.18E-08 9.59E-05

gina_wk 10 0 22965 36386 122 82.90 5.76E-07 9.92E-05

gina_wk 100 0 33196 53059 122 86.28 8.10E-07 9.95E-05

hiva_wk 10 0 10056 16020 529 193.27 7.48E-08 9.99E-05

hiva_wk 100 0 67240 107262 526 203.80 3.12E-08 9.24E-05

sylva7500_kp2 10 0 10387 16233 1169 748.94 2.07E-07 9.71E-05

sylva7500_kp2 100 0 26693 41740 968 692.03 4.87E-08 1.00E-04

sylva7500_kp2 1000 0 25749 40643 964 689.03 8.00E-08 6.78E-05

Table 3 – Performance of the SPG method with Dykstra projecting technique.

Comp. Appl. Math., Vol. 28, N. 3, 2009



“main” — 2009/10/5 — 18:27 — page 351 — #25

DEBORA CORES et al. 351

Database C flag # iter # Evalf MaxPIter MeanPIter pgtwon pginfn

lineal_wk 10 0 261 372 26 4.34 1.20E-08 7.73E-05

lineal_wk 100 0 1397 2267 17 3.68 2.37E-10 1.24E-05

lineal_wk 1000 0 9310 14722 19 4.52 2.61E-09 3.76E-05

lineal_wk 10000 0 68365 110268 30 9.68 8.93E-09 7.71E-05

sinoid_kp5 10 0 850 1281 9 1.87 2.96E-08 9.95E-05

sinoid_kp5 100 0 5129 7647 11 2.39 3.18E-08 9.53E-05

sinoid_kp5 1000 0 27839 41901 14 3.27 2.32E-08 9.25E-05

sinoid_kp5 10000 0 142689 210385 24 5.47 3.62E-08 8.81E-05

polin3_kp3 10 0 374 536 10 2.63 1.82E-08 8.78E-05

polin3_kp3 100 0 2025 3001 10 2.79 1.06E-08 8.17E-05

polin3_kp3 1000 0 24839 40828 19 3.35 1.70E-08 7.93E-05

polin3_kp3 10000 0 263314 379482 23 5.58 1.66E-08 8.97E-05

norm2_kg 10 0 375 504 17 4.22 7.72E-09 5.19E-05

norm2_kg 100 0 899 1345 19 4.10 2.21E-08 7.59E-05

norm2_kg 1000 0 9555 15487 26 4.95 2.24E-08 8.85E-05

norm2_kg 10000 0 29213 45204 22 7.46 7.14E-08 9.84E-05

riply_wk 10 0 462 707 24 5.95 7.90E-09 6.61E-05

riply_wk 100 0 1689 2463 18 4.51 1.99E-09 3.16E-05

riply_wk 1000 0 15029 22005 26 8.22 1.08E-16 8.44E-09

riply_wk 10000 0 119819 173767 34 12.00 2.69E-10 1.34E-05

riply_kp5 10 0 2865 4233 17 4.56 3.46E-08 9.46E-05

riply_kp5 100 0 31194 46661 20 4.84 3.56E-08 8.80E-05

riply_kp5 1000 2 500001 747304 27 8.69 2.05E-06 8.80E-04

riply_kp5 10000 2 500001 677417 26 9.67 2.07E+01 1.00E+00

madelon_wk 10 0 1263 1972 21 6.86 6.51E-08 4.51E-05

madelon_wk 100 0 11754 19371 25 7.83 5.41E-07 9.31E-05

madelon_wk 1000 3 157426 750000 61 9.51 5.33E-06 3.02E-04

madelon_wk 10000 3 461746 750000 28 13.27 1.07E-02 1.62E-02

madelon_kg 10 0 553 817 5 2.94 4.85E-07 9.40E-05

madelon_kg 100 0 673 1079 7 2.83 4.18E-07 4.60E-05

sonar_kp3 10 0 2707 4421 8 3.79 3.65E-08 7.15E-05

image500_kp2 10 0 282 411 9 5.54 1.16E-08 7.10E-05

image1500_kp2 10 0 865 1335 11 6.02 4.95E-08 9.64E-05

image4500_kp2 10 0 3275 5215 12 6.91 6.68E-08 8.97E-05

image6977_kp2 10 0 8107 12040 12 6.60 6.60E-08 9.56E-05

arcene_wk 10 0 324 483 6 3.33 5.73E-08 9.85E-05

dexter_wk 10 0 44 46 4 2.87 3.62E-08 5.58E-05

gisette_kp2 10 0 202 291 9 4.54 1.58E-07 8.04E-05

ada_wk 10 0 1725 2509 26 9.52 2.73E-08 9.92E-05

ada_kg 10 0 14392 22297 23 8.72 4.99E-08 9.73E-05

gina_wk 10 0 23177 37135 10 3.26 5.40E-07 9.55E-05

gina_wk 100 0 42692 67484 9 4.03 8.10E-07 1.00E-04

hiva_wk 10 0 10699 17130 16 6.16 4.50E-08 9.93E-05

hiva_wk 100 0 67675 107838 15 5.99 1.50E-07 6.46E-05

sylva7500_kp2 10 0 9234 14486 18 5.04 7.83E-08 9.68E-05

sylva7500_kp2 100 0 24618 38663 15 4.80 4.77E-08 9.69E-05

sylva7500_kp2 1000 0 23118 36102 18 4.80 1.21E-07 9.62E-05

Table 4 – Performance of the SPG method with Dai and Fletcher projecting technique.
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Database C flag # iter # Evalf MaxPIter MeanPIter pgtwon pginfn

lineal_wk 10 0 237 349 1341 13.80 1.06E-08 7.27E-05

lineal_wk 100 0 1584 2521 1410 1.79 6.37E-10 2.04E-05

lineal_wk 1000 0 5704 9098 55 0.96 2.60E-09 3.73E-05

lineal_wk 10000 0 78039 126123 84 0.94 1.12E-10 7.84E-06

sinoid_kp5 10 0 1092 1635 13 2.25 5.89E-09 4.07E-05

sinoid_kp5 100 0 5099 7572 27 1.34 1.52E-08 6.45E-05

sinoid_kp5 1000 0 25460 38532 98 1.26 3.97E-08 9.41E-05

sinoid_kp5 10000 0 145933 215893 137 1.41 3.06E-08 9.98E-05

polin3_kp3 10 0 379 532 174 1.88 9.55E-09 8.02E-05

polin3_kp3 100 0 2139 3076 5 1.74 2.25E-08 9.94E-05

polin3_kp3 1000 0 27343 45103 270 0.92 1.71E-08 9.52E-05

polin3_kp3 10000 0 345391 501426 22 1.25 1.02E-08 7.29E-05

norm2_kg 10 0 361 502 3 0.95 4.11E-09 3.04E-05

norm2_kg 100 0 1130 1704 3 1.03 1.21E-08 7.58E-05

norm2_kg 1000 0 56112 84443 6 1.66 2.60E-08 9.61E-05

norm2_kg 10000 0 29618 45864 5 2.31 2.24E-08 9.73E-05

riply_wk 10 0 531 841 2980 6.45 8.67E-09 7.17E-05

riply_wk 100 0 1510 2169 2 0.49 2.96E-14 1.40E-07

riply_wk 1000 0 13524 19900 20 0.48 2.07E-10 1.09E-05

riply_wk 10000 0 127330 185203 3 0.49 2.33E-14 1.13E-07

riply_kp5 10 0 2395 3453 7 2.19 2.08E-08 9.46E-05

riply_kp5 100 0 25414 37950 102 2.69 9.16E-09 6.92E-05

riply_kp5 1000 0 313946 493303 157 2.82 2.70E-08 9.82E-05

riply_kp5 10000 2 500001 678177 4 1.24 3.71E+03 2.72E+01

madelon_wk 10 0 1421 2189 2 0.88 6.60E-08 6.01E-05

madelon_wk 100 0 12410 20345 2 0.88 5.36E-07 9.83E-05

madelon_wk 1000 4 133290 227180 5001 0.64 6.54E-03 1.15E-02

madelon_wk 10000 3 462742 750000 2 0.67 1.38E-01 4.35E-02

madelon_kg 10 0 486 727 2 0.86 2.68E-07 7.75E-05

madelon_kg 100 0 635 997 2 0.86 2.27E-07 7.70E-05

sonar_kp3 10 0 2853 4576 3 1.61 1.26E-08 8.46E-05

image500_kp2 10 0 279 405 5 2.96 1.20E-08 7.34E-05

image1500_kp2 10 0 913 1394 6 2.91 2.81E-07 9.97E-05

image4500_kp2 10 0 3464 5590 7 3.77 5.11E-08 9.82E-05

image6977_kp2 10 0 9032 13228 8 4.09 9.51E-09 1.39E-05

arcene_wk 10 0 330 502 2 0.89 6.93E-08 8.83E-05

dexter_wk 10 0 44 46 2 0.87 3.62E-08 5.58E-05

gisette_kp2 10 0 203 279 4 2.07 1.47E-09 1.89E-05

ada_wk 10 0 1851 2709 19 5.19 4.04E-08 9.00E-05

ada_kg 10 0 14152 22010 8 5.83 5.68E-08 9.95E-05

gina_wk 10 0 23165 36956 3 1.11 5.77E-07 9.84E-05

gina_wk 100 0 34648 55603 3 1.10 6.85E-07 9.47E-05

hiva_wk 10 0 11006 17332 6 4.19 4.87E-08 9.95E-05

hiva_wk 100 0 68881 109814 6 4.29 4.12E-08 9.80E-05

sylva7500_kp2 10 0 9683 14963 10 4.95 4.86E-08 6.52E-05

sylva7500_kp2 100 0 23404 36845 6 4.96 1.58E-07 9.95E-05

sylva7500_kp2 1000 0 23404 36845 6 4.96 1.58E-07 9.95E-05

Table 5 – Performance of the SPG method with Projected-KKT technique.
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# support vectors % of badly classified data

Database m C Dykstra DaiFlet ProjKKT Dykstra DaiFlet ProjKKT

lineal_wk 250 10 3 2 2 5.60 5.60 5.60

lineal_wk 250 100 3 3 3 4.80 4.80 4.80

lineal_wk 250 1000 6 3 3 4.80 4.80 4.80

lineal_wk 250 10000 143 3 3 34.40 4.80 4.80

sinoid_kp5 250 10 9 9 9 21.60 21.60 21.60

sinoid_kp5 250 100 11 11 11 5.60 5.60 5.60

sinoid_kp5 250 1000 11 11 11 3.60 3.60 3.60

sinoid_kp5 250 10000 13 12 12 5.60 5.20 5.20

polin3_kp3 250 10 5 5 5 2.40 2.40 2.40

polin3_kp3 250 100 7 7 7 2.40 2.40 2.40

polin3_kp3 250 1000 10 9 9 5.20 5.60 5.60

polin3_kp3 250 10000 32 10 10 5.20 29.60 29.60

norm2_kg 250 10 12 12 12 6.40 6.40 6.40

norm2_kg 250 100 13 13 13 2.80 2.80 2.80

norm2_kg 250 1000 18 18 18 7.60 7.60 7.60

norm2_kg 250 10000 18 18 18 40.00 40.00 40.00

riply_wk 250 10 4 3 4 14.00 14.00 14.00

riply_wk 250 100 3 3 3 13.60 13.60 13.60

riply_wk 250 1000 3 3 3 14.00 14.00 14.00

riply_wk 250 10000 192 3 3 27.60 14.00 14.00

riply_kp5 250 10 9 9 9 18.40 18.40 18.40

riply_kp5 250 100 10 10 10 24.00 24.00 24.00

riply_kp5 250 1000 15 15 14 24.00 24.00 24.00

riply_kp5 250 10000 154 80 77 25.20 16.80 24.40

madelon_wk 2000 10 325 325 325 27.05 27.05 27.05

madelon_wk 2000 100 429 429 429 25.10 25.10 25.10

madelon_wk 2000 1000 487 484 1339 23.60 23.60 23.15

madelon_wk 2000 10000 701 533 532 23.15 23.00 22.85

madelon_kg 2000 10 897 897 897 5.55 5.55 5.60

madelon_kg 2000 100 1712 1712 1712 46.05 46.05 45.90

sonar_kp3 208 10 87 87 87 0.00 0.00 0.00

image500_kp2 500 10 75 75 75 60.80 60.80 60.80

image1500_kp2 1500 10 91 91 91 65.13 65.13 65.13

image4500_kp2 4500 10 327 327 327 65.18 65.18 65.18

image6977_kp2 6977 10 390 390 390 63.57 63.57 63.57

arcene_wk 100 10 79 79 79 0.00 0.00 0.00

dexter_wk 300 10 257 257 257 0.00 0.00 0.00

gisette_kp2 6000 10 151 151 151 49.87 49.87 49.87

ada_wk 4147 10 19 8 8 19.89 19.89 19.92

ada_kg 4147 10 52 51 51 23.63 23.63 23.63

gina_wk 3153 10 756 756 756 0.25 0.25 0.25

gina_wk 3153 100 752 752 752 0.00 0.00 0.00

hiva_wk 3845 10 514 514 514 0.03 0.03 0.03

hiva_wk 3845 100 515 514 515 0.03 0.03 0.03

sylva7500_kp2 7500 10 221 221 221 4.48 4.48 4.48

sylva7500_kp2 7500 100 262 262 262 9.96 9.97 9.96

sylva7500_kp2 7500 1000 262 262 262 9.97 9.95 9.96

Table 6 – Training results.
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Figures 1, 2, 3, 4, 5 and 6 show the real separator curves and the com-

puted separator curves given by equations (3) and (4) using the optimal solu-

tion attained by the SPG method with Projected-KKT for different values of

C . The figures for the SPG method with Dai and Fletcher projection strat-

egy are very similar to Figures 1, 2, 3, 4, 5 and 6 and therefore they are not

shown here. In the scale legend of these figures appears the symbols utilized

to distinguish samples in class 1 from samples in class 2. Also, it is possible

to distinguish from all the samples which of them are the support vectors in

class 1 and the support vectors in class 2. It is clear that these figures belong to

databases with samples of dimension two: (lineal_wk, sinoid_kp5, polin3_kp3,

norm2_kg, riply_wk and riply_kp5), since they can be easily drawn.

From Table 2 observe that SPG method together with Dykstra alternating

projection scheme requires more CPU time than the SPG method with the oth-

ers two projection strategies for all databases and all values of C . Inclusive,

for some values of C and some databases this method does not converge to an

stationary point of problem (6). The SPG-Dykstra method is stopped since

the maximum number of SPG iterations (500000) or the maximum number

of Dykstra iterations (10000) was reached before convergence occurs. More-

over, the percentage average of CPU time consumed for Dykstra’s algorithm

in the SPG method for all databases and all values of C , is 54.76 %. In many

cases, as for example databases: lineal_wk, sylva7500_kp2, ada_kg, ada_wk,

sonar_kp3 and riply_kp5, the percentage of CPU time consumed for Dyk-

stra algorithm is higher than the percentage average. Observe that for ada_kg

and C = 10 the CPU time utilized for SPG method with Dykstra strategy is 8

times the CPU time required for SPG method with Dai and Fletcher scheme.

Also, for database norm2_kg with C = 10000, the CPU time required for SPG

method with Dykstra algorithm is 15 times the CPU time for SPG method with

Projected-KKT. The average percentage of CPU time used for Dai and Fletcher

scheme and Projected-KKT strategy in the SPG method are the 20.97% and

21.03% respectively, for all problems solved. Moreover, in terms of efficiency

of the three optimization methods, the SPG method using Projected-KKT has

a slightly higher percentage of problems solved. So, the difference in average

CPU time consumed for these two strategies is irrelevant.
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Figure 1 – Classification of samples in database lineal_wk.

From Tables 2, 3, 4 and 5, it is clear that the computational performance

of the SPG method using Dai and Fletcher projection scheme and using the

proposed Projected-KKT is very similar. We can say that both strategies are

competitive for solving problem (6) in high contrast with the SPG method with

Dykstra’s algorithm. For example, for databases polin3_kp3, Sonar, Images,

Ada and Hiva the performance of the SPG method using Dai and Fletcher is
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Figure 2 – Classification of samples in database sinoid_kp5.

a little better than the performance of the SPG method with Projected-KKT.

On the other hand, for databases Riply, Gisette and Gina the SPG method with

Projected-KKT shows a better computational behavior when it is compared with

SPG method using Dai and Fletcher scheme. For the rest of databases, the

best computational performance varies with the method, the kernel used and the

value of the parameter C . From now on, we focus our analysis only on the
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Figure 3 – Classification of samples in database polin3_kp3.

SPG method with Dai and Fletcher and Projected-KKT schemes since Dykstra’s

algorithm is not competitive with the these two techniques.

Even when Dai and Fletcher projection strategy and Projected-KKT method

are very precise computing the projection required by the SPG method, small

differences in the projection generate different iterations. These differences in-

crease when the matrix D on problem (6) associated to the database is badly
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Figure 4 – Classification of samples in database norm2_kg.

conditioned. It is clear from tables 3, 4 and 5, that when SPG method uses

few iterations, the computational behavior of the two competitive strategies is

similar, as for example for databases: Arcene, Dexter and Gisette, where the

associated matrix D is not bad conditioned when it is compared with the rest

of the databases. In problems where the SPG method uses more iterations,

it seems that the difference in the computed projection by Dai and Fletcher
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Figure 5 – Classification of samples in database riply_wk.

and Projected-KKT increases, making that the SPG with these two projecting

strategies have different computational behaviors as for example in databases

Madelon, Gina and Riply, where the matrix D is badly conditioned. An-

other important observation is that the average of projection iterations for SPG

method with Dai and Fletcher strategy and Projected-KKT scheme is not neces-

sarily less when the SPG method consumes less iterations. The computational

performance of these two methods varies depending of the database (condition

number of the matrix D) and the value of C .

It is also important to stress that for databases where the condition number

of the matrix D is high, as for example the databases: lineal_wk, sinoid_kp5
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Figure 6 – Classification of samples in database riply_kp5.

and norma2_kg, the computational behavior of the two competitive strategies is

similar, but in these cases the dimension of the samples is two. So, the difficulty

on solving the SVM problem (6) also depend on the size of the problem.

Table 6 indicates that the solutions obtained for SPG method with Dai and

Fletcher strategy and Projected-KKT scheme are almost equal for each database

and each value of C .

Finally, we observe from Figures 1, 2, 3, 4, 5 and 6 that the proposed SPG

with the Projected-KKT method classifies the samples on those databases. For

lineal_wk data (Fig. 1) the real level zero curve is very close to the computed

level zero curve and it seems not to depend on the values of the parameter
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C . In contrast, for nonlinearly separable data (sinoid_wk, polin3_kp3 and

norm2_wk), the computed level zero curve highly depends on the values of

parameter C and the kernel used. It is possible that in these nonlinearly separable

samples the use of different kernels could get a better classification of the data.

However, our interest in this work is to show that the proposed SPG with the

Projected-KKT can solve the SVM problem (6), and that playing with different

kernels and values of C the solution could be improved.

6 Conclusions

In this work we proposed an algorithm for projecting over a single linear con-

straint and a box constrained set. This algorithm is based on the Karush-Kuhn-

Tucker conditions for a quadratic programming problem over the described set.

To the best of our knowledge, this is the first time that a KKT-type algorithm has

been used in the SVM context for projecting over the convex set. The proposed

algorithm has finite termination unless cycling occurs. However, in practice

for well-conditioned diagonal positive definite matrices (as the identity) cycling

never occurs.

We studied how to solve the SVM optimization problem by using the Spectral

Projected Gradient (SPG) method using the Projected-KKT method for solving

the projection problem, as well as the secant-based algorithm proposed by Dai

and Fletcher and a version of the Dykstra’s method. The results obtained indi-

cate that the Projected-KKT algorithm is competitive with the Dai and Fletcher

projecting strategy within the SPG method, and that both strategies outperform

the SPG method with Dykstra’s algorithm. Using the Projected-KKT projection

strategy more problems were solved than using the other two methods, indi-

cating that it has a slightly higher efficiency. The number of support vectors

attained by the two competitive methods is the same for almost all the problems

tested, implying that both methods compute basically the same optimal separator.

The computational behavior of these two methods highly depends on the size

of the problem, the condition number of the Hessian matrix, the value of the

parameter C , and the kernel used.

The results presented in this work are a contribution to the study of the behav-

ior of optimization methods for solving large scale SVM problems.
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