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Abstract. In this paper, a kind of Bernoulli-type operator is proposed by combining a uni-

variate multiquadric quasi-interpolation operator with the generalized Taylor polynomial. With

an assumption on the shape-preserving parameter c, the convergence rate of the new operator is

derived, which indicates that it could produce the desired precision. Numerical comparisons show

that this method offers a higher degree of accuracy. Moreover, the associated algorithm is easily

implemented.
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1 Introduction

The standard formula for interpolating a function f : [a, b] → R on scattered

points and data {(x j , f j )}N
j=0, where

a = x0 < x1 < ∙ ∙ ∙ < xN = b, (1.1)

has the form

L f (x) =
N∑

j=0

λ jϕ(x − x j ) =
N∑

j=0

λ jϕ j (x), (1.2)
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such that

f (x j ) = L f (x j ), for 0 6 j 6 N , (1.3)

where ϕ(∙) is an interpolation kernel. Many researchers use radial basis func-

tions (RBFs) to solve the interpolation problem (1.2)–(1.3). In particular, the

multiquadrics (MQs) introduced by Hardy [10],

ϕ j (x) := ϕ(x − x j ) =
√
(x − x j )2 + c2, j = 0, 1, ∙ ∙ ∙ , N , (1.4)

are of special interest, because of their spectral convergence property, see [5, 6].

Throughout the rest of this paper, we use the notations ϕ j (∙) and c to denote the

MQs and their shape-preserving parameter as in (1.4), respectively. A review

by Franke [9] showed that the MQ interpolation is considered as one of the best

methods among 29 scattered points interpolation schemes based on accuracy,

stability, efficiency, memory requirement and easy implementation. Although

the MQ interpolation is always solvable when the x j ’s are distinct [11], the

associated coefficient matrix in (1.2) quickly becomes ill-conditioned as the

number of points increases. There are different ways to overcome this problem.

In this paper, we will focus on the quasi-interpolation method. A weaker form of

(1.3), known as quasi-interpolation, holds only for polynomials of degree 6 m,

i.e.,

p(x j ) = Lp(x j ), ∀p ∈ 5m, (1.5)

for all 0 6 j 6 N , where 5m denotes the set of polynomials of degree 6 m.

Many researchers have investigated the MQ quasi-interpolation method, see

[1, 2, 14, 15] for details.

Based on the idea in [7], we combine the multiquadric quasi-interpolation

operator LB proposed in [3] with the generalized Taylor polynomial proposed

in [8] to get a Bernoulli-type quasi-interpolation operator. The new operator

could reproduce polynomials of higher degree than the operator LB. We derive

the convergence rate of the operator with a suitable assumption on the shape-

preserving parameter c, and find that our operator could achieve a convergence

rate of higher order by using a smaller parameter, which makes the associated

quasi-interpolant less smooth. So we could use an optimal value of c according

to the desired smoothness and precision of the quasi-interpolant.

Comp. Appl. Math., Vol. 29, N. 1, 2010



“main” — 2010/3/1 — 11:09 — page 49 — #3

REN-HONG WANG and MIN XU 49

The remainder of this paper is organized as follows. In Section 2, we introduce

some previous results about the generalized Taylor polynomial, which plays an

important role in the construction of our operator. In Section 3, we propose the

Bernoulli-type quasi-interpolation operator, and study its convergence rate. In

Section 4, we give numerical experiments to show that the operator is capable of

producing high accuracy. In Section 5, we give the conclusions and future work.

2 The generalized Taylor polynomial

The generalized Taylor polynomial is an expansion in Bernoulli polynomials

Bn(x), i.e., the polynomials defined by the following generating function

tetx

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
. (2.1)

For any function f in the class Cm[a, b](a < b), this expansion is realized by

the equation

f (x) = Pm[ f ; a, b](x)+ Rm[ f ; a, b](x), x ∈ [a, b], (2.2)

where the polynomial approximation term Pm[ f ; a, b](x) is given by

Pm[ f ; a, b](x) =

f (a)+
m∑

k=1

Bk(
x−a

h )− Bk(0)

k!
hk−1( f (k−1)(b)− f (k−1)(a))

(2.3)

and the remainder term Rm[ f ; a, b ](x) is given by

Rm[ f ; a, b](x) =

hm−1

m!

∫ b

a
f (m)(t)

(
Bm

(
b − t

h

)
− Bm

(
x − t

h
−

[
x − t

h

]))
dt,

(2.4)

with h = b − a. The polynomial approximant Pm[ f ; a, b](x) has the following

properties:

lim
b→a

Pm[ f ; a, b](x) = Tm[ f ; a](x), (2.5)

Pm[ f ; a, b](a) = f (a), Pm[ f ; a, b](b) = f (b), (2.6)
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where Tm[ f ; a](x) is the mth Taylor polynomial of f about the point a. Due to

the property (2.5), we call Pm[ f ; a, b](x) the generalized Taylor polynomial.

The following two theorems give bounds for the remainder term

Rm[ f ; a, b ](x), see [7].

Theorem 2.1. Let f ∈ Cm[c, d] and x ∈ [c, d]. For the remainder term, we

have

|Rm[ f ; a, b](x)| 6






C(m)|| f (m)||∞(b − x)m, c 6 x 6 a,

C(m)|| f (m)||∞(b − a)m, a 6 x 6 b,

C(m)|| f (m)||∞(x − a)m, b 6 x 6 d,

(2.7)

where || ∙ ||∞ denotes the sup-norm on [c, d] and

C(m) =
1

m!



1 +
m∑

k=1

k∑

j=1

(
m

k

)(
k

j

)
|Bk− j (0)|



 , m = 1, 2, ∙ ∙ ∙ . (2.8)

Theorem 2.2. Let f ∈ Cm+1[c, d] and x ∈ [c, d]. For the remainder term, we

have

|Rm[ f ; a, b](x)| 6






C(m + 1)|| f (m+1)||∞(b − x)m+1, c 6 x 6 a,

C(m + 1)|| f (m+1)||∞(b − a)m+1, a 6 x 6 b,

C(m + 1)|| f (m+1)||∞(x − a)m+1, b 6 x 6 d,

(2.9)

where C(m) is defined by (2.8).

3 The Bernoulli-type quasi-interpolation operator

The quasi-interpolation operator LB is defined as follows:

(LB f )(x) = f (x0)ψ0(x)+
N−1∑

i=1

f (xi )ψi (x)+ f (xN )ψN (x), x ∈ [a, b], (3.1)

where

ψ0(x) =
1

2
c2

∫ x0

−∞

1

[(x − θ)2 + c2]3/2
dθ

+
1

2
c2

∫ x1

x0

(x1 − θ)/(x1 − x0)

[(x − θ)2 + c2]3/2
dθ (3.2)

=
1

2
+
ϕ1(x)− ϕ0(x)

2(x1 − x0)
,
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ψN (x) =
1

2
c2

∫ ∞

xN

1

[(x − θ)2 + c2]3/2
dθ

+
1

2
c2

∫ xN

xN−1

(θ − xN−1)/(xN − xN−1)

[(x − θ)2 + c2]3/2
dθ (3.3)

=
1

2
−
ϕN (x)− ϕN−1(x)

2(xN − xN−1)
,

and

ψi (x) =
1

2
c2

∫ xi+1

xi−1

Bi (θ)

[(x − θ)2 + c2]3/2
dθ

=
ϕi+1(x)− ϕi (x)

2(xi+1 − xi )
−
ϕi (x)− ϕi−1(x)

2(xi − xi−1)
(3.4)

for i = 1, 2, ∙ ∙ ∙ , N −1, where Bi (θ) is the piecewise linear hat function having

the knots {xi−1, xi , xi+1}, and satisfying Bi (xi ) = 1. The operatorLB reproduces

polynomials of zero degree, i.e.,

ψ0(x)+
N−1∑

i=1

ψi (x)+ ψN (x) = 1. (3.5)

By combining the operator LB with the mth generalized Taylor polynomial, we

propose a kind of Bernoulli-type quasi-interpolation operator LBm as follows

(
LBm f

)
(x) =

N∑

i=0

ψi (x)Pm[ f ; xi , xi+1](x) (3.6)

with xN+1 = xN−1 . The operator LBm has the following polynomial reproduction

property.

Theorem 3.1. The Bernoulli-type operator LBm reproduces all polynomials of

degree 6 m, i.e.,

LBm f = f, ∀ f ∈ 5m . (3.7)

Proof. It is easy to show that
∫ xi+1

xi

(
Bm

(
xi+1 − t

hi

)
− Bm

(
x − t

hi
−

[
x − t

hi

]))
dt = 0,
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where hi = xi+1 − xi . Then, by (2.2) and (2.4) we get

Pm[ f ; xi , xi+1](x) = f (x), ∀ f ∈ 5m .

Combining it with (3.5), we have (3.7). �

Remark 3.1. If Pm[ f ; xi , xi+1](x) in (3.6) is replaced by the mth Taylor poly-

nomials Tm[ f ; xi ], the corresponding operator also reproduces polynomials of

degree 6 m. In this case, however, we need to compute the derivatives of f up

to order m, which is one greater than the order of derivatives needed in LBm .

In order to study the convergence rates of the new operator, we introduce the

following notations

Iρ(x) = [x − ρ, x + ρ], ρ > 0,

r =
1

2
max{|x1 − x0|, |x2 − x1|, ∙ ∙ ∙ , |xN − xN−1 |},

M = max
x∈[a,b]

#(Ir (x) ∩ X),

where X = {x0, x1, ∙ ∙ ∙ , xN } and #(∙) denotes the cardinality function. There-

fore, M is the maximum number of points from X contained in an interval Ir (x).

For the convergence rate of the Bernoulli-type quasi-interpolation operator LBm ,

we have the following theorem.

Theorem 3.2. Assume that c satisfies

c 6 Drl, (3.8)

where D is a positive constant, and l is a positive integer. If f ∈ Cm[a, b], then

||LBm f − f ||∞ 6 K M || f (m)||∞El,m(r), (3.9)

where

El,m(r) =






r | ln r |, m = 1, l = 1,

r, m = 1, l > 1,

rm, m > 1, m 6 2l − 1,

r2l−1, m > 1, m > 2l − 1

(3.10)

and K is a positive constant independent of x and X.
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Proof. For each pair xi , xi+1, we set

d[xi , xi+1](x) =






xi+1 − x, x 6 xi ,

xi+1 − xi , xi 6 x 6 xi+1,

x − xi , xi+1 6 x

and

dm[xi , xi+1](x) = |d[xi , xi+1](x)|
m .

We have

|(LBm f )(x)− f (x)| =
∣
∣
∣

N∑

i=0

ψi (x) (Pm[ f ; xi , xi+1](x)− f (x))
∣
∣
∣

6
N∑

i=0

ψi (x)
∣
∣
∣Pm[ f ; xi , xi+1](x)− f (x)

∣
∣
∣

6 C(m)|| f (m)||∞Sl,m(x),

where Sl,m(x) =
∑N

i=0 ψi (x)dm[xi , xi+1](x).

Let

n =
[

b − a

2r

]
+ 1,

Qρ(u) = (u − ρ, u + ρ], u ∈ [a, b], ρ > 0,

and

Tj = Qr (x − 2r j) ∪ Qr (x + 2r j), j = 0, 1, ∙ ∙ ∙ , n,

where [∙] denotes the integer part of the argument. Obviously, the set

∪n
j=−n Qr (x +2r j) is a covering of [a, b] with half open intervals. Therefore, for

each i ∈ {0, 1, ∙ ∙ ∙ , N } there exists a unique j ∈ {0, 1, ∙ ∙ ∙ , n} such that xi ∈ Tj .

When j > 2, the following inequalities hold:

(2 j − 1)r 6 |x − xi | 6 (2 j + 1)r,

(2( j − 1)− 1)r 6 |x − ξi | 6 (2( j + 1)+ 1)r, for ξi ∈ [xi−1, xi+1],

and

|d[xi , xi+1](x)| 6 (2( j + 1)+ 1)r.
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SBm ( f1) LBm ( f1) LB( f1)

(μ,m) εmean εmax (l,m) εmean εmax l εmean εmax

(2, 1) 0.001050 0.004954 (2, 1) 0.000398 0.001875
(2, 2) 0.001062 0.004715 (2, 2) 0.000374 0.001639 2 0.001016 0.004523
(2, 3) 0.001490 0.005153 (2, 3) 0.000304 0.002264

(3, 1) 0.000476 0.003314 (3, 1) 0.000395 0.001873
(3, 2) 0.000333 0.002302 (3, 2) 0.000370 0.001642 3 0.001000 0.004505
(3, 3) 0.000206 0.001096 (3, 3) 0.000296 0.002268

(4, 1) 0.000457 0.003233 (4, 1) 0.000295 0.001873
(4, 2) 0.000259 0.001908 (4, 2) 0.000370 0.001642 4 0.001000 0.004505
(4, 3) 0.000136 0.001460 (4, 3) 0.000296 0.002268

Table 1 – Saddle.

It follows from the definition of M that

1 6 #(X ∩ T0) 6 M,

1 6 #(X ∩ Tj ) 6 2M, j = 1, 2, ∙ ∙ ∙ , n.

When x0 ∈ Tj ( j > 2), we have

ψ0(x) 6
1

2
c2

∫ x0

−∞

1

|x − θ |3
dθ +

1

2
c2 1

[(x − ξ0)2 + c2]3/2

∫ x1

x0

(x1 − θ)

(x1 − x0)
dθ

6
1

4
c2|x − x0|

−2 +
1

4
c2(x1 − x0)|x − ξ0|

−3

6
1

4
c2

[
(2 j − 1)−2r−2 + 2(2 j − 3)−3r−2

]

6 c2r−2(2 j − 3)−2,

where ξ0 ∈ [x0, x1]. Similarly, for xN ∈ Tj ( j > 2), we have

ψN (x) 6 c2r−2(2 j − 3)−2.

When xi (i = 1, 2, ∙ ∙ ∙ , N − 1) belong to Tj ( j > 2), we have

ψi (x) 6
1

2
c2 1

[(x − ξi )2 + c2]3/2

∫ xi+1

xi−1

Bi (θ)dθ

6
1

4
c2(xi+1 − xi−1)|x − ξi |

−3

6 c2r−2(2 j − 3)−2,

where ξi ∈ [xi−1, xi+1].
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SBm ( f2) LBm ( f2) LB( f2)

(μ,m) εmean εmax (l,m) εmean εmax l εmean εmax

(2, 1) 0.002145 0.005623 (2, 1) 0.000449 0.000895
(2, 2) 0.000312 0.000842 (2, 2) 0.000057 0.000246 2 0.001156 0.002189
(2, 3) 0.000586 0.002344 (2, 3) 0.000036 0.000145

(3, 1) 0.000583 0.001620 (3, 1) 0.000445 0.000896
(3, 2) 0.000058 0.000247 (3, 2) 0.000056 0.000246 3 0.001143 0.002200
(3, 3) 0.000079 0.000323 (3, 3) 0.000033 0.000143

(4, 1) 0.000510 0.001447 (4, 1) 0.000445 0.000896
(4, 2) 0.000039 0.000255 (4, 2) 0.000056 0.000246 4 0.001143 0.002200
(4, 3) 0.000025 0.000113 (4, 3) 0.000033 0.000143

Table 2 – Sphere.

Then we can get

Sl,m(x) 6
∑

xi ∈T0,T1

ψi (x)d
m[xi , xi+1](x)+

n∑

j=2

∑

xi ∈Tj

ψi (x)d
m[xi , xi+1](x)

6 M(3r)m + 2M(5r)m + 2M
n∑

j=2

c2r−2(2 j − 3)−2
(
(2 j + 3)r

)m

6 2M(5r)m + 2M(5r)m + 2Mc2rm−2
n∑

j=2

(2 j − 3)−2(2 j + 3)m

6 2M



(5r)m + (5r)m + c2rm−2
n∑

j=1

j−2(5 j)m





6 2M5m



2rm + c2rm−2
n∑

j=1

jm−2





6 2M5m



2rm + D2r2l+m−2
n∑

j=1

jm−2



 .

Case 1: (m = 1).

If l = 1, 2rm + D2r2l+m−2
n∑

j=1
jm−2 = O(r | ln r |).

If l > 1, 2rm + D2r2l+m−2
n∑

j=1
jm−2 = O(r).
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SBm ( f3) LBm ( f3) LB( f3)

(μ,m) εmean εmax (l,m) εmean εmax l εmean εmax

(2, 1) 0.006604 0.038815 (2, 1) 0.001952 0.014873
(2, 2) 0.004710 0.031367 (2, 2) 0.003327 0.034084 2 0.006244 0.035059
(2, 3) 0.013455 0.062821 (2, 3) 0.003365 0.039092

(3, 1) 0.002522 0.021627 (3, 1) 0.001943 0.014863
(3, 2) 0.002466 0.027527 (3, 2) 0.003300 0.034080 3 0.006172 0.034972
(3, 3) 0.002138 0.016732 (3, 3) 0.003263 0.039076

(4, 1) 0.002405 0.021752 (4, 1) 0.001943 0.014863
(4, 2) 0.002170 0.034048 (4, 2) 0.003300 0.034080 4 0.006172 0.034972
(4, 3) 0.001542 0.024101 (4, 3) 0.003263 0.039076

Table 3 – Cliff.

Case 2: (m > 1).

If m 6 2l − 1, 2rm + D2r2l+m−2
n∑

j=1
jm−2 = O(rm).

If m > 2l − 1, 2rm + D2r2l+m−2
n∑

j=1
jm−2 = O(r2l−1). �

By using Theorem 2.2, we can prove the following theorem in an analogous

manner.

Theorem 3.3. Assume that c satisfies

c 6 Drl, (3.11)

where D is a positive constant, and l is a positive integer. If f ∈ Cm+1[a, b],

then

||LBm f − f ||∞ 6 K ′M || f (m+1)||∞E
′
l,m(r), (3.12)

where

E ′
l,m(r) =

{
r2l−1, m + 1 > 2l − 1,

rm+1, m + 1 < 2l − 1

and K ′ is a positive constant independent of x and X.

Remark 3.2. From Theorem 3.3, we note that the convergence rate do not always

achieve the expected maximum m + 1. If the basis functions are replaced by B-

splines (for instance, ψ j (x) degenerate into linear B-splines when c is chosen

to be 0), the convergence rate will achieve m + 1. However, the associated

quasi-interpolant is finitely differentiable, which is less smooth than LBm f (x).
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4 Numerical experiments

We consider the following functions on the interval [0, 1]

SBm ( f4) LBm ( f4) LB( f4)

(μ,m) εmean εmax (l,m) εmean εmax l εmean εmax

(2, 1) 0.002590 0.007116 (2, 1) 0.000545 0.001645
(2, 2) 0.001897 0.005956 (2, 2) 0.000394 0.000993 2 0.001394 0.004020
(2, 3) 0.001138 0.006015 (2, 3) 0.000185 0.000738

(3, 1) 0.000681 0.003277 (3, 1) 0.000542 0.001642
(3, 2) 0.000378 0.001727 (3, 2) 0.000388 0.000986 3 0.001395 0.003998
(3, 3) 0.000175 0.000940 (3, 3) 0.000181 0.000736

(4, 1) 0.000618 0.002978 (4, 1) 0.000542 0.001642
(4, 2) 0.000270 0.001163 (4, 2) 0.000388 0.000986 4 0.001369 0.003998
(4, 3) 0.000089 0.000575 (4, 3) 0.000181 0.000736

Table 4 – Gentle.

SBm ( f5) LBm ( f5) LB( f5)

(μ,m) εmean εmax (l,m) εmean εmax l εmean εmax

(2, 1) 0.002358 0.012532 (2, 1) 0.001700 0.006483
(2, 2) 0.002950 0.015868 (2, 2) 0.001929 0.007393 2 0.004096 0.014145
(2, 3) 0.004950 0.019728 (2, 3) 0.001762 0.009003

(3, 1) 0.001930 0.011016 (3, 1) 0.001692 0.006477
(3, 2) 0.001501 0.009079 (3, 2) 0.001909 0.007375 3 0.004034 0.014091
(3, 3) 0.000909 0.005278 (3, 3) 0.001729 0.009025

(4, 1) 0.001945 0.011413 (4, 1) 0.001992 0.006477
(4, 2) 0.001323 0.008184 (4, 2) 0.001909 0.007375 4 0.004034 0.014091
(4, 3) 0.000815 0.006381 (4, 3) 0.001729 0.009025

Table 5 – Steep.

SBm ( f6) LBm ( f6) LB( f6)

(μ,m) εmean εmax (l,m) εmean εmax l εmean εmax

(2, 1) 0.007669 0.034957 (2, 1) 0.004663 0.015048
(2, 2) 0.005271 0.025436 (2, 2) 0.006369 0.021784 2 0.010340 0.035225
(2, 3) 0.025296 0.067861 (2, 3) 0.007923 0.027253

(3, 1) 0.005122 0.021099 (3, 1) 0.004645 0.015044
(3, 2) 0.004379 0.024620 (3, 2) 0.006328 0.021752 3 0.010208 0.035158
(3, 3) 0.003523 0.020488 (3, 3) 0.007798 0.027159

(4, 1) 0.005026 0.022762 (4, 1) 0.004645 0.015044
(4, 2) 0.004233 0.024080 (4, 2) 0.006328 0.021752 4 0.010208 0.035158
(4, 3) 0.003020 0.018326 (4, 3) 0.007797 0.027159

Table 6 – Exponential.
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Saddle f1 =
1.25

6 + 6(3x − 1)2
,

Sphere f2 =

√
64 − 81(x − 0.5)2

9
− 0.5,

Cliff f3 =
tanh(−9x + 1)

2
+ 0.5,

Gentle f4 =
exp(− 81

16(x − 0.5)2)

3
,

Steep f5 =
exp(− 81

4 (x − 0.5)2)

3
,

Exponential f6 = 0.75 exp(−
(9x − 2)2

4
)+ 0.75 exp(−

(9x + 1)2

49
)

+0.5 exp(−
(9x − 7)2

4
)+ 0.2 exp(−(9x − 4)2).

These functions were firstly proposed in [7] and result from adapting to the

univariate case test functions generally used in the multivariate interpolation of

large sets of scattered data [13]. We apply the approximating operators LBm , LB
and SBm on each function fi with c = rl . The operator SBm is defined as follows

(SBm f )(x) =
N∑

i=0

Aμ,i (x)Pm[ f ; xi , xi+1](x)

with Aμ,i (x) =
| x − xi |−μ

∑N
k=0 | x − xk |−μ

, see [7] for details.

We use uniform grids of 17 points for SB1 , LB1 , grids of 11 points for

SB2 , LB2 , and LB, and finally grids of 8 points for SB3 and LB3 . In order to

estimate the errors as accurate as possible, we compute the approximating func-

tions at the points i
101(i = 1, ∙ ∙ ∙ , 100). Tables 1–6 display mean and max

errors for different values of the parameters μ, l and m. In these examples, we

find that c = r2 is an optimal parameter for the fixed precision. The numerical

results show that the approximating power of the Bernoulli-type operator with

multiquadrics is much better than that of the Shepard-Bernoulli operator.
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5 Conclusions

In this paper, a kind of Bernoulli-type quasi-interpolation operator is proposed

by combining a univariate multiquadric quasi-interpolation operator with the

generalized Taylor polynomial. A result on the convergence rate of the operator

is given. Numerical experiments show that the operator is capable of producing

high accuracy. Moreover, the associated algorithm is easily implemented.

In our future work, we plan to use the operator to fit scattered data. For instance,

we are applying it to the fitting of discrete solutions of initial value problems of

ODEs, and good results are obtained.
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