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Abstract. This paper addresses the single machine scheduling problem with a common due

date aiming to minimize earliness and tardiness penalties. Due to its complexity, most of the

previous studies in the literature deal with this problem using heuristics and metaheuristics ap-

proaches. With the intention of contributing to the study of this problem, a branch-and-bound

algorithm is proposed. Lower bounds and pruning rules that exploit properties of the problem are

introduced. The proposed approach is examined through a computational comparative study with

280 problems involving different due date scenarios. In addition, the values of optimal solutions

for small problems from a known benchmark are provided.
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1 Introduction

Scheduling problems involving both earliness and tardiness costs have received

significant attention in recent years. This type of problem became more impor-

tant with advent of lean production principles, including the just-in-time (JIT)
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concept. According to JIT, earliness and tardiness are considered harmful to

profitability and, for this reason, must be minimized: tardiness causes loss of

customer goodwill and damage reputation, as well as delay of payments, while

earliness causes inventory carrying costs and possible loss of product quality.

Probably based on this motivation, many authors have considered the schedul-

ing problem aiming to minimize earliness and tardiness in the delivery of goods.

Comprehensive surveys on the common due date assignment and scheduling

problems can be found in [8, 2].

The problem of scheduling jobs with a common due date in a single machine

has been studied by several authors. From a practical point of view, according

to [7], customer orders with a combination of goods to be delivered at a spec-

ified time, export shipping and chemical or physical mixtures containing some

ingredients with a short half-life period are some examples where jobs are to be

scheduled in a single machine and be delivered on a common due date.

In this problem, there are n jobs available at time zero to be processed on

a single machine and to be delivered on a common due date d. Each job i

requires exactly one operation and its processing time pi is known. If a job i

is completed before the due date, its earliness is given by Ei = d − Ci , where

Ci is the completion time of job i . Conversely, if a job i is completed after the

desired date, its tardiness is given by Ti = Ci − d. Each job i has its own unit

earliness penalty αi and unit tardiness penalty βi . Preemption is not allowed

and the initial processing time is not necessarily at time zero, when all jobs are

available. The objective of the problem is to obtain an optimal schedule that

minimizes the sum of earliness and tardiness penalties.

The common due date can be restrictive or unrestrictive. A due date is called

unrestrictive if its optimal value has to be calculated or if its given value does

not influence the optimal schedule. In the cases where the given due date is

greater than or equal to the sum of processing times of all jobs available, this

due date is unrestrictive [7]. In [9] it was demonstrated that this scheduling

problem is NP-hard even with the unrestrictive due date and αi = βi . In [15]

the author addressed the particular unrestrictive case in which αi = βi = 1 for

all jobs, that can be solved by a polynomial algorithm of O(n log n) complexity.

The case in which penalties are independent of the jobs (αi = α and βi = β for
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all i) can also be treated by polynomial algorithms [21]. For the general case

(no restrictions on the penalties), a branch-and-bound algorithm that is capable

of solving instances with up to 15 jobs was proposed in [6]. By that time, a 0-1

quadratic model for this problem was presented and solved with a specialized

branch-and-bound algorithm [5]. Another exact approach that combined column

generation with a Lagrangean relaxation algorithm was presented in [1]. This

strategy solves problems with up to 125 jobs.

The restrictive version of this problem is NP-hard even with αi = βi = 1

[10, 12]. Due to its complexity, many authors addressed this problem using

heuristic and metaheuristic approaches (see, for example, [13, 17, 7, 11, 18]).

Most of these methods based their search strategies on the following properties.

For the restrictive common due date case with general penalties, there is an

optimal solution with these properties:

1. No idle times are inserted between consecutive jobs [4];

2. The schedule is V-Shaped, that is, jobs that complete on or before the due

date are sequenced in a non-increasing order of the pi/αi ratio. The jobs

that start on or after the due date are sequenced in a non-decreasing order

of the pi/βi ratio. Note that there may be a straddling job, i.e., a job whose

processing is started before and finished after the due date (see [12, 3]);

3. There is an optimal schedule in which either the processing time of the

first job starts at time zero or one job is completed on the due date. The

proof is similar to the one presented in [12].

The development of exact algorithms for the restrictive common due date case

with special characteristics was considered by some authors. A pseudopolyno-

mial dynamic programming algorithm for this problem with αi = βi for all jobs

was presented in [12], while a pseudopolynomial algorithm for the constraint

problem (machine idle time is forbidden) with αi = α and βi = β was pro-

posed by [14]. In [19] the constraint problem with the general penalties case

and different due dates related to each job was considered. The author pre-

sented a branch-and-bound algorithm that makes use of a lower bound based

on Lagrangean relaxation. More recently, algorithms based on dynamic pro-

gramming and branch-and-bound schemes for the unconstrained problem with

uniform penalties α and β were presented [20].

Comp. Appl. Math., Vol. 29, N. 2, 2010



“main” — 2010/6/30 — 16:28 — page 110 — #4

110 LOWER BOUNDS AND A BRANCH-AND-BOUND ALGORITHM

Aiming to contribute with the study of this problem with restrictive common

due date and general penalties, this paper addresses the development of a specific

branch-and-bound algorithm. Lower bounds and pruning rules that exploit the

properties of the problem are introduced. Computational tests are presented and

the performance of the proposed algorithm is analysed through a comparative

study with 280 problems involving different due date scenarios. In addition, the

values of optimal solutions for small problems from a known benchmark are

provided. Similar approaches were successfully applied in [22] and [23] to the

flowshop environment with blocking aiming to minimize the makespan and the

tardiness criteria, respectively.

This paper is organized as follows: the next section presents a mathemati-

cal model. Section 3 describes the search strategies of the branch-and-bound

algorithm and the proposed lower bounds. Section 4 shows the computational

results, while the last section summarizes the main results.

Notation. For all v ∈ R we denote v+ = max{v, 0}.

2 Mathematical model

The following mixed integer linear programming (MILP) formulation, slightly

modified from the model presented in [3], can be used to obtain optimal solu-

tions to this problem.

Parameters:

d: common due date;

αi : earliness penalty of job i per time unit;

βi : tardiness penalty of job i per time unit;

pi : processing time of job i ;

R: sufficiently large number.

Variables:

xik: 1, if job i is sequenced (not necessarily directly) prior to job k. 0, otherwise;

Ci : completion time of job i ;
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Ei : earliness of job i ;

Ti : tardiness of job i .

Model:

Min z =
n∑

i=1

αi Ei +
n∑

i=1

βi Ti (1)

subject to

Ti − Ei = Ci − d, i = 1, 2, . . . , n, (2)

Ci ≤ Ck − pk + R (1 − xik), i = 1, 2, . . . , n − 1, k = i + 1, . . . , n, (3)

Ck ≤ Ci − pi + R xik, i = 1, 2, . . . , n − 1, k = i + 1, . . . , n, (4)

Ci − pi ≥ 0, i = 1, 2, . . . , n, (5)

Ti ≥ 0, i = 1, 2, . . . , n, (6)

Ei ≥ 0, i = 1, 2, . . . , n, (7)

xik ∈ {0, 1}, i = 1, 2, . . . , n − 1, k = i + 1, . . . , n. (8)

Equation (1) represents the objective function to be minimized, i.e., the sum

of tardiness and earliness penalties. In [3] the tardiness and earliness are calcu-

lated through the following restrictions:

Ti ≥ d − Ci , i = 1, 2, . . . , n,

Ei ≥ Ci − d, i = 1, 2, . . . , n.

Alternatively, we calculate tardiness and earliness through constraints of

form (2). Note that the presented model has n restrictions less than the orig-

inal one. Constraints of form (3) and (4) indicate the completion time of each

job: if job i is sequenced prior to job k, xik = 1 and, consequently, restriction (3)

gives Ci ≤ Ck − pk and, due the addition of constant R, restriction (4) is not

restrictive. On the other hand, if xik = 0, restriction (4) becomes Ck ≤ Ci − pi

and restriction (3) is not restrictive. Restriction (5) assures that initial time of

each job i is not negative. The set of restrictions (6) and (7) defines the non-

negativity of variables Ti and Ei , while restriction (8) defines the variable xik

as binary.
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3 Branch-and-bound algorithm

The proposed branch-and-bound algorithm is composed of two diverse strategies.

This separation is based on Property 3 (see Section 1), which states that there is

an optimal solution in which either the processing of the first job starts at time

zero or one job is completed on the due date.

In the first strategy (Search Strategy 1), schedules that have a job being com-

pleted exactly on the due date are explored, while in the second one (Search

Strategy 2), schedules that start at time zero are investigated. These strategies

will be applied in a sequential form and their combined execution guarantees that

the algorithm covers the entire solution space. The initial incumbent solution is

provided by a constructive heuristic, HRM, proposed in [11].

3.1 Search Strategy 1

This search strategy looks for the best solution that has a job being completed

exactly on the due date; the starting time of this solution may be different from

time zero. The sequence of jobs is treated as two subsequences: in one subse-

quence, the last job finishes on the due date and, in the other, the first job starts

on the due date.

The first level of the search tree corresponds to the number of jobs that finish

their processing before or on the due date (nfb). For the remaining levels, only

two nodes will be generated representing the relative position of a job in relation

to the due date. These positions are indicated by the label Before (the analyzed

job finishes its processing before or on the due date) or After (the job starts its

processing after or on the due date). It was assumed that level 2 corresponds to

job 1; level 3 corresponds to job 2, and so on. When the node Before is created,

the algorithm checks if there is enough space to allocate the new job. The order

of the jobs in each subsequence follows the V-shape (Property 2).

Figure 1 illustrates an example of the proposed search tree with four jobs.

Note that, in the first level, solutions with nfb = 4 and nfb = 0 are not part of the

tree. If feasible schedules with all non-tardy jobs can be obtained, the considered

due date is unrestrictive. On the other hand, a schedule with all late jobs always

can be improved with a left shift of the sequence.
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Figure 1 – Example of a partial tree with 4 jobs generated by Search Strategy 1. In the

picture, “A” means After and “B” means Before.

In the first level of the tree, the father node will be the one with the largest

number of non-tardy jobs. This criterion aims to foster the elimination of solu-

tions that have the minimum sum of nfb processing times greater than the period

of time available before the due date. The subtree below the chosen node will

be investigated before the selection of another node in this level.

For each father node in the first level, a lower bound is calculated. The pro-

posed lower bound, L B1a , is presented in the following proposition:

Proposition 1. Consider a set J of n jobs that is composed of two subse-

quences, one with nfb unknown jobs starting before the due date, and another

with n − nfb unknown jobs completed after the due date. Assume that there is

no idle time between consecutive jobs and the job in position nfb is completed

on the due date. Then, the weighted sum of earliness and tardiness penalties of

the jobs is greater than or equal to:

L B1a = min
k∈J

{αk}
nfb−1∑

i=1

(nfb − i) pmin
i + min

k∈J
{βk}

n−nfb
∑

i=1

(n − nfb + 1 − i) pmin
i ,

where pmin
q is the q-th smallest processing time among jobs in J .

Proof. Consider a known sequence of a set J with n jobs where nfb jobs are

completed before or on the due date and n − nfb jobs are completed after

the due date. The weighted sum of earliness and tardiness penalties of this
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sequence is given by:

∑

i∈J

αi (d − Ci )
+ + βi (Ci − d)+

=
nfb−1∑

i=1



απ(i)

nfb
∑

g=i+1

pπ(g)



 +
n∑

i=nfb+1



βπ(i)

i∑

g=nfb+1

pπ(g)



 ,

where π(y) is the job that is allocated in position y.

It can be observed that:

nfb−1∑

i=1



απ(i)

nfb∑

g=i+1

pπ(g)



 +
n∑

i=nfb+1



βπ(i)

i∑

g=nfb+1

pπ(g)





≥ min
k∈J

{αk}
nfb−1∑

i=1

nfb
∑

g=i+1

pπ(g) + min
k∈J

{βk}
n∑

i=nfb+1

i∑

g=nfb+1

pπ(g)

≥ min
k∈J

{αk}
nfb−1∑

i=1

nfb−i∑

g=1

pmin
g + min

k∈J
{βk}

n−nfb
∑

i=1

i∑

g=1

pmin
g

= min
k∈J

{αk}
nfb−1∑

i=1

(nfb − 1) pmin
i + min

k∈J
{βk}

n−nfb
∑

i=1

(n − nfb + 1 − i) pmin
i

= L B1a.

Since L B1a is smaller than or equal to the weighted sum of earliness and tardi-

ness penalties of an arbitrary sequence defined as in the statement of the propo-

sition, we conclude that the thesis holds. �

In the next levels, the node to be branched is the one that contains the sub-

sequence that is closest to be completed. This proximity is measured by the

smallest number of jobs to be positioned in each subsequence. It is calculated

for each node using the following expression:

proximity = min
{
nfb − xb, n − nfb − xa

}
,

where xb and xa are the number of jobs already positioned before and after the

due date, respectively. Note that, if all jobs in any side of the due date have been

Comp. Appl. Math., Vol. 29, N. 2, 2010



“main” — 2010/6/30 — 16:28 — page 115 — #9

DÉBORA P. RONCONI and MÁRCIO S. KAWAMURA 115

fixed, the sequence of the remaining jobs is also determined by Property 2. In

case of ties, the algorithm selects the node with the maximum lower bound L B1b

which considers the jobs already positioned and it is evaluated according to the

following expression:

L B1b = max
{

L B1a, L B ′
1b

}
,

where

L B ′
1b =

xa+xb∑

i=1

[
απ(i)(d − Cπ(i))

+ + βπ(i)(Cπ(i) − d)+
]
.

A node is fathomed if its lower bound is greater than or equal to the current

incumbent solution value.

3.2 Search Strategy 2

This strategy addresses solutions whose initial time is zero. The algorithm

builds a branch-and-bound (b&b) tree where each node represents a partial se-

quence. When a node is branched, one or more nodes are generated by adding

one more job to the partial sequence associated with the node being branched.

This sequence is constructed from end to beginning, i.e., schedule construction

starts by positioning the last job to be processed and it continues fixing jobs

adjacently until it reaches the first job to be processed. Note that the first fixed

job will always finish its processing in time instant equivalent to the sum of

all processing times, while the last fixed job will start at time zero. According

to [16], this approach delivers better results than the natural one (constructing

it from beginning to end). Figure 2 illustrates this construction order.

Figure 2 – Sequence construction order in Search Strategy 2.
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To reduce the search space, only schedules whose jobs are positioned in V-

shape (Property 2) and without idle time between consecutive jobs (Property 1)

are assembled.

The node that will be branched (father node) is the one with the largest sum

of processing times of the already fixed jobs. This criterion aims to favor partial

sequences whose starting time is closer to the due date. In case of ties, the

algorithm chooses the node with the largest lower bound. When the starting

time of a partial sequence is equal to or smaller than the due date, the best

position of the remaining jobs is determined by Property 2 (V-shape) and the

node is fathomed.

For each generated node, a lower bound on the weighted sum of earliness and

tardiness penalties is computed. A node is fathomed if this estimate is greater

than or equal to the current incumbent solution.

The proposed lower bound (L B2) considers the penalties caused by the known

jobs in the partial sequence. It also considers the estimates of the penalty gen-

erated by the job that will finish its processing at the starting time of the partial

sequence and by the subsequence of unknown jobs that start its processing at

time zero. The following lemma is needed to establish the lower bound.

Lemma 1. Let A = a1, a2, . . . , at and B = b1, b2, . . . , bt sequences of posi-

tive integer numbers and define Z(A, B) =
∑t

`=1 a`b`. If a1 ≥ a2 ≥ ∙ ∙ ∙ ≥ at

and b1 ≤ b2 ≤ ∙ ∙ ∙ ≤ bt then Z(A, B) is minimized.

Proof. Assume that Z is minimized by sequences A and B that do not satisfy

the hypothesis. We will show that there is another pair of sequences A′ and

B ′ satisfying the hypothesis that also minimizes Z . As A and B do not satisfy

the hypothesis then there exists at least one index v such that av < av+1 or

bv > bv+1. We are left to three different cases:

i) av < av+1 and bv ≤ bv+1,

ii) av < av+1 and bv > bv+1,

iii) av ≥ av+1 and bv > bv+1.

Interchanging av and av+1 in case i), interchanging av and av+1 and bv and

bv+1 in case ii), or interchanging bv and bv+1 in case iii), it is easy to see that

Comp. Appl. Math., Vol. 29, N. 2, 2010
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the associated value of Z evaluated at the modified sequences does not increase

(in fact, it remains unchanged in case ii)). By continuing this pairwise inter-

change we can obtain ordered sequences A′ and B ′ satisfying the hypothesis that

minimize Z , as we wanted to prove. �

Proposition 2. Consider n jobs and a known subsequence R of these jobs that

starts its processing at S =
∑n

i=1 pi −
∑

i∈R pi > d and finishes at
∑n

i=1 pi .

Let D be the set of the remaining jobs. The weighted sum of earliness and

tardiness penalties of the complete schedule is greater than or equal to:

L B2 =
|D|∑

a=1

αmin
a

(

d −
a∑

b=1

pmax
b

)+

+ min
k∈D

{βk}(S − d) +
∑

i∈R

βi (Ci − d),

where |D| is the cardinality of D and, among jobs in D, αmin
q is the q-th smallest

earliness penalty and pmax
b is the b-th largest processing time.

Proof. Consider a known sequence W with n jobs that starts at time zero. The

weighted sum of earliness and tardiness penalties of this sequence is given by:

f (W ) =
∑

i∈W

[
αi (d − Ci )

+ + βi (Ci − d)+
]
.

Let R and D be defined as in the statement of this proposition and let π(y) be

the job that is allocated in position y and u the job that finishes its processing at

instant S. Then f (W ) can be expressed as:

f (W ) =
∑

i /∈R

αi (d −Ci )
+ +

∑

i /∈ R

i 6= u

βi (Ci − d)+ +βu(S − d)+
∑

i∈R

βi (Ci − d).

As all penalties are non-negative and βu ≥ mink∈D{βk}, the following relations

can be established:

f (W ) ≥
∑

i /∈R

αi (d − Ci )
+ + βu(S − d) +

∑

i∈R

βi (Ci − d)

≥
∑

i /∈R

αi (d − Ci )
+ + min

k∈D
{βk}(S − d) +

∑

i∈R

βi (Ci − d)

=
|D|∑

a=1

απ(a)

(

d −
a∑

b=1

pπ(b)

)+

+ min
k∈D

{βk}(S − d) +
∑

i∈R

βi (Ci − d).
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Since
∑a

b=1 pmax
b ≥

∑a
b=1 pπ(b) implies that

(

d −
a∑

b=1

pπ(b)

)+

≥

(

d −
a∑

b=1

pmax
b

)+

,

it follows that:

|D|∑

a=1

απ(a)

(

d −
a∑

b=1

pπ(b)

)+

+ min
k∈D

{βk}(S − d) +
∑

i∈R

βi (Ci − d)

≥
|D|∑

a=1

απ(a)

(

d −
a∑

b=1

pmax
b

)+

+ min
k∈D

{βk}(S − d) +
∑

i∈R

βi (Ci − d).

We know that:

(

d −
1∑

b=1

pmax
b

)+

≥

(

d −
2∑

b=1

pmax
b

)+

≥ ∙ ∙ ∙ ≥

(

d −
|D|∑

b=1

pmax
b

)+

.

Using Lemma 1 (with a` =
(
d −

∑`
b=1 pmax

b

)+
and b` = αmin

` , for ` =

1, . . . , |D|) we have that:

|D|∑

a=1

απ(a)

(

d −
a∑

b=1

pmax
b

)+

+ min
k∈D

{βk}(S − d) +
∑

i∈R

βi (Ci − d)

≥
|D|∑

a=1

αmin
a

(

d −
a∑

b=1

pmax
b

)+

+ min
k∈D

{βk}(S − d) +
∑

i∈R

βi (Ci − d) = L B2.

Since L B2 is smaller than or equal to the weighted sum of earliness and tardi-

ness penalties of an arbitrary sequence defined as in the statement of the propo-

sition we conclude that the thesis holds. �

4 Computational experiments

The proposed b&b algorithm was applied to two different sets of problems. In

the first experiment, the instances were generated according to [3], so that they

do not depend on the computer used. The authors of [3] were the pioneers in
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considering solutions starting at time instants different from zero. Seven differ-

ent numbers of jobs n ∈ {5, 10, 15, 20, 25, 30, 35} and four restrictive factors

h ∈ {0.2, 0.4, 0.6, 0.8} were considered. The factor h indicates how jammed the

production line is at the beginning of the schedule and it is used in the definition

of the common due date, according to the expression: d = bh
∑n

i=1 pic.

The processing times are integers uniformly distributed in [1, 20], the ear-

liness penalties in [1, 10] and the tardiness penalties in [1, 15]. There are 10

instances to be tested for each problem size and each restrictive factor, totaling

7 × 4 × 10 = 280 problems. The computer code was written using C language

and the experiments were run on an Intel Core 2 Duo with a 2.40 GHz processor

and 2.0 Gb of RAM memory. To prevent excessive computation time, the algo-

rithm was stopped after 1 hour of CPU time for each problem. All instances are

available at [25].

Table 1 presents the results when the b&b algorithm was applied to this first

set of problems. The columns Min, Max and Average represent, respectively,

the minimum, maximum and average CPU time obtained in each combination

of number of jobs and restrictive factor. The column Number of solved prob-

lems indicates the quantity of instances solved within the time limit. As it can

be seen, all the problems with n ≤ 25 jobs were solved in an average time of

less than 23 seconds.

In order to evaluate the proposed b&b we solve the same problem set using

the MILP model described in Section 2 with the solver CPLEX 11.0 with its

default parameter values. The computation time for each test instance was also

limited to 1 hour. Analyzing Table 1 it can be noted that the CPLEX solver was

not able to prove optimality within the allowed execution time in all instances

with more than 10 jobs while the b&b algorithm found the optimal solution

for all instances with up to 30 jobs. Moreover, it can be observed that in all

instances solved by both methods, the CPU time of the b&b was smaller than

the one presented by the CPLEX solver. These results indicate the efficiency of

the proposed algorithm in reducing the search space. This good performance

was expected since the lower bounds and pruning rules proposed in this work

are specific for the single machine earliness and tardiness scheduling problem.

These essential components of the presented b&b are able to exploit properties
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n h

b&b CPLEX

CPU Time (s) Number Average Number

Min Max Average
of solved CPU of solved

problems Time (s) problems

5

0.2 0.0 0.0 0.0 10 0.5 10

0.4 0.0 0.0 0.0 10 0.5 10

0.6 0.0 0.0 0.0 10 0.5 10

0.8 0.0 0.0 0.0 10 0.5 10

10

0.2 0.0 0.0 0.0 10 5.5 10

0.4 0.0 0.0 0.0 10 4.6 10

0.6 0.0 0.0 0.0 10 2.6 10

0.8 0.0 0.0 0.0 10 2.4 10

15

0.2 0.0 0.0 0.0 10 36001 0

0.4 0.0 0.0 0.0 10 36001 0

0.6 0.0 0.0 0.0 10 36001 0

0.8 0.0 0.0 0.0 10 36001 0

20

0.2 0.0 0.4 0.1 10 36001 0

0.4 0.1 0.4 0.2 10 36001 0

0.6 0.1 1.0 0.4 10 36001 0

0.8 0.2 1.1 0.5 10 36001 0

25

0.2 0.6 6.2 3.0 10 36001 0

0.4 4.1 14.4 9.0 10 36001 0

0.6 7.5 35.5 20.0 10 36001 0

0.8 8.7 45.2 22.8 10 36001 0

30

0.2 12.7 332.0 75.2 10 36001 0

0.4 84.5 616.5 232.9 10 36001 0

0.6 152.2 1197.1 646.3 10 36001 0

0.8 256.5 1311.4 636.1 10 36001 0

35

0.2 223.9 2100.2 865.4 10 36001 0

0.4 1169.9 3600.0 2707.31 5 36001 0

0.6 996.3 3600.0 3339.61 1 36001 0

0.8 968.9 3600.0 3327.81 2 36001 0

Table 1 – Performance of the b&b algorithm.
1 Lower bounds on the mean values as there are unsolved problems in these sets.
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of the problem, as, for example, the fact that if a sequence of jobs before or after

the common due date is determined the complete schedule is already defined.

Aiming to contribute to the study of this problem, in a second experiment, the

b&b algorithm was applied to instances with 10 and 20 jobs from the benchmark

problems presented in [3]. These benchmark values are frequently used in liter-

ature (see, for example [11] and [18]). For the 10-jobs instances, the benchmark

provides optimal solutions as well as the b&b algorithm. Considering problems

with 20 jobs, the proposed algorithm obtained optimal solutions within the time

limit for all problems. Table 2 shows the solution values for the 40 instances

generated by the b&b algorithm.

We also computed the percentage difference of the optimal value (Fo) in rela-

tion to the benchmark value of Biskup and Feldman (FB F ), as follows:

%Diff = 100
FB F − Fo

Fo
.

Table 2 shows the %Diff for each considered problem. It can be observed

that, in the worst case scenario, the benchmark value is 11.37% greater than the

optimal value. These optimal solutions are interesting for future comparison

purposes.

h = 0.2 h = 0.4 h = 0.6 h = 0.8

Optimal
%Diff

Optimal
%Diff

Optimal
%Diff

Optimal
%Diff

value value value value

4394 0.84 3066 0.00 2986 0.00 2986 0.00

8430 1.63 4847 1.03 3206 1.68 2980 0.00

6210 1.95 3838 1.17 3583 0.47 3583 0.47

9188 3.16 5118 0.08 3317 0.57 3040 0.00

4215 2.97 2495 3.05 2173 1.52 2173 1.52

6527 3.66 3582 0.53 3010 0.20 3010 0.20

10455 6.18 6238 1.91 4126 1.19 3878 0.57

3920 7.22 2145 0.28 1638 0.00 1638 0.00

3465 1.88 2096 0.05 1965 1.37 1965 1.37

4979 11.37 2925 9.13 2110 0.28 1995 0.00

Table 2 – Solution values of the b&b for the Biskup and Feldman’s benchmark.
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5 Final remarks

This paper considered the single machine scheduling problem with restrictive

common due date involving tardiness and earliness penalties. This type of prob-

lem became more important with the advent of the lean production principles,

including the just-in-time (JIT) concept. Due to its complexity, most of the

authors addressed this problem using heuristic and metaheuristic approaches.

In this study, a branch-and-bound algorithm was proposed to find optimal

solutions to this problem. In the development of the algorithm, the use of problem

properties was important for the development of new lower bounds and pruning

rules that have enhanced the efficiency of the proposed method.

An implementation of the method was tested in 280 problems generated as

presented in [3]. The proposed b&b outperformed the CPLEX optimization

software. This software was unable to prove optimality in all instances with

n ≥ 15 (200 instances) within the time limit, while the b&b algorithm found

the optimal solution in 92% of the considered instances. These results indicate

the efficiency of the algorithm, mainly due to the elimination of inferior quality

solutions through the use of the proposed lower bounds that exploit characteris-

tics of the considered problem.

In addition, the optimal solution values obtained for the benchmark problems

suggested in [3] revealed that these reference values can be improved by up to

11.37%. These results can be used to evaluate the performance of heuristics and

meta-heuristics developed for this problem.

As an extension of this study, we suggest the use of properties (see [24]) in the

development of a lower bound for more general cases, such as in the flowshop

problem with multiple machines.
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