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Abstract. Carathéodory’s lemma states that if we have a linear combination of vectors in

Rn , we can rewrite this combination using a linearly independent subset. This lemma has been

successfully applied in nonlinear optimization in many contexts. In this work we present a new

version of this celebrated result, in which we obtained new bounds for the size of the coeffi-

cients in the linear combination and we provide examples where these bounds are useful. We

show how these new bounds can be used to prove that the internal penalty method converges

to KKT points, and we prove that the hypothesis to obtain this result cannot be weakened.

The new bounds also provides us some new results of convergence for the quasi feasible in-

terior point `2-penalty method of Chen and Goldfarb [7].
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1 Introduction

In 1911 Carathéodory proved that if a point x ∈ Rn lies on the convex hull of

a compact set P , then x lies on the convex hull of a subset P ′ of P with no

more than n + 1 points [6]. In 1914 Steinitz generalized this result for a gen-

eral set P [18].
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Here we will see a different version of Carathéodory’s result, which ap-

pears in [5] as “Carathéodory’s theorem for cones”, but is better known as

“Carathéodory’s lemma”. We will provide bounds on the size of the multipli-

ers given by the Carathéodory’s lemma and we will apply this result to internal

penalty methods. We address the following nonlinear optimization problem:

Minimize f (x) subject to h(x) = 0, g(x) ≤ 0, (1)

where f : Rn → R, h : Rn → Rm and g : Rn → Rp are continuously dif-

ferentiable functions. Under a given constraint qualification, the solution x∗

satisfies the KKT condition, that is, x∗ is feasible with respect to equality

and inequality constraints and there exist λ ∈ Rm and μ j ≥ 0 for every

j ∈ A(x∗) = {i ∈ {1, . . . , p}|gi (x∗) = 0} such that

∇ f (x∗) +
m∑

i=1

λi∇hi (x∗) +
∑

j∈A(x∗)

μ j∇g j (x∗) = 0.

A common constraint qualification usually employed is the Linear Indepen-

dence constraint qualification, which states that

{
∇hi (x∗)

}m
i=1 ∪

{
∇g j (x∗)

}
j∈A(x∗)

is linearly independent. We refer to this multi-set as the active set of gradients

at x∗. The weaker Mangasarian-Fromovitz constraint qualification (MFCQ)

[14, 16] states that the active set of gradients is positive-linearly independent,

which means that there are no α ∈ Rm , β j ≥ 0 for every j ∈ A(x∗) such that

m∑

i=1

αi∇hi (x∗) +
∑

j∈A(x∗)

β j∇g j (x∗) = 0,

except if we take all αi and β j equal to zero.

Recently, a weaker constraint qualification appeared in the literature: the

Constant Positive Linear Dependence constraint qualification (CPLD) [15, 4],

which has been successfully applied to obtain new practical algorithms

[1, 2, 10]. We say that the CPLD condition holds for a feasible x∗ if for ev-

ery I ⊂ {1, . . . , m}, J ⊂ A(x∗) such that the set of gradients {∇hi (x∗)}i∈I ∪

{∇g j (x∗)} j∈J is positive-linearly dependent, there exists a neighborhood V (x∗)
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of x∗ such that the set of gradients {∇hi (y)}i∈I ∪ {∇g j (y)} j∈J remains posit-

ive-linearly dependent for every y ∈ V (x∗). The CPLD condition is a natu-

ral generalization of the Constant Rank constraint qualification of Janin [13],

which states the same as above, replacing “positive-linearly dependent” by

“linearly dependent”. The CPLD condition is weaker than the Constant Rank

condition [17].

In practical algorithms, weaker constraint qualifications are preferred, since

convergence results are stronger.

In Section 2 we will state Carathéodory’s lemma and obtain new bounds on

the size of the multipliers. Examples of possible applications of the new result

will be given. In Section 3 we will illustrate the usefulness of the new bounds

by proving that the internal penalty method converges to KKT points under the

CPLD constraint qualification and the sufficient interior property. We conclude

this section by proving that, in fact, convergence of the pure internal penalty

method under MFCQ cannot be weakened in some sense. In Section 4 we

address the interior point method of Chen and Goldfarb [7]. Using the new

bounds for Carathéodory’s lemma, we obtain stronger convergence results.

2 Generalized Carathéodory’s lemma

The main tool which enables us to prove convergence results under the CPLD

condition is Carathéodory’s lemma. A simple modification of the classical proof

provides us new bounds given by item (4) in Theorem 2.1, which can be very

useful in applications of this result.

Theorem 2.1. If x =
∑m

i=1 αivi with vi ∈ Rn and αi 6= 0 for every i , then

there exist I ⊂ {1, . . . , m} and scalars ᾱi for every i ∈ I such that

(1) x =
∑

i∈I ᾱivi ;

(2) αi ᾱi > 0 for every i ∈ I ;

(3) {vi }i∈I is linearly independent;

(4) |ᾱi | ≤ 2m−1|αi | for every i ∈ I .

Proof. We assume that {vi }m
i=1 is linearly dependent, otherwise the result fol-

lows trivially. Then, there exists β ∈ Rm , β 6= 0 such that
∑m

i=1 βivi = 0. Thus,
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we may write

x =
m∑

i=1

(αi − γβi )vi ,

for every γ ∈ R. Let i∗ = argmini

∣
∣
∣αi
βi

∣
∣
∣ and γ̄ = αi∗

βi∗
, then γ̄ is the least modulus

coefficient αi
βi

. Note that γ̄ is such that αi − γ̄ βi = 0 for at least one index

i = i∗. If αi (αi − γ̄ βi ) < 0, then |αi |2 = α2
i < αi γ̄ βi = |αi ||γ̄ ||βi |, with

αi 6= 0, βi 6= 0, thus |γ̄ | >

∣
∣
∣αi
βi

∣
∣
∣ which contradicts the definition of γ̄ . Therefore

we conclude that αi (αi − γ̄ βi ) ≥ 0. Also, |αi − γ̄ βi | ≤ |αi | + |γ̄ ||βi | ≤ 2|αi |,

since |γ̄ | ≤
∣
∣
∣αi
βi

∣
∣
∣ for every i . Including in the sum only the indexes such that

ᾱi = αi − γ̄ βi 6= 0 we are able to write the linear combination x with at least

one less vector. We can repeat this procedure until {vi }i∈I is linearly independ-

ent with αi ᾱi > 0 and |ᾱi | ≤ 2m−1|αi | for every i ∈ I . �

The new bounds |λ̄k
i | ≤ 2m+p−1|λk

i | for every i ∈ I and |μ̄k
j | ≤ 2m+p−1|μk

j |

for every j ∈ J may be useful in many ways. For example, if we have that

{(λk, μk)} is bounded, then the same is true for the sequence of new multipliers

{(λ̄k, μ̄k)}. The converse is not always true. Consider for instance xk = αk
1v

k
1 +

αk
2v

k
2, vk

1 6= 0 with βk
1vk

1 + βk
2vk

2 = 0 for βk
1 = βk

2 = 1, αk
1 = 1 + 10k , αk

2 = 10k .

We have
∣
∣
∣
αk

1
βk

1

∣
∣
∣ >

∣
∣
∣
αk

2
βk

2

∣
∣
∣ for every k, then ᾱk

1 = αk
1 −

(
αk

2
βk

2

)
βk

1 = 1 and xk = ᾱk
1v

k
1

for every k.

Another situation in which bounds may be useful is when μk
j → 0 for some j .

This appears for example in the internal penalty method, in which quasi-KKT

points are defined as

∇ f (xk) +
m∑

i=1

λk
i ∇hi (xk) +

p∑

j=1

μk
j∇g j (xk) = εk, (2)

with μk
j → 0 when g j (x∗) < 0. With the new bounds, we have that μ̄k

j → 0

whenever μk
j → 0 (we point out that the reciprocal is also not true, this can

be observed by taking the previous counter-example with αk
1 and αk

2 divided

by 10k). This result is crucial to obtain the complementarity condition
∑p

j=1 μ j g j (x∗) = 0 of the KKT condition. We will give the details in the

next section, where we also show the impossibility to weaken the hypothesis

that guarantee convergence of the pure internal penalty method to KKT points.
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3 Internal penalty method

In this section we will consider problem (1) with only inequality constraints:

Minimize f (x) subject to g(x) ≤ 0. (3)

The internal penalty method consists of solving the following subproblem:

Minimize f (x) − rk

p∑

j=1

1

g j (x)
subject to g(x) < 0, (4)

for a sequence of positive scalars rk → 0. If there are additional constraints

x ∈ �, they are added to the constraints of the subproblems.

It is a well known fact that if x∗ is a limit point of the sequence {xk} gener-

ated by the internal penalty method, such that x∗ satisfies the sufficient interior

property, that is, x∗ can be approximated by a sequence of strictly feasible points

yk → x∗ (g(yk) < 0), then x∗ is a solution to problem (3) [8, 5, 11].

We assume that x∗ is a local solution of problem (3) such that the sufficient

interior property holds, and we apply the internal penalty method to:

Minimize f (x) + 1
2‖x − x∗‖2

2,

subject to ‖x − x∗‖2 ≤ δ, g(x) ≤ 0,
(5)

for a sufficiently small δ (note that x∗ is the unique global solution of this prob-

lem). The corresponding subproblem is:

Minimize ϕ(x) = f (x) + 1
2‖x − x∗‖2

2 − rk
∑p

j=1
1

g j (x)
,

subject to ‖x − x∗‖2 ≤ δ, g(x) < 0.
(6)

It’s a classical result of internal penalty methods that the subproblems (6) admit

a global solution xk [8, 11]. Since every limit point of the sequence of solu-

tions {xk} of (6) is a global solutions of (5), we have that xk → x∗, thus, for

sufficiently large k, we have ∇ϕ(xk) = 0, that is,

∇ f (xk) +
p∑

j=1

μk
j∇g j (xk) = x∗ − xk, μk

j =
rk

g j (xk)2
.

We can then repeat standard arguments (see [15, 1, 2, 3, 11, 17]) to prove that

under the CPLD constraint qualification, there exist J ⊂ {1, . . . , p} and new
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non-negative multipliers μ̄k
j , j ∈ J , given by Carathéodory’s lemma, such that

we can take a subsequence in wich μ̄k
j converges to some non-negative μ j for

every j and

∇ f (x∗) +
∑

j∈J

μ j∇g j (x∗) = 0.

To obtain that x∗ is a KKT point, we note that if g j (x∗) < 0, then μk
j → 0,

thus, by the new bounds μ̄k
j ≤ 2p−1μk

j , we have μ̄k
j → 0, that is, μ j = 0,

and thus complementarity holds. So, under the CPLD constraint qualification

and the sufficient interior property, limit points of the internal penalty method

are KKT points. We will prove next that these hypotheses are equivalent to the

Mangasarian-Fromovitz condition when only inequality constraints are present.

For this purpose we shall define the quasi-normality constraint qualification

[12, 5].

Definition 3.1. We say that a feasible point x∗ to problem (3) satisfies the

quasi-normality constraint qualification if x∗ satisfies MFCQ, or if there exist

μ j ≥ 0 for every j ∈ A(x∗), not all zero, with
∑

j∈A(x∗) μ j∇g j (x∗) = 0 then

there does not exist a sequence zk → x∗, such that μ j > 0 ⇒ g j (zk) > 0 for

every j ∈ A(x∗).

We will use the result proved in [4] that CPLD implies quasi-normality.

Theorem 3.2. A feasible point x∗ satisfies CPLD and the sufficient interior

property if, and only if, x∗ satisfies MFCQ.

Proof. Suppose a feasible point x∗ satisfies the CPLD condition and the suffi-

cient interior property. Then x∗ satisfies the CPLD condition for the problem:

Minimize f (x) subject to − gi (x) ≤ 0, ∀i ∈ A(x∗), (7)

therefore x∗ satisfies the quasi-normality condition for problem (7). If MFCQ

does not hold, then there exist not all zero scalars μ j ≥ 0 such that

∑

j∈A(x∗)

μ j∇g j (x∗) = 0,
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multiplying by −1 we get that MFCQ does not hold for problem (7). Thus, by

the quasi-normality for this problem we get that there is no sequence zk → x∗

such that μ j > 0 ⇒ −g j (zk) > 0 for every j ∈ A(x∗). Since there is at least

one index j ∈ A(x∗) such that μ j > 0, we conclude that there is no sequence

zk → x∗ such that g j (zk) < 0, which contradicts the sufficient interior property.

The converse holds trivially since one can easily prove that the sufficient in-

terior property holds using the direction given by the original MFCQ definition,

see details in [9, 11]. Clearly, MFCQ also implies the CPLD condition. �

This shows that the internal penalty method converges to a KKT point under

MFCQ, and relaxing this condition to CPLD does not provide a stronger result.

This is clear since we cannot expect convergence of the internal penalty method

if the sufficient interior property does not hold.

We conclude this section with a counter-example showing that a stronger form

of Theorem 3.2, in which CPLD is replaced by quasi-normality, does not hold.

Consider the problem:

Minimize x subject to − x2 ≤ 0,

at the point x∗ = 0. It is clear that MFCQ does not hold and the sufficient

interior property holds. Also, the quasi-normality condition holds since there

are no infeasible points.

In the next section we will use the new bounds obtained in

Carathéodory’s lemma to prove some stronger convergence results for Chen and

Goldfarb’s interior point method [7].

4 Chen and Goldfarb’s interior point method

Consider the following nonlinear optimization problem:

Minimize f (x) subject to h(x) = 0, c(x) ≥ 0, (8)

where f : Rn → R, h : Rn → Rm and c : Rn → Rp are twice continuously

differentiable functions and F0 = {x ∈ Rn|c(x) > 0} is non-empty.

Chen and Goldfarb’s quasi-feasible interior point method consists in two

parts: the first part is to apply the log-barrier method to problem (8), obtain-
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ing subproblems (FPμ) below:

Minimize f (x) − μ
∑m

i=1 log(ci (x))

subject to h(x) = 0, c(x) > 0,

for a sequence of positive parameters μ → 0. The second part consists in

applying, for every μ, an `2-penalty method to solve (FPμ), yielding subprob-

lems (`2FPμ) below:

Minimize f (x) − μ
∑m

i=1 log(ci (x)) + r‖h(x)‖2

subject to c(x) > 0,

for a sequence of parameters r → +∞. The idea of the method is to solve

(`2FPμ) by a Newton-like approach. Here follows the details of the algorithm to

solve (FPμ), for a fixed μ > 0, according to [7].

Algorithm 4.1 (Chen and Goldfarb). Parameters: εμ > 0, σ ∈
(
0, 1

2

)
, χ > 1,

κ1 ∈ (0, 1), κ2 > 1, πμ = max{μ, 0.1}, ν > 0, 0 < γmin < 1 < γmax,

k := 0. Given initial interior points x0 ∈ F0, u0 > 0, an initial penalty

parameter r0 > 0 and an initial approximation H 0 ∈ Rn×n for the Hessian of

the Lagrangian L(x, λ, y) = f (x) − λTc(x) + yTh(x).

Step 1: Search direction

Modify H k , if necessary, such that condition C-5 below, holds:
{

dTH̃ kd ≥ ν‖d‖2, ∀d 6= 0 if ‖h(xk)‖2 > 0

dTH̃ kd ≥ ν‖d‖2, ∀d 6= 0, ∇h(xk)Td = 0 if ‖h(xk)‖2 = 0
,

where

H̃ k =






Ĥ k if ‖h(xk)‖2 = 0

Ĥ k +
1

δxk
∇h(xk)T∇h(xk) if ‖h(xk)‖2 > 0

,

with

δxk =
‖h(xk)‖2

rk
, Ĥ k = H k + ∇c(xk)C(xk)−1Uk∇c(xk)T,

Uk = diag(uk), C(xk) = diag(c(xk)).
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Calculate (1xk, λk, yk), solution of the KKT system

Mk






1xk

λk

yk




 =






−∇ f (xk)

μe

−h(xk)




 , (9)

where

Mk =






H k −∇c(xk) ∇h(xk)

Uk∇c(xk)T C(xk) 0

∇h(xk)T 0 −δxk I




 ,

I is the identity matrix and e = (1, . . . , 1) of appropriate dimensions.

Step 2: Termination

Stop if

∥
∥
∥
∥
∥
∥
∥






∇x L(xk, λk, yk)

C(xk)λk − μe

h(xk)






∥
∥
∥
∥
∥
∥
∥

2

≤ εμ and λk ≥ −εμe.

Step 3: Penalty parameter update

If the following conditions hold

(C-1): ‖h(xk)‖2 > 0,

(C-2): ‖1xk‖2 ≤ πμ,

(C-3): κ1μe ≤ C(xk)λk ≤ κ2μe,

(C-4): ‖w̄k‖ < πμ, w̄k = yk − rk
‖h(xk )‖2

h(xk),

then

rk+1 := χrk,

(xk+1, uk+1,H k+1) = (xk, uk,H k),

k := k + 1,

and go back to Step 1.

Step 4: Line search

Initialize tk = 1 and successively divide it by 2, if necessary, until the follow-

ing conditions hold

T-1: c(xk + tk1xk) > 0

T-2: 8μ,rk (xk + tk1xk) − 8μ,rk (xk) ≤ −σ tk(1xk)TH̃1xk,

where 8μ,r = f (x) − μ
∑m

i=1 log(ci (x)) + r‖h(x)‖2.

Comp. Appl. Math., Vol. 29, N. 2, 2010



“main” — 2010/7/5 — 18:23 — page 134 — #10

134 ON THE GLOBAL CONVERGENCE OF INTERIOR-POINT NLP ALGOR

Step 5: Update

Define uk+1
i to be the projection of λk

i on the interval
[
μ

γmin

ci (xk)
, μ

γmax

ci (xk)

]
,

for each i .

xk+1 = xk + tk1xk,

rk+1 = rk.

Calculate the new estimative H k+1 for the Hessian of the Lagrangian.

k := k + 1

go back to Step 1.

In [7], the authors prove that if the primal iterate sequence {xk} lies in a

bounded set and the modified Hessian sequence {H k} is bounded, then, un-

der MFCQ, the limit points of {xk} are stationary for an infeasibility measure

problem, and, if the limit point is feasible, KKT condition holds for FPμ.

We will prove, using the new bounds for Carathéodory’s lemma, that if the

penalty parameter rk → +∞ and x∗ is infeasible with respect to the equality

constraints, then we can weaken the constraint qualification hypothesis and as-

sume only the CPLD condition to obtain that x∗ is stationary for an infeasibility

measure problem.

Proposition 4.2. If the penalty parameter rk → +∞ and x∗ is a limit point of

the sequence {xk} generated by Algorithm 4.1 such that ‖h(x∗)‖2 > 0, and x∗

satisfies the CPLD constraint qualification for problem

Minimize ‖h(x)‖2
2 subject to c(x) ≥ 0, (10)

then x∗ is a KKT point for this problem.

Proof. Let’s consider a subsequence {xk} such that xk → x∗ and rk is increased

for every k, thus, conditions C-1 to C-4 are fulfilled. From (9), we can write

−H k1xk +
m∑

i=1

λk
i ∇ci (xk) −

p∑

i=1

(
rk

hi (xk)

‖h(xk)‖2
+ w̄k

i

)
∇hi (xk) = ∇ f (xk).
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By C-3, 0 < κ1μ ≤ ci (xk)λk
i , thus λk

i > 0, since ci (xk) > 0. By Carathéo-

dory’s lemma, there exist a subset Ik ⊂ {1, . . . , m} and scalars λ̄k
i > 0 such

that ∑
i∈Ik

λ̄k
i ∇ci (xk) −

∑p
i=1

rk
‖h(xk )‖hi (xk)∇hi (xk) =

= ∇ f (xk) +H k1xk +
∑p

i=1 w̄k
i ∇hi (xk),

(11)

and {∇ci (xk)}i∈Ik is linearly independent.

Let’s take a subsequence such that Ik = I . Since λk
i ≤ κ2μ

ci (xk )
, from the

new bounds on Carathéodory’s lemma, we have λ̄k
i ≤ 2m−1κ2μ

ci (xk )
, hence 0 <

ci (xk)λ̄k
i ≤ 2m−1κ2μ.

If
{

λ̄k

rk

}
admits a limited subsequence, we may consider a subsequence such

that λ̄k

rk
→ λ′. Dividing (11) by rk , taking limits for k and observing that {1xk}

and {w̄k} are limited sequences since C-2 and C-4 hold, we obtain

p∑

i=1

hi (x∗)

‖h(x∗)‖2
∇hi (x∗) −

∑

i∈I

λ′
i∇ci (x∗) = 0,

and

0 < ci (xk)
λ̄k

i

rk
≤

2m−1κ2μ

rk
⇒ ci (x∗)λ′

i = 0,

thus x∗ is a KKT point of problem (10).

In the case λ̄k

rk
→ +∞, dividing (11) by ‖λ̄k‖∞ and taking limits for a subse-

quence such that λ̄k

‖λ̄k‖∞
→ λ̄ ≥ 0, λ̄ 6= 0 we have

∑

i∈I

λ̄i∇ci (x∗) = 0,

and

0 < ci (xk)
λ̄k

i

‖λ̄k‖∞
≤

2m−1κ2μ

‖λ̄k‖∞
⇒ ci (x∗)λ̄i = 0.

Excluding from the set I all indexes such that λ̄i = 0, we have I ⊂ A(x∗) and

CPLD is not fulfilled. �

Chen and Goldfarb’s algorithm to solve (8) consists of defining positive se-

quences μk → 0, εk → 0 and using Algorithm 4.1 to approximately solve
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(FPμk ), that is, obtaining iterates satisfying the stopping criterium of Step 2.

In this case, they prove that under MFCQ, limit points are stationary for an

infeasibility measure problem, and in case the limit point is feasible, KKT con-

dition holds for (8). We will prove that, under CPLD, if the limit point is feas-

ible, then the KKT condition holds.

Proposition 4.3. Assume x∗ is a limit point of the sequence {xk} generated by

Chen and Goldfarb’s algorithm to solve (8), such that x∗ satisfies the CPLD

constraint qualification for problem (8). Assume also that Algorithm (4.1) is

well-defined, thus x∗ is a KKT point of problem (8).

Proof. Let’s take a subsequence such that xk → x∗. By the stopping criterium

of Step 2, we have

∇ f (xk) −
m∑

i=1

λk
i ∇ci (xk) +

p∑

i=1

yk
i ∇hi (xk) = δk

1 (12)

C(xk)λk − μke = δk
2 (13)

h(xk) = δk
3, (14)

such that ‖(δk
1, δ

k
2, δ

k
3)‖2 ≤ εk e λk

i ≥ −εk .

By Carathéodory’s lemma, there are scalars λ̄k
i , ȳk

i , and subsets

Ik ⊂ {1, . . . , m}, Jk ⊂ {1, . . . , p}

(we will take a subsequence that satisfies Ik = I and Jk = J for every k) such

that

∇ f (xk) −
∑

i∈I

λ̄k
i ∇ci (xk) +

∑

i∈J

ȳk
i ∇hi (xk) = δk

1, (15)

{∇ci (xk)}i∈I ∪ {∇hi (xk)}i∈J is linearly independent and |λ̄k
i | ≤ 2m+p−1|λk

i |,

λ̄k
i λ

k
i > 0, thus λ̄k

i ≥ −2m+p−1εk . Define αk = ‖(λ̄k, ȳk)‖∞.

If {αk} admits a limited subsequence, let’s consider a subsequence such that

(λ̄k, ȳk) → (λ̄, ȳ). Since εk → 0, taking limits in (15) we obtain

∇ f (x∗) −
∑

i∈I

λ̄i∇ci (x∗) +
∑

i∈J

ȳi∇hi (x∗) = 0.
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Since λ̄k
i ≥ −2m+p−1εk , we have λ̄ ≥ 0, and from (13) we get

|λ̄k
i | ≤ 2m+p−1|λk

i | ≤ 2m+p−1 |[δk
2]i + μk |

ci (xk)
,

which implies λ̄i ci (x∗) = 0. By (14) we get h(x∗) = 0, thus x∗ is a KKT point

of problem (8).

If αk → +∞ consider a subsequence such that
(

λ̄k
i

αk
,

ȳk
i

αk

)
→ (λ̂, ŷ) 6= 0, and

since
λ̄k

i

αk
≥ −

2m+p−1εk

αk
→ 0,

we have λ̂ ≥ 0.

Dividing (15) by αk and taking limits we get

∑

i∈I

λ̂i∇ci (x∗) −
∑

i∈J

ŷi∇hi (x∗) = 0,

with

|λ̄k
i | ≤ 2m+p−1|λk

i | ≤ 2m+p−1 |[δk
2]i + μk |

ci (xk)
,

thus, multiplying this inequality by ci (xk )

αk
and taking limits we get ci (x∗)λ̂i = 0,

therefore, removing from I all indexes such that λ̂i = 0, we get I ⊂ A(x∗),

which contradicts CPLD. �

We point out that since problem (8) includes also equality constraints, the

result of Theorem 3.2 does not apply.
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