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Abstract. The unsteady unidirectional motion of an incompressible electrically conducting

Oldroyd-B fluid in a channel bounded by two infinite rigid non-conducting parallel plates in

presence of an external magnetic field acting in a direction normal to the plates has been discussed

in this paper. The flow is supposed to generate impulsively from rest due to rectified sine pulses

applied periodically on the upper plate with the lower plate held fixed. There is no external

electric field imposed on the system and the magnetic Reynolds number is very small. Exact

solution of the problem is obtained both by the methods of Fourier analysis and the Laplace

transforms. The enquiries are made about the velocity field and the skin-friction on the walls.

The influence of the magnetic field and the elasticity on the flow as well as on the skin-friction are

examined quantitatively. Finally, it is shown that the expressions for the fluid velocity obtained

by the method of Fourier analysis and by the method of Laplace transforms coincide to provide

the same exact solution of the problem.

Mathematical subject classification: 76A10.
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1 Introduction

It is well-known that the fluid flow generated by pulsatile motion of the boundary

has important applications in aerodynamics, nuclear technology, astrophysics,

geophysics, atmospheric science and cosmical gas dynamics. The investigation
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in this direction was presented by Chakraborty and Ray [1] who examined the

magneto-hydrodynamic Couette flow between two parallel plates when one of

the plates is set in motion by random pulses. Makar [2] presented the solution of

magneto-hydrodynamic flow between two parallel plates when one of the plates

is subjected to velocity tooth pulses and the induced magnetic field is neglected.

Bestman and Njoku [3] constructed solution of hydrodynamic channel flow of

an incompressible, electrically conducting viscous fluid induced by tooth pulses

including the effect of induced magnetic field, ignored by the author [2], and

using the methodology of Fourier analysis instead of applying the commonly used

technique of Laplace transforms which involve complicated inversions. Ghosh

and Debnath [4] considered the hydromagnetic channel flow of a two-phase fluid-

particle system induced by tooth pulses and obtained solution using the method

of Laplace transforms. Datta and Dalal [5, 6] discussed the pulsatile flow and

heat transfer of a dusty fluid in a channel and in an annular pipe employing

the method of perturbation. On the other hand, Hayat et al. [7] have studied

some simple flows of an Oldroyd-B fluid using the method of Fourier transforms.

Asghar et al. [8] also utilized the same methodology as that of authors [7] to

solve the problem concerning Hall effect on unsteady hydromagnetic flows of an

Oldroyd-B fluid while Hayat et al. [9] constructed the solution of hydromagnetic

Couette flow of an Oldroyd-B fluid in a rotating system following the method

of perturbation. In the present paper, the problem as that of author [2] has been

studied in the case of an Oldroyd-B fluid which takes into account both the elastic

and memory effects exhibited by most polymeric and biological liquids when

the upper plate is set in motion by rectified sine pulses instead of velocity tooth

pulses as considered by earlier authors [2, 3, 4]. It appears that, besides various

applications mentioned above, the present investigation is particularly useful in

powder and polymer technology and in detecting the effect of magnetic field on

electrically conducting physiological fluid flow systems [10].

The problem is concerned with the unsteady hydromagnetic flow of an incom-

pressible, electrically conducting Oldryod-B fluid in a channel bounded by two

infinite rigid non-conducting parallel plates. The motion is suppose to start from

rest in the fluid due to rectified sine pulses applied periodically on the upper plate

with the lower plate held fixed. Exact expression for the fluid velocity is obtained
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using the methods of Fourier analysis and Laplace transforms separately. The

results for the skin-friction on the walls are also obtained in both the cases. It is

shown that both the methods give the same exact solution of the problem. The

effects of the magnetic field and the elasticity on the developing and the retarding

flows and also on the skin-friction at the plates are discussed quantitatively. It

is observed that the viscoelastic flows grow and decay less faster than the or-

dinary viscous fluids. The magnetic field has a damping effect on such flows.

Both the elastic and magnetic effects reduce with the increase of time period of

oscillations of the plate irrespective of the nature of the flow so that a classical

hydrodynamic situation arises when the frequency of oscillations is very small.

2 Basic equations

The constitutive equations for an Oldroyd-B fluid [7-9] are

T = −pI + S (2.1)

S + λ1
DS

Dt
= μ

[
1 + λ2

D

Dt

]
A1 (2.2)

where T = Cauchy stress tensor, p = fluid pressure, I = identity tensor, S =

extra stress tensor, μ, λ1, λ2 = viscosity coefficient, relaxation time, retardation

time (assumed constants).

The tensor A1 is defined as

A1 = ∇V + (∇V)T . (2.3)

In a cartesian system, D
Dt (upper convected time derivative) operating on any

tensor B1 is

DB1

Dt
=

∂B1

∂t
+ (V ∙ ∇)B1 − (∇V)B1 − B1(∇V)T . (2.4)

It is to be mentioned here that this model includes the viscous fluid as a par-

ticular case for λ1 = λ2, the Maxwell fluid when λ2 = 0 and an Oldroyd-B

fluid when 0 < λ2 < λ1 < 1. The stress equations of motion for an in-

compressible electrically conducting Oldroyd-B fluid in presence of an external

magnetic fluid are

∇ ∙ V = 0, (2.5)
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ρ

[
∂V

∂t
+ (V ∙ ∇)V

]
= ∇ ∙ T + J × B, (2.6)

∇ ∙ B = 0, ∇ × B = μ0J, (2.7ab)

∇ × E = −
∂B

∂t
, J = σ [E + V × B] (2.8ab)

where V = (u, v, w) = fluid velocity, ρ = fluid density, J = current density,

B = magnetic flux density, E = electric field, μ0 = magnetic permeability

(assumed constant), σ = electrical conductivity (assumed finite).

3 Formulation of the problem

In this problem, we consider the motion of an incompressible electrically con-

ducting Oldroyd-B fluid between two infinite rigid non-conducting parallel plates

separated by a distance h. The x-axis is taken in the direction of flow with origin

at the lower plate and y-axis perpendicular to the plates. The initial motion is

generated in the fluid due to rectified sine pulses applied on the upper plate.

The lower plate is held fixed. A uniform magnetic field of strength B0 is acting

parallel to y-axis. We assume that no external electric field is acting on the fluid

and the magnetic Reynolds number is very small. This implies that the current

is mainly due to induced electric field and the applied magnetic field remains

essentially unaltered by the electric current flowing in the fluid. We also assume

that the induced magnetic field produced by the motion of the fluid is negligible

compared to the applied magnetic field so that the Lorentz force term in (2.6)

becomes −σ B2
0 V.

Since the motion is a plain one and the plates are infinitely long, we assume

that all the physical variables are independent of x and z. Then from the equation

of continuity (2.5) and from the physical condition of the problem, we take

V =
{
u(y, t), 0, 0

}
and S = S(y, t). (3.1ab)

The equations of motion in (2.6) then reduces to

ρ
∂u

∂t
= −

∂p

∂x
+

∂Sxy

∂y
− σ B2

0 u, (3.2)

∂p

∂y
=

∂Syy

∂y
, (3.3)
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∂p

∂z
= 0. (3.4)

It follows from (2.2) and (3.1ab) that

Sxx + λ1

[
∂Sxx

∂t
− 2Sxy

∂u

∂y

]
= −2μλ2

(
∂u

∂y

)2

, (3.5)

Sxy + λ1

[
∂Sxy

∂t
− Syy

∂u

∂y

]
= μ

(
∂u

∂y

)
+ λ2μ

(
∂2u

∂y∂t

)
, (3.6)

Syy + λ1
∂Syy

∂t
= 0. (3.7)

The equation (3.7) gives

Syy = A(y)e−t/λ1 (3.8)

where A(y) is an arbitrary function of y. But Syy is known to be zero for

t < 0. This implies that A(y) must be zero. Hence Syy is zero always. Con-

sequently, from (3.2) and (3.6) and in absence of pressure gradient along x

direction, we get
(

1 + λ1
∂

∂t

)
∂u

∂t
= ν

(
1 + λ2

∂

∂t

)
∂2u

∂y2
−

σ B2
0

ρ

(
1 + λ1

∂

∂t

)
u (3.9)

which on introducing the dimensionless quantities given by

u =
u

U0
, y =

y
√

νλ1
, t =

t

λ1
, d =

h
√

νλ1
,

k =
λ2

λ1
(≤ 1) and M2 =

σ B2
0λ1

ρ

and on dropping the bars, we get
(

1 +
∂

∂t

)
∂u

∂t
=

(
1 + k

∂

∂t

)
∂2u

∂y2
− M2

(
1 +

∂

∂t

)
u. (3.10)

The problem now reduces to solving (3.10) subject to boundary and initial con-

ditions:

u(0, t) = 0, u(d, t) = f (t) for all t > 0 (3.11)

and

u(y, 0) = 0, ut(y, 0) = 0 for 0 ≤ y ≤ d (3.12)

where f (t) representing the rectified sine pulses, as shown in Figure 1, is an

even periodic function with period 2T.
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Figure 1 – Rectified sine pulses.

4 Solution of the problem

I. Method of Fourier analysis

According to the nature of f (t) mentioned above, the mathematical form of

u(d, t) may be written as

u(d, t) = sin
π t

T
H(t) + 2

∞∑

m=1

sin
π(t − mT )

T
H(t − mT ) (4.1)

where H(t − T ) = 0, t < T and H(t − T ) = 1, t ≥ T .

Using half-range Fourier series, the condition (4.1) can also be expressed in

the form

u(d, t) =
2

π
−

4

π

∞∑

m=1

1

(2m)2 − 1
cos

{
2mπ t

T

}
. (4.2)

By virtue of (4.2) we assume the solution of (3.10) as

u(y, t) = us(y) +
1

2

∞∑

m=1

[
u2m(y)ei 2mπ t

T + u2m(y)e−i 2mπ t
T

]

+
∞∑

n=1

Wn(t) sin
(

nπy

d

) (4.3)

where u is the conjugate of u. The first two terms in (4.3) are chosen so as to

satisfy (4.2) while the last term accommodates the initial condition.

Substituting (4.3) in (3.10) and then using (4.2), we have the following equa-

tions with appropriate conditions as

d2us

dy2
− M2us = 0 (4.4)

with us = 0 on y = 0, us = 2
π

on y = d ,

d2u2m

dy2
− L2

mu2m = 0 (4.5)
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with u2m = 0 on y = 0, u2m = − 4
π

1
(2m)2−1

on y = d and

d2Wn

dt2
+

(
1 + M2 +

n2π2k

d2

)
dWn

dt
+

(
M2 +

n2π2

d2

)
Wn = 0 (4.6)

with Wn = Wn(0), W
′

n = W
′

n(0) at t = 0 where Wn(0) and W
′

n(0) are to

be determined.

In the above,

L2
m =

(M2 + iβm)(1 + iβm)

1 + iβmk
and βm =

2mπ

T
.

The solutions of equations (4.4)-(4.6) are

us(y) =
2

π

sinh My

sinh Md
(4.7)

u2m(y) = −
4

π

1

(2m)2 − 1

sinh Lm y

sinh Lmd
(4.8)

Wn(t) = W
′

n(0)
em1t − em2t

m1 − m2
+ Wn(0)

m1em2t − m2em1t

m1 − m2
(4.9)

where

2m1, 2m2 = −
[(

1 + M2 +
n2π2k

d2

)

∓
{(

1 + M2 +
n2π2k

d2

)2

− 4
(

M2 +
n2π2

d2

)}1/2]
.

(4.10)

The initial conditions in (3.12) provide

Wn(0) =

4n(−1)n

[
1

n2π2 + M2d2
− 2 Re

∞∑

m=1

1

{(2m)2 − 1}(n2π2 + L2
md2)

]
,

(4.11)

W
′

n(0) = 8n(−1)n Im
∞∑

m=1

βm

{(2m)2 − 1} (n2π2 + L2
md2)

(4.12)

where Re and Im stand respectively for the real and the imaginary parts of the

above expressions.
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The m-series in (4.11) and (4.12) are of orders β−3
m and β−2

m when m −→ ∞.

The n-series is also convergent since m1, m2 are of order −N 2
1 and m1 − m2

has the order N 2
1 as n −→ ∞ where N 2

1 = M2 + n2π2k
d2 .

Finally, the fluid velocity takes the form

u(y, t) =
2 sinh My

π sinh Md
−

4

π
Re

∞∑

m=1

eiβm t

(2m)2 − 1

sinh Lm y

sinh Lmd

+
∞∑

n=1

{
W

′

n(0)
em1t − em2t

m1 − m2
+ Wn(0)

m1em2t − m2em1t

m1 − m2

}
sin

nπy

d

(4.13)

which in the limit t −→ ∞ provides the steady velocity field

u(y, t) =
2 sinh My

π sinh Md
−

4

π
Re

∞∑

m=1

eiβm t

(2m)2 − 1

sinh Lm y

sinh Lmd
(4.14)

where the harmonic part contains the effect of elasticity in presence of pulsation.

On the other hand, the solution corresponding to classical viscous fluid can be

obtained from (4.13) in the limit k −→ 1. This solution is given by

u(y, t) =
2 sinh My

π sinh Md
−

4

π
Re

∞∑

m=1

eiβm t

(2m)2 − 1

sinh L∗
m y

sinh L∗
md

+
∞∑

n=1

4n(−1)n
[

1

M2d2 + n2π2

−2
∞∑

m=1

1

(2m)2 − 1

M2d2 + n2π2

(M2d2 + n2π2)2 + β2
md4

]
e−(M2+n2π2/d2)t sin

nπy

d

(4.15)

where L∗
m =

√
M2 + iβm .

The result (4.15) is identical to that of Bestman and Njoku [3].

In particular, when T −→ 0 the result (4.13) reduces to

u(y, t) =
2 sinh My

π sinh Md
+4

∞∑

n=1

n(−1)n

M2d2 + n2π2

m1em2t − m2 em1t

m1 − m2
sin

nπy

d
(4.16)

which describes the hydromagnetic channel flow of an Oldroyd-B fluid gener-

ated by impulsive motion of the upper plate with a constant velocity. The result

(4.16) in dimensional form, in the limit M −→ 0, coincides exactly with that of
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authors [7] while the result (4.15) in the limit T −→ 0 agrees completely with

that of Soundalgekar [11].

The skin-friction on the plates y = 0 and y = d are given by

τ0 =
2M(1 − e−t )

π sinh Md
−

4

π
Re

∞∑

m=1

Lm

(2m)2 − 1

1 + iβmk

1 + iβm

eiβm t − e−t

sinh Lmd

+
∞∑

n=1

nπ

d

{
W

′

n(0)

m1 − m2

[
1 + km1

1 + m1
(em1t − e−t ) −

1 + km2

1 + m2
(em2t − e−t )

]

+
Wn(0)

m1 − m2

[
(1 + km2)m1

1 + m2
(em2t − e−t ) −

(1 + km1)m2

1 + m1
(em1t − e−t )

]}
,

(4.17)

τd =
2M cosh Md

π sinh Md
(1 − e−t ) −

4

π
Re

∞∑

m=1

Lm

(2m)2 − 1

×
1 + iβmk

1 + iβm
(eiβm t − e−t )

cosh Lmd

sinh Lmd

+
∞∑

n=1

nπ

d
(−1)n

{
W

′

n(0)

m1 − m2

[
1 + km1

1 + m1
(em1t − e−t ) −

1 + km2

1 + m2
(em2t − e−t )

]

+
Wn(0)

m1 − m2

[
(1 + km2)m1

1 + m2
(em2t − e−t ) −

(1 + km1)m2

1 + m1
(em1t − e−t )

]}
.

(4.18)

Above results in the limit k −→ 1 (viscous fluid) reduces to

τ0 =
2 M

π sinh Md
−

4

π
Re

∞∑

m=1

eiβm t

(2m)2 − 1

L∗
m

sinh L∗
md

+
∞∑

n=1

4πn2(−1)n

d

e−
(

M2+ n2π2

d2

)
t

M2d2 + n2π2

(4.19)

and

τd =
2M cosh Md

π sinh Md
−

4

π
Re

∞∑

m=1

eiβm t

(2m)2 − 1

L∗
m cosh L∗

md

sinh L∗
md

+
∞∑

n=1

4πn2

d

e−
(

M2+ n2π2

d2

)
t

M2d2 + n2π2
.

(4.20)
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However, when T −→ 0, (4.19) and (4.20) provide the classical hydromagnetic

solutions given by

τ0 =
2 M

π sinh Md
+

4π

d

∞∑

n=1

n2(−1)n

M2d2 + n2π2
e−

(
M2+ n2π2

d2

)
t
, (4.21)

τd =
2M cosh Md

π sinh Md
+

4π

d

∞∑

n=1

n2

M2d2 + n2π2
e−

(
M2+ n2π2

d2

)
t
. (4.22)

II. Method of Laplace transforms

The problem, when solved by the method of Laplace transform technique, re-

duces to solving the transformed equation

d2u

dy2
−

(1 + s)(s + M2)

1 + ks
u = 0 (4.23)

subject to the conditions

u = 0 at y = 0, u =
π T

T 2s2 + π2
coth

(
s T

2

)
at y = d . (4.24)

The transformed solution for the fluid velocity u(y, s) becomes

u(y, s) =
π T

T 2 s2 + π2
coth

(
sT

2

)
sinh Ly

sinh Ld
(4.25)

where L2 =
(1 + s)(s + M2)

1 + ks
.

The inversion of (4.25) gives

u(y, t) =
π T

2 π i

∫ γ+i∞

γ−i∞

exp(st) coth(sT/2)

T 2s2 + π2

sinh Ly

sinh Ld
ds. (4.26)

The integrand has a pole at s = 0, a series of simple poles at s = ± i βm ,

m = 0, 1, 2, . . ., and simple poles at s1, s2 which are roots of sinh Ld = 0.

Following Carslaw and Jaeger [12], the expression for the fluid velocity

u(y, t) takes the form

u(y, t) =
2 sinh My

π sinh Md
−

4

π
Re

∞∑

m=1

eiβm t

(2m)2 − 1

sinh Lm y

sinh Lmd

−
2π2

T d2

∞∑

n=1

n(−1)n G sin
nπy

d

(4.27)
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where

βm =
2mπ

T
, Lm =

[
(1 + iβm)(M2 + iβm)

1 + iβm k

]1/2

,

G = G1 + G2, G j =
es j t coth s j T

2(
s2

j + π2

T 2

){
a1 + b1

(1+ks j )
2

} , j = 1, 2,

a1 =
1

k
, b1 =

(
M2 −

1

k

)
(1 − k),

2s1, 2s2 =

−




(

1 + M2 +
n2π2k

d2

)
∓

√(
1 + M2 +

n2π2k

d2

)2

− 4
(

M2 +
n2π2

d2

)


 .

The result (4.27), in the limit k −→ 1, is in excellent agreement with those of

author [2] and authors [4].

The corresponding expressions for skin-friction on the plates are

τ0 =
2M(1 − e−t)

π sinh Md

−
4

π
Re

∞∑

m=1

[
Lm

(2m)2 − 1

1 + iβmk

1 + iβm

eiβm t − e−t

sinh Lmd

]

−
2 π3

T d3

∞∑

n=1

n2(−1)n H

(4.28)

τd =
2M cosh Md

π sinh Md
(1 − e−t)

−
4

π
Re

∞∑

m=1

[
Lm

(2m)2 − 1

1 + iβmk

1 + iβm
(eiβm t − e−t)

cosh Lmd

sinh Lmd

]

−
2 π3

T d3

∞∑

n=1

n2 H

(4.29)

where

H = H1 + H2, Hj =
1 + ks j

1 + s j

(es j t e−t) coth s j T
2(

s2
j + π2

T 2

){
a1 + b1

(1+ks j )
2

} , j = 1, 2.
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The result (4.13) obtained by the method of Fourier analysis when compared

with (4.27) obtained by the method of Laplace transforms reveals that the two

results are exactly identical in respect of their steady and harmonic parts but the

transient parts of them are of different forms. In order to show that these two

results for the fluid velocity represent the same exact solution of the problem we

incorporate the analysis given in the appendix.

5 Numerical results

The nature of the pulses applied on the upper plate, as shown in Figure 1, pro-

duces the developing (increasing) and the retarding (decreasing) flows during

the first and the next half of each pulse respectively. Accordingly, the effect

of the elasticity (k) on the fluid velocity given by the equation (4.13), for both

the developing and retarding flows, are shown in the Figures 2(a), 2(b) and 2(c)

when M = 1.0 and T = 0.5, 1.0, 2.0. In the Figure 2(a) the velocity pro-

files for t = 0.125 and t = 0.25 represent the developing flows and those for

t = 0.375 and t = 0.5 stand for the retarding flows. Further enquiry shows

that the fluid velocity increases with the increase of the elastic parameter k when

the flow is developing (Table 1) and decreases with the increase of k when the

flow is retarding (Table 2). It is to be noted here that the fluid will be highly

viscoelastic for smaller and smaller values of k. The results corresponding to

the value of k = 1 describe the Newtonian flow which is free from elastic ef-

fect. Consequently, it appears from Figures 2(a,b,c) that the viscoelastic fluids

neither grow nor decay as quickly as Newtonian viscous fluids due to the re-

straining effect played by the elasticity of the fluid. Moreover, in the retarding

motion, increasing effect of the elastic parameter k prevails on the flow for

some time until the diminishing effect of k becomes dominant to nullify it com-

pletely (see Figure 2(a) at t = 0.375, Table 2). This is expected. The Fig-

ures 2(b) and 2(c), represent the effects of elasticity (k) on the velocity profiles

with increasing values of time period T . On the other hand, the magnetic field

(M) has damping effect on the flow irrespective of its nature. This phenom-

ena is shown in Figures 3(a), 3(b) and 3(c). Figure 4 provides a comparison

how the increasing and decreasing effects produced by k respectively on the

developing and retarding flows are reduced with the increase of time period
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Figure 2(a) – Effect of elasticity (k) on the fluid velocity when T = 0.5 and M = 1.0.
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Figure 2(b) – Effect of elasticity (k) on the fluid velocity when T = 1.0 and M = 1.0.
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Figure 2(c) – Effect of elasticity (k) on the fluid velocity when T = 2.0 and M = 1.0.
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Figure 3(a) – Effect of the magnetic field (M) on the fluid velocity when T = 0.5

and k = 0.7.
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Figure 3(b) – Effect of the magnetic field (M) on the fluid velocity when T = 1.0

and k = 0.7.
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Figure 3(c) – Effect of the magnetic field (M) on the fluid velocity when T = 2.0

and k = 0.7.
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Figure 4 – Effect of the elasticity (k) on the fluid velocity for different values of time

period (T ) when M = 1.0.
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Figure 5 – Effect of the magnetic field (M) on the fluid velocity for different values of

time period (T ) when k = 0.7.
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(T ) while Figure 5 reflects the enhancement of damping effect on the flows

produced by the magnetic field with the increase of time period (T ). It is

to be mentioned here that in all the numerical calculations mentioned above

the distance between the plates is taken as d = 1 and the non-zero values of

the various dimensionless parameters M , T , t , k and d are taken arbitrarily

just to test the methodology.

The fluctuations of the skin-friction with time on the lower and the upper

plate are shown in Figures 6(a,b,c) and 7(a,b,c) respectively for different arbi-

trary non-zero values of M , k and T . The results are also presented in Tables 3

and 4. It is noticed that the amplitude of skin-friction increases with the mag-

netic field at the upper plate and diminishes with the same at the lower plate.

Additionally, the effect of the elasticity (k) on the skin-friction decreases with

the increase of the magnetic field at the lower plate while a reverse effect is

found at the upper plate. In general, for fixed values of M and T the ampli-

tude of skin-friction at the lower plate increases with elastic parameter (k) when

the flow is developing and decreases with the same when the flow is retarding.

A similar effect is also observed on the upper plate. Finally, the skin-friction

on the plates corresponding to hydrodynamic situation are represented by the

curves M = 0, k = 1 in Figures 6(a,b,c) and 7(a,b,c). It appears from these

figures that the amplitude of skin-friction at the lower plate due to viscoelastic

fluids remains always less than its classical value while at the upper plate no

such definite conclusion can be made.

6 Conclusion

An initial-boundary value problem is solved for the motion of an incompress-

ible, electrically conducting, viscoelastic Oldroyd-B fluid confined in a channel

bounded by two infinite rigid non-conducting parallel plates in presence of an

external magnetic field when the flow is generated impulsively from rest due

to multiple frequency unidirectional motion of the upper plate with the lower

plate held fixed. A similar type of problem in which the upper plate started

impulsively from rest with velocity tooth pulses subjected on the upper plate

with the lower plate kept stationary has already been solved in [13]. Thus in

the above two problems, the boundary conditions responsible for generating the
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t T M k/y 0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

0.4 0.0 0.0008 0.0031 0.0105 0.0309 0.0805 0.1860 0.3830 0.7071

0.0 0.7 0.0 0.0059 0.0160 0.0360 0.0744 0.1435 0.2595 0.4408 0.7071

1.0 0.0 0.0137 0.0327 0.0631 0.1124 0.1900 0.3068 0.4747 0.7071

0.4 0.0 0.0007 0.0029 0.0097 0.0289 0.0762 0.1785 0.3742 0.7071

0.5 1.0 0.7 0.0 0.0055 0.0149 0.0337 0.0702 0.1370 0.2509 0.4328 0.7071

1.0 0.0 0.0128 0.0307 0.0595 0.1069 0.1824 0.2980 0.4673 0.7071

0.4 0.0 0.0001 0.0004 0.0018 0.0067 0.0234 0.0767 0.2382 0.7071

5.0 0.7 0.0 0.0010 0.0029 0.0080 0.0209 0.0524 0.1276 0.3031 0.7071

1.0 0.0 0.0027 0.0073 0.0168 0.0370 0.0792 0.1665 0.3448 0.7071

0.4 0.0 0.0004 0.0016 0.0052 0.0156 0.0409 0.0958 0.2011 0.3827

0.0 0.7 0.0 0.0030 0.0080 0.0181 0.0378 0.0736 0.1348 0.2328 0.3827

1.0 0.0 0.0069 0.0165 0.0320 0.0575 0.0981 0.1602 0.2514 0.3827

0.4 0.0 0.0004 0.0014 0.0048 0.0146 0.0387 0.0920 0.1966 0.3827

0.125 1.0 1.0 0.7 0.0 0.0027 0.0074 0.0170 0.0357 0.0703 0.1304 0.2286 0.3827

1.0 0.0 0.0064 0.0155 0.0302 0.0547 0.0942 0.1557 0.2476 0.3827

0.4 0.0 0.0001 0.0002 0.0009 0.0034 0.0120 0.0399 0.1259 0.3827

5.0 0.7 0.0 0.0005 0.0015 0.0041 0.0107 0.0272 0.0669 0.1610 0.3827

1.0 0.0 0.0014 0.0037 0.0086 0.0191 0.0413 0.0877 0.1836 0.3827

0.4 0.0 0.0002 0.0007 0.0025 0.0076 0.0202 0.0477 0.1010 0.1950

0.0 0.7 0.0 0.0014 0.0039 0.0089 0.0187 0.0366 0.0674 0.1170 0.1950

1.0 0.0 0.0034 0.0081 0.0158 0.0285 0.0488 0.0802 0.1265 0.1950

0.4 0.0 0.0002 0.0007 0.0024 0.0072 0.0192 0.0458 0.0987 0.1950

2.0 1.0 0.7 0.0 0.0013 0.0036 0.0083 0.0176 0.0350 0.0652 0.1150 0.1950

1.0 0.0 0.0032 0.0076 0.0149 0.0271 0.0469 0.0779 0.1246 0.1950

0.4 0.0 0.0 0.0001 0.0004 0.0017 0.0060 0.0200 0.0634 0.1950

5.0 0.7 0.0 0.0002 0.0007 0.0020 0.0053 0.0136 0.0335 0.0811 0.1950

1.0 0.0 0.0007 0.0018 0.0043 0.0095 0.0207 0.0440 0.0926 0.1950

Table 1 – The fluid velocity u corresponding to developing flow for different values of T , M , k.

t T M k/y 0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

0.4 0.0 0.0743 0.1549 0.2481 0.3592 0.4895 0.6299 0.7539 0.8090

0.0 0.7 0.0 0.0927 0.1899 0.2951 0.4095 0.5306 0.6503 0.7521 0.8090

1.0 0.0 0.1051 0.2124 0.3232 0.4372 0.5518 0.6604 0.7518 0.8090

0.4 0.0 0.0646 0.1356 0.2197 0.3232 0.4487 0.5907 0.7270 0.8090

0.5 1.0 0.7 0.0 0.0807 0.1664 0.2615 0.3685 0.4868 0.6105 0.7261 0.8090

1.0 0.0 0.0915 0.1862 0.2865 0.3936 0.5062 0.6201 0.7260 0.8090

0.4 0.0 0.0058 0.0143 0.0294 0.0585 0.1153 0.2259 0.4354 0.8090

5.0 0.7 0.0 0.0071 0.0173 0.0350 0.0678 0.1288 0.2416 0.4464 0.8090

1.0 0.0 0.0087 0.0207 0.0407 0.0760 0.1393 0.2525 0.4539 0.8090

0.4 0.0 0.1147 0.2273 0.3346 0.4305 0.5056 0.5465 0.5360 0.4540

0.0 0.7 0.0 0.1073 0.2111 0.3073 0.3911 0.4564 0.4953 0.4982 0.4540

1.0 0.0 0.0983 0.1933 0.2815 0.3589 0.4209 0.4619 0.4754 0.4540

0.4 0.0 0.0951 0.1901 0.2835 0.3718 0.4474 0.4987 0.5085 0.4540

3.85 1.0 1.0 0.7 0.0 0.0897 0.1777 0.2620 0.3393 0.4051 0.4527 0.4731 0.4540

1.0 0.0 0.0828 0.1640 0.2416 0.3131 0.3753 0.4236 0.4524 0.4540

0.4 0.0 0.0060 0.0145 0.0291 0.0554 0.1024 0.1823 0.3054 0.4540

5.0 0.7 0.0 0.0061 0.0146 0.0283 0.0520 0.0931 0.1627 0.2769 0.4540

1.0 0.0 0.0058 0.0137 0.0262 0.0475 0.0846 0.1492 0.2611 0.4540

0.4 0.0 0.0850 0.1644 0.2328 0.2849 0.3155 0.3199 0.2938 0.2334

0.0 0.7 0.0 0.0671 0.1306 0.1871 0.2329 0.2642 0.2774 0.2684 0.2334

1.0 0.0 0.0582 0.1138 0.1640 0.2060 0.2371 0.2541 0.2540 0.2334

0.4 0.0 0.0715 0.1396 0.2005 0.2503 0.2843 0.2971 0.2825 0.2334

2.0 1.0 0.7 0.0 0.0565 0.1109 0.1607 0.2034 0.2360 0.2549 0.2557 0.2334

1.0 0.0 0.0483 0.0951 0.1387 0.1773 0.2088 0.2307 0.2401 0.2334

0.4 0.0 0.0059 0.0142 0.0275 0.0500 0.0864 0.1402 0.2042 0.2334

5.0 0.7 0.0 0.0049 0.0113 0.0213 0.0374 0.0635 0.1039 0.1620 0.2334

1.0 0.0 0.0031 0.0073 0.0139 0.0251 0.0443 0.0776 0.1350 0.2334

Table 2 – The fluid velocity u corresponding to retarding flow for different values of T , M , k.
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T M k/t 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.4 0.0 0.024 0.249 0.411 0.421 0.556 0.508 0.557 0.598 0.536 0.632

0.0 0.7 0.0 0.150 0.572 0.443 0.547 0.665 0.453 0.706 0.520 0.602 0.708

1.0 0.0 0.441 0.929 0.452 0.806 0.747 0.521 0.896 0.411 0.770 0.718

0.4 0.0 0.021 0.204 0.319 0.326 0.440 0.400 0.456 0.488 0.446 0.530

0.5 1.0 0.7 0.0 0.135 0.486 0.351 0.459 0.550 0.374 0.598 0.425 0.514 0.594

1.0 0.0 0.389 0.797 0.359 0.695 0.622 0.442 0.768 0.327 0.669 0.600

0.4 0.0 0.001 0.006 0.007 0.010 0.014 0.015 0.020 0.021 0.024 0.027

5.0 0.7 0.0 0.014 0.026 0.013 0.031 0.027 0.028 0.038 0.024 0.041 0.035

1.0 0.0 0.046 0.060 0.015 0.065 0.032 0.046 0.060 0.014 0.065 0.032

0.4 0.0 0.012 0.151 0.388 0.581 0.613 0.472 0.435 0.558 0.685 0.684

0.0 0.7 0.0 0.078 0.396 0.682 0.753 0.559 0.323 0.512 0.754 0.806 0.600

1.0 0.0 0.238 0.700 0.971 0.895 0.492 0.291 0.682 0.948 0.875 0.476

0.4 0.0 0.011 0.125 0.310 0.453 0.473 0.368 0.360 0.469 0.568 0.560

1.0 1.0 0.7 0.0 0.071 0.339 0.570 0.618 0.449 0.265 0.441 0.641 0.673 0.493

1.0 0.0 0.208 0.608 0.831 0.753 0.398 0.243 0.594 0.814 0.739 0.386

0.4 0.0 0.001 0.004 0.008 0.012 0.014 0.015 0.018 0.022 0.026 0.027

5.0 0.7 0.0 0.007 0.021 0.031 0.031 0.022 0.021 0.034 0.041 0.040 0.030

1.0 0.0 0.025 0.057 0.067 0.052 0.017 0.025 0.057 0.067 0.052 0.017

0.4 0.0 0.006 0.079 0.224 0.400 0.570 0.702 0.776 0.781 0.716 0.584

0.0 0.7 0.0 0.039 0.213 0.428 0.624 0.771 0.850 0.850 0.772 0.621 0.413

1.0 0.0 0.119 0.382 0.641 0.843 0.966 0.995 0.929 0.772 0.512 0.258

0.4 0.0 0.005 0.065 0.180 0.316 0.447 0.552 0.614 0.625 0.582 0.488

2.0 1.0 0.7 0.0 0.035 0.183 0.360 0.520 0.639 0.703 0.703 0.640 0.516 0.346

1.0 0.0 0.104 0.334 0.554 0.724 0.825 0.846 0.786 0.650 0.450 0.207

0.4 0.0 0.0 0.002 0.005 0.008 0.013 0.017 0.022 0.025 0.027 0.028

5.0 0.7 0.0 0.004 0.012 0.021 0.029 0.036 0.040 0.041 0.039 0.034 0.027

1.0 0.0 0.013 0.032 0.049 0.061 0.067 0.066 0.059 0.046 0.029 0.008

Table 3 – The skin-friction τ0 at the lower plate y = 0 for different values of T , M , k.

T M k/t 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.4 0.0 1.389 -0.150 1.059 0.716 -0.979 1.278 -0.129 1.141 0.820 -0.876

0.0 0.7 0.0 1.698 -0.345 1.368 0.833 -1.317 1.592 -0.316 1.425 0.888 -1.270

1.0 0.0 1.862 -0.540 1.583 0.869 -1.627 1.794 -0.497 1.632 0.911 -1.593

0.4 0.0 1.504 0.0307 1.219 0.959 -0.796 1.498 0.104 1.316 1.057 -0.708

0.5 1.0 0.7 0.0 1.844 -0.134 1.525 1.079 -1.158 1.802 -0.084 1.584 1.132 -1.113

1.0 0.0 2.054 -0.289 1.747 1.139 -1.470 2.013 -0.251 1.785 1.172 -1.443

0.4 0.0 3.421 2.112 2.739 3.722 0.511 4.044 2.593 3.113 4.012 0.738

5.0 0.7 0.0 4.266 2.270 3.114 4.175 -0.055 4.542 2.492 3.292 4.318 0.060

1.0 0.0 4.966 2.443 3.446 4.590 -0.471 4.978 2.452 3.454 4.596 -0.466

0.4 0.0 0.984 1.066 0.668 -0.007 -0.602 0.906 1.107 0.763 0.104 -0.497

0.0 0.7 0.0 1.221 1.246 0.722 -0.083 -0.752 1.172 1.291 0.782 -0.028 -0.706

1.0 0.0 1.363 1.379 0.788 -0.132 -0.906 1.317 1.403 0.816 -0.108 -0.887

0.4 0.0 1.050 1.233 0.912 0.246 -0.427 1.072 1.319 1.015 0.346 -0.338

1.0 1.0 0.7 0.0 1.304 1.449 0.995 0.166 -0.620 1.306 1.508 1.056 0.219 -0.576

1.0 0.0 1.474 1.620 1.087 0.119 -0.795 1.447 1.641 1.109 0.137 -0.780

0.4 0.0 2.170 3.537 3.714 2.598 0.657 2.780 4.008 4.080 2.883 0.880

5.0 0.7 0.0 2.725 4.242 4.204 2.612 0.160 2.997 4.461 4.379 2.753 0.273

1.0 0.0 3.183 4.849 4.658 2.683 -0.207 3.192 4.857 4.664 2.688 -0.202

0.4 0.0 0.531 0.746 0.849 0.859 0.787 0.648 0.457 0.232 -0.004 -0.183

0.0 0.7 0.0 0.660 0.890 0.994 0.997 0.909 0.738 0.501 0.219 -0.079 -0.301

1.0 0.0 0.740 1.001 1.130 1.141 1.037 0.829 0.538 0.193 -0.172 -0.442

0.4 0.0 0.565 0.841 1.018 1.096 1.076 0.961 0.762 0.499 0.195 -0.072

2.0 1.0 0.7 0.0 0.703 1.006 1.187 1.254 1.205 1.044 0.787 0.457 0.087 -0.223

1.0 0.0 0.798 1.139 1.345 1.413 1.341 1.136 0.818 0.419 -0.021 -0.382

0.4 0.0 1.144 2.198 3.119 3.798 4.156 4.146 3.759 3.029 2.020 0.879

5.0 0.7 0.0 1.438 2.661 3.656 4.322 4.586 4.418 3.833 2.884 1.661 0.351

1.0 0.0 1.680 3.056 4.130 4.798 4.996 4.704 3.951 2.810 1.394 -0.078

Table 4 – The skin-friction τd at the upper plate y = d for different values of T , M , k.
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Figure 6(a) – Effects of the magnetic field (M) and the elasticity (k) on the skin-friction

at the lower plate y = 0 when T = 0.5.
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Figure 6(b) – Effects of the magnetic field (M) and the elasticity (k) on the skin-friction

at the lower plate y = 0 when T = 1.0.
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Figure 6(c) – Effects of the magnetic field (M) and the elasticity (k) on the skin-friction

at the lower plate y = 0 when T = 2.0.

0.2 0.4 0.6 0.8 1

5

10

15

20

1

t

k
0
.
4

k
0
.
7

k
1
.
0

M
1
0

k 0.4

k 0.7

k 1.0

M 20

k
.
4

k
.
7

k
1
.

M
5

M 0.0,k 1.0

M 1k 0.4

k 0.7
k 1.0

Figure 7(a) – Effects of the magnetic field (M) and the elasticity (k) on the skin-friction

at the upper plate y = d when T = 0.5.
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unsteady motion differ significantly. As a result, the flow phenomena discussed

in [13] is not the same as that of the present analysis. Moreover, the fluid flow,

generated by tooth pulses as discussed in [13], is supposed to have importance

in white dwarf asteroseismology [14] and acoustic and acousto-gravity wave

pulses caused by sources of seismic origin [15]. On the other hand, the flow pro-

duced by rectified sine pulses as considered in the present paper has applications

in planetary tides and sunspot cycles [16], peristaltic transport of a particle-fluid

suspension [17], pulsed microwave plasma etching of polymers [18], adaptive

noise reduction for pulmonary artery blood pressure [19] and Wavelab’s elevated

frequency resolution to music therapy [20]. Several other applications of tooth

pulses and rectified sine pulses in physical problems may also be found in the

literature as substantial references.

We further observe that the skin-friction on the lower plate appears to have

symmetrical peaks for all values of the magnetic field M while the skin-friction

on the upper plate contains non-symmetrical peaks particularly at small values

of M due to the appearance of negative skin-friction in such a stage. However,

with the increase of the strength of the magnetic field the values of the negative

skin-friction on the upper plate, developed during its retarding motion, goes on

diminishing. This leads to the restoration of symmetrical peaks of skin-friction

on the upper plate for large values of M when skin-friction remains always

positive (Figures 7(a,b,c)). This is a consequence of the effect of magnetic field

in presence of pulsation.

Finally, we add that in order to produce a four digit accuracy in Tables 1

to 4, we have considered first 100 terms of m and n series. For the sake of

convenience in numerical calculation two different expansion indexes m and

n are considered in Eq.(4.13) and Eq.(4.27). However one can take only one

expansion index to represent both the series.

Acknowledgement. The authors are very much grateful to the referees for

providing many helpful suggestions to improve the paper in its present form.

Appendix

Let St denotes the transient part of the solution of the equation [4.13].
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Then we have
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T 2

+
π2

T

coth
(

s2T
2

)

a1 + b1
(1+ks2)

2

∙
es2t

s2
2 + π2

T 2








 sin
nπy

d

= −
2π2

T d2

∞∑

n=1

n(−1)n ∙ D ∙ sin
nπy

d

where

a1 =
1

k
, b1 =

(
M2 −

1

k

)
(1 − k) and D = D1 + D2,

D j =
es j t coth

(
s j T

2

)

(
s2

j + π2

T 2

) (
a1 + b1

(1+ks j )
2

) , j = 1, 2.

which coincides with the transient part of the equation (4.25) when s1 = m1,

s2 = m2.
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Thus the two solutions (4.13) and (4.25) are the same for all values of y,

k, M and t . This implies that the method of Fourier analysis which is simpler

than that of Laplace transforms can be used successfully to solve similar types

of problems.
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