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Abstract. In this paper, we propose a regularized factorized quasi-Newton method with a new

Armijo-type line search and prove its global convergence for nonlinear least squares problems.

This convergence result is extended to the regularized BFGS and DFP methods for solving strictly

convex minimization problems. Some numerical results are presented to show efficiency of the

proposed method.
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1 Introduction

The objective of this paper is to present a globally convergent factorized quasi-

Newton method for the nonlinear least squares problem

min f (x) =
1

2

m∑

i=1

r2
i (x) =

1

2
‖r(x)‖2, x ∈ Rn. (1.1)

Here r(x) = (r1(x), ∙ ∙ ∙ , rm(x))T is called the residual function which is non-

linear and || ∙ || denotes the Euclidean norm. It is easy to show that the gradient

and the Hessian of f are given by

∇ f (x) = J (x)T r(x), ∇2 f (x) = J (x)T J (x) + G(x),
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where J (x) is the Jacobian matrix of r(x),

G(x) =
m∑

i=1

ri (x)∇2ri (x)

and ∇2ri (x) is the Hessian matrix of ri (x).

The nonlinear least squares problem has many applications in applied areas

such as data fitting and nonlinear regression in statistics. Many efficient al-

gorithms have been proposed to solve this problem. The special structure of

the Hessian leads to a lot of special methods which have different convergence

properties for zero and nonzero residual problems [5, 6, 8, 20].

The Gauss-Newton method and the Levenberg-Marquardt method are two

well-known methods which have locally quadratic convergence rate for zero

residual problems [6]. However, they may converge slowly or even diverge when

the problem is nonzero residual or the residual function is highly nonlinear [1].

The main reason is that both methods only use the first order information of f .

To solve nonzero residual problems more efficiently, some structured quasi-

Newton methods using the second order information of f have been proposed.

These methods are shown to be superlinearly convergent for both zero and

nonzero residual problems [5, 8]. However, the iterative matrices of structured

quasi-Newton methods are not necessarily positive definite. Therefore the search

directions may not be descent directions of f when some line search is used.

To guarantee the positive definite property of the iterative matrices, some fac-

torized quasi-Newton methods have been proposed [15, 16, 18, 19, 20, 21, 22],

where the search direction is given by

(
Jk + Lk

)T (
Jk + Lk

)
d = −J T

k rk,

where Jk = J (xk), rk = r(xk) and Lk is updated according to certain quasi-

Newton formula. These methods have been proved to be superlinearly con-

vergent for both zero and nonzero residual problems. But they may not pos-

sess quadratical convergence rate for zero residual problems. Based on the

idea of [10], Zhang et al. [24] proposed a family of scaled factorized quasi-

Newton methods which not only have superlinear convergence rate for nonzero

residual problems, but also have quadratical convergence rate for zero residual
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problems. Under suitable conditions, the iterative matrices of factorized quasi-

Newton methods are proved to be positive definite if the initial point is close to

the solution point [20, 24].

However, all iterative matrices of factorized quasi-Newton methods may not

be positive definite if the initial point is far from the solution. Therefore, the

search direction may not be descent. This is a drawback of factorized quasi-

Newton methods to have global convergence when the line search methods are

used. Another difficulty for the global convergence is that the iterative matrices

and their inverses may not be uniformly bounded. To the best of our knowledge,

global convergence of factorized quasi-Newton methods has not been estab-

lished.

The paper is organized as follows. In Section 2, we propose a regularized

factorized quasi-Newton method which guarantees that the iterative matrix is

positive definite at each step. We use a new Armijo-type line search to compute

the stepsize. Under suitable conditions, we prove that the proposed method

converges globally for nonlinear least squares problems. In Section 3, we extend

this result to the BFGS and DFP methods for general nonlinear optimization. We

show that the regularized BFGS and DFP methods converge globally for strictly

convex objective functions. In Section 4, we compare the performance of the

proposed method to some existing methods and present some numerical results

to show efficiency of the proposed method.

2 Algorithm and global convergence

In this section, we first present the regularized factorized quasi-Newton algo-

rithm and then analyze its global convergence property. The motivation of the

method is that the positive definite property of the iterative matrix can be guar-

anteed by the use of the Levenberg-Marquardt regularization technique. It is

important for global convergence of the method to choose suitable regulariza-

tion parameter and stepsize carefully. Now we give the details of the method.

Algorithm 2.1 (Regularized factorized quasi-Newton method)

Step 1. Give the starting point x0 ∈ Rn , L0 ∈ Rm×n , δ, ρ ∈ (0, 1),

ε1 > 0, ε2 > 0, r ≥ 0, M > 0. Choose a positive constant β > 1
1−δ

> 1.
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Let k := 0.

Step 2. Compute dk by solving the linear equations

(
Bk + μk I

)
d = −gk, (2.1)

where

Bk =
(
Jk + Lk

)T (
Jk + Lk

)
, gk = J T

k rk

and

μk =

{
ε1‖Bk‖ if ‖Bk‖ > max

(
M, 1

‖gk‖

)
,

ε2‖gk‖r otherwise.
(2.2)

Here ‖Bk‖ is referred to the Frobenius norm of Bk . For simplicity, we

denote

K1
4
=

{
k|‖Bk‖ > max

(
M,

1

‖gk‖

)}
,

K2
4
=

{
k|‖Bk‖ ≤ max

(
M,

1

‖gk‖

)}
.

Step 3. (i) If k ∈ K2, compute stepsize αk = max{ρ0, ρ1, ∙ ∙ ∙ } such that

f
(
xk + αkdk

)
≤ f

(
xk

)
+ δαk gT

k dk . (2.3)

(ii) If k ∈ K1, we consider the following two cases.

Case (1): f (xk +dk) ≤ f (xk)+δgT
k dk . If f (xk +βdk) > f (xk +dk)+δβgT

k dk,

set αk = 1; Otherwise, compute stepsize αk = max{β1, β2, ∙ ∙ ∙ }

satisfying

f
(
xk + βmdk

)
≤ f

(
xk + βm−1dk

)
+ δβm gT

k dk . (2.4)

Case (2): f (xk + dk) > f (xk) + δgT
k dk . Compute stepsize αk = max{ρ1, ∙ ∙ ∙ }

such that

f
(
xk + ρmdk

)
≤ f

(
xk

)
+ δρm gT

k dk . (2.5)

Step 4. Set xk+1 = xk + αkdk . Update Lk to get Bk+1 = (Jk+1 +

Lk+1)
T (Jk+1 + Lk+1) by certain quasi-Newton formula. Let k := k + 1

and go to Step 2.
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Remark 2.1. (i) Since the matrix Bk is positive semidefinite, the iterative

matrix Bk + μk I is positive definite, which ensures that the search direction

dk is a descent direction, that is, gT
k dk < 0. The choice of μk is based on the

ideas of [9, 12, 23].

(ii) The line search (2.4) is different from the standard Armijo line search (2.3)

since β > 1 in (2.4). This new Armijo-type line search can accept stepsize

as large as possible in Case (1). The following proposition shows that it is

well-defined.

Proposition 2.1. The Algorithm 2.1 is well-defined.

Proof. We only need to prove that the line search (2.4) terminates finitely. If

it is not true, then for infinite many m, we have

f (xk + βmdk)

βm
≤

f (xk + βm−1dk)

βm
+ δgT

k dk .

Let m → ∞ in the above inequality, then from β > 1, f (x) ≥ 0 for all x and

f (xk + βmdk) ≤ f (xk) ≤ f (x0), we have

gT
k dk > 0,

which leads to a contradiction. �

In the convergence analysis of Algorithm 2.1, we need the following assump-

tion.

Assumption A.

(I) The level set � = {x ∈ Rn| f (x) ≤ f (x0)} is bounded.

(II) In some neighborhood N of �, f is continuously differentiable and its

gradient is Lipschitz continuous, namely, there exists a constant L > 0

such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N . (2.6)
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It is clear that the sequence {xk} generated by Algorithm 2.1 is contained in �.

Moreover, the sequence { f (xk)} is a descent sequence. Therefore it has a limit

f ∗, that is,

lim
k→∞

f (xk) = f ∗. (2.7)

In addition, from Assumption A we get that there is a positive constant γ such

that

‖g(x)‖ ≤ γ, ∀ x ∈ �. (2.8)

Now we give some useful lemmas for the convergence analysis of the algo-

rithm.

Lemma 2.2. Let Assumption A hold. Then we have

lim
k→∞

αk gT
k dk = 0. (2.9)

Proof. It follows directly from (2.3), (2.4), (2.5) and (2.7). �

For convenience, we denote index sets

K3
4
= {k|αk satisfies (2.4)}, K4

4
= {k|αk satisfies (2.5)}.

Then we have

K1 = K3 ∪ K4.

Lemma 2.3. If k ∈ K1, then there exists a constant c1 > 0 such that

αk ≥ c1
−gT

k dk

‖dk‖2
. (2.10)

Proof. If k ∈ K3, then from the line search (2.4), we have

f
(
xk + αkβdk

)
> f

(
xk + αkdk

)
+ δαkβgT

k dk .

By the mean values theorem and (2.6), we have

f
(
xk + αkβdk

)
− f

(
xk + αkdk

)
≤ αk(β − 1)gT

k dk + L
[
αk(β − 1)

]2
‖dk‖

2.
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The above two inequalities implies

αk ≥ c1
−gT

k dk

‖dk‖2

where c1 = β(1−δ)−1
L(β−1)2 > 0. Here we use the conditions β > 1

1−δ
and δ ∈ (0, 1).

If k ∈ K4, then from the line search (2.5), we have

f
(

xk +
αk

ρ
dk

)
> f (xk) + δ

αk

ρ
gT

k dk .

Therefore the inequality (2.10) also holds by using similar proof in the case

k ∈ K3. The proof is then completed since K1 = K3 ∪ K4. �

Lemma 2.4. If k ∈ K2, then there exists a constant c2 > 0 such that

αk = 1, or αk ≥ c2
−gT

k dk

‖dk‖2
. (2.11)

Proof. For k ∈ K2, if αk 6= 1, then by the line search (2.3), we also have

f
(

xk +
αk

ρ
dk

)
> f (xk) + δ

αk

ρ
gT

k dk .

Then the conclusion follows directly from the same argument as Lemma 2.3.�

The proof of the following lemma is similar to that of Theorem 2.2.2 of [12],

for completeness, we present the proof here.

Lemma 2.5. Let Assumption A hold and the sequence {xk} be generated by

Algorithm 2.1. If K1 is infinite, then we have

lim inf
k→∞

‖gk‖ = 0.

Proof. If k ∈ K1, then μk = ε1‖Bk‖. Now we set ᾱk = αk/‖Bk‖ and d̄k =

‖Bk‖dk , then we have

ᾱk d̄k = αkdk . (2.12)
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We have from (2.1) that

−gT
k d̄k = dT

k Bkd̄k + ε1‖Bk‖dT
k d̄k

= dT
k Bkd̄k + ε1‖d̄k‖

2 ≥ ε1‖d̄k‖
2.

(2.13)

From Lemma 2.3 and (2.12), we get

ᾱk‖d̄k‖
2 = αkdT

k d̄k ≥ c1
−gT

k dk

‖dk‖2
dT

k d̄k = c1
(
− gT

k d̄k
)
. (2.14)

This inequality together with (2.13) shows that

ᾱk ≥ c1ε1. (2.15)

It follows from (2.9) and (2.12) that

lim
k→∞

ᾱk gT
k d̄k = lim

k→∞
αk gT

k dk = 0. (2.16)

The inequalities (2.15), (2.16) and (2.13) imply that

lim
k→∞,k∈K1

d̄k = 0.

Therefore from the above equality and (2.1) we have

lim
k→∞,k∈K1

‖gk‖ ≤ lim
k→∞,k∈K1

‖Bkdk + μkdk‖

≤ lim
k→∞,k∈K1

(‖Bk‖‖dk‖ + ε1‖Bk‖‖dk‖)

= lim
k→∞,k∈K1

(1 + ε1)‖d̄k‖ = 0.

The proof is then finished. �

The following theorem shows that Algorithm 2.1 is globally convergent.

Theorem 2.6. Let Assumption A hold and the sequence {xk} be generated by

Algorithm 2.1, then we have

lim inf
k→∞

‖gk‖ = 0.
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Proof. We suppose that the conclusion of the theorem is not true. Then there

exists a constant ε > 0 such that for any k ≥ 0, it holds that

‖gk‖ ≥ ε. (2.17)

From Lemma 2.5, we only need to consider the case that K1 is finite. Therefore

there exists k0 > 0 such that for all k > k0, μk = ε2‖gk‖r .

It follows from (2.1) and (2.17) that

−gT
k dk = dT

k Bkdk + ε2‖gk‖
r‖dk‖

2 ≥ ε2γ
r‖dk‖

2.

This inequality together with Lemma 2.4 and (2.9) means that

lim
k→∞

‖dk‖ = 0. (2.18)

From (2.1), (2.17) and the definition of K2, we have

|gk‖ = ‖Bkdk + μkdk‖ ≤
(
‖Bk‖ + ε2‖gk‖

r
)
‖dk‖

≤
(

max
(

M,
1

ε

)
+ ε2γ

r

)
‖dk‖

It follows from the above inequality and (2.18) that

lim
k→∞

‖gk‖ = 0,

which contradicts with (2.17). This finishes the proof. �

3 Application to nonlinear optimization

In this section, we will extend the result of Section 2 to the BFGS method and the

DFP method for the general nonlinear optimization problem

min f (x), x ∈ Rn, (3.1)

where f : Rn → R is continuously differentiable.
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The BFGS method and the DFP method are two well-known quasi-Newton

methods for solving (3.1). Their updated formulas are given by

BFGS formula: Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
yk yT

k

yT
k sk

;

DFP formula: Bk+1 =
(

I −
yksT

k

yT
k sk

)
Bk

(
I −

sk yT
k

yT
k sk

)
+

yk yT
k

yT
k sk

;

where yk = gk+1 − gk, and sk = xk+1 − xk . An important property of both

methods is that Bk+1 can inherit the positive definiteness of Bk if sT
k yk > 0 [6].

If f is strictly convex or the Wolfe line search is used, then sT
k yk > 0 and Bk+1

is well-defined.

During the past three decades, global convergence of the BFGS and DFP meth-

ods has received growing interests. When f is convex and the exact line search is

used, Powell proved that both methods converge globally [17]. When the Wolfe

line search is used, Byrd et al. [3] proved the global convergence of the convex

Broyden’s class except for the DFP method. Byrd and Nocedal [2] obtained

global convergence of the BFGS method with the standard Armijo line search

for strongly convex function. For nonconvex optimization, counterexamples in

[4, 13] show that the BFGS method may not converge globally when using exact

line search or the Wolfe line search.

Li and Fukushima [11] proposed a modified BFGS method which possesses

global and superlinear convergence even for nonconvex functions. Zhou and

Zhang [25] extended this result to the nonmonotone case. Zhou and Li [26]

proposed a modified BFGS method for nonlinear monotone equations and es-

tablished its global convergence. But these modified BFGS formulas destroy

the affine invariability of the standard BFGS formula. To overcome this draw-

back, Liu [12] proposed a regularized BFGS method and proved that this

method converges globally for nonconvex functions if the Wolfe line search is

used. Liu [12] also proposed a question that whether the regularized BFGS

method is globally convergent for strictly convex or nonconvex functions if

Armijo-type line search is used. The answer is positive.

In fact, if we update Bk in Algorithm 2.1 by the BFGS update foumula or DFP

update formula, then a direct consequence of Theorem 2.6 is that the regularized

BFGS and DFP methods converge globally for strictly convex functions.
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Corollary 3.1. Let Assumption A hold. If f is strictly convex, then for the

regularized BFGS and DFP methods, we have lim infk→∞ ‖gk‖ = 0.

4 Numerical experiments

In this section we compare the number of iterations and function evaluations per-

formance of the proposed method to some existing methods such as the Gausss-

Newton method for nonlinear least squares problems. The details of six methods

are listed as follows.

(1) The Gauss-Newton method, denoted GN, which has the search direction

given by Bkd = −gk, Bk = J T
k Jk . We compute the stepsize by the stan-

dard Armijo line search, that is, compute stepsize αk = max{ρ0, ρ1, ∙ ∙ ∙ }

satisfying

f
(
xk + ρmdk

)
≤ f

(
xk

)
+ δρm gT

k dk, (4.1)

where we choose δ = 0.1, ρ = 0.5.

(2) The Levenberg-Marquardt method, denoted LM, whose search direction

is defined by Bkd = −gk, Bk = J T
k Jk + μk I, μk = ‖gk‖. The stepsize is

computed by (4.1).

(3) The factorized BFGS method [20], denoted FBFGS, whose search direc-

tion is given by Bkd = −gk, and Bk is updated by

Bk+1 =
(
Jk+1 + Lk+1

)T (
Jk+1 + Lk+1

)
(4.2)

where

Lk+1 = Lk +
L̄ksk

sT
k B̄ksk

((
sT

k B̄ksk

sT
k zk

)1/2

zk − B̄ksk

)T

,

L̄k = Jk+1 + Lk,

B̄k = L̄T
k L̄k,

zk = (Jk+1 − Jk)
T r(xk+1) + J T

k+1 Jk+1sk .

The stepsize is obtained by (4.1).
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(4) Algorithm 2.1, denoted R-FBFGS, where Bk is updated by (4.2). Here we

use the following values for the parameters: δ = 0.1, ρ = 0.5, β = 2,

M = 104, ε1 = 10−8, ε2 = 1 and r = 1.

(5) The scaled factorized BFGS method [24], denoted SFBFGS, whose search

direction is given by Bkd = −gk, and Bk is updated by

Bk+1 =
(
Jk+1 + ‖r(xk+1)‖Lk+1

)T (
Jk+1 + ‖r(xk+1)‖Lk+1

)
(4.3)

where

Lk+1 =
‖r(xk+1)‖

‖r(xk)‖
Lk +

1

‖r(xk+1)‖

L̄ksk

sT
k B̄ksk

((sT
k B̄ksk

sT
k zk

)1/2
zk − B̄ksk

)T
,

L̄k = Jk+1 +
‖r(xk+1)‖2

‖r(xk)‖
Lk,

B̄k = L̄T
k L̄k,

zk = ‖r(xk+1)‖(Jk+1 − Jk)
T r(xk+1)

‖r(xk)‖
+ J T

k+1 Jk+1sk .

The stepsize is computed by (4.1).

(6) Algorithm 2.1, denoted R-SFBFGS, where Bk is updated by (4.3). Here

we use the same parameters as R-FBFGS.

All codes were written in Matlab 7.4. In our experiments, we stopped when-

ever ‖gk‖ < 10−4 or f (xk) − f (xk+1) ≤ 10−12 max(1, f (xk+1)) or the number

of iterations exceeds 104. In the methods R-FBFGS and R-SFBFGS, we set

Lk+1 = 0 when sT
k zk < 10−20. The test problems are from [14]. Table-0 lists

the name and related information of the test problems, where Z, S and L stand for

zero residual, small residual and large residual problems, respectively. Tables

1-4 are numerical results of these methods, where

• iter(it1) is the number of iterations(the number of iterations using the line

search (2.4) for the methods R-FBFGS and R-SFBFGS);

• fn and normg are the number of the function evaluations and the norm of

the gradient at the stopping point, respectively;
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Abbreviated
Name of test problem n m starting point Residual

name

ROSE Rosenbrock 2 2 (−1.2, 1)T Z

FROTH Freudenstein and Roth 2 2 (0.5, −2)T S

BEALE Beale 2 3 (1, 1) Z

JENSAM2 Jennrich and Sampson 2 2 (0.3, 0.4)T S

JENSAM10 Jennrich and Sampson 2 10 (0.3, 0.4)T L

KOWOSB Kowalik and Osborne 4 11 (0.25, 0.39, 0.415, 0.39)T S

BD Brown and Dennis 4 20 (25, 5, −5, −1)T L

OSB2 Osborne 2 11 65 (1.3, 0.65, ∙ ∙ ∙ , 4.5, 5.5)T S

WATSON Watson function 20 31 (0, 0, ∙ ∙ ∙ , 0)T S

ROSEX Extended Rosenbrock 10 10 (−1.2, 1, ∙ ∙ ∙ , −1.2, 1)T Z

SINGX Extended Powell Singular 20 20 (3, −1, 0, 1, ∙ ∙ ∙ , 3, −1, 0, 1)T S

VARDIM Variably Dimensioned 10 12 (1 − 1/n, ∙ ∙ ∙ , 1 − n/n)T Z

BAND Broyden Banded 10 10 (−1, ∙ ∙ ∙ , −1)T Z

LIN1 Linear Rank 1 10 10 (1, ∙ ∙ ∙ , 1)T S

Table 0 – Test problems.

• fv and Av stand for the functional evaluation at the stopping point and the

average of corresponding measure index, respectively;

• * means that the number of iterations exceeds 104;

• Sp is the starting point for the problems BD, VARDIM and KOWOSB.

Here we use seven different starting points, that is, x1 = (103, ∙ ∙ ∙ , 103)T ,

x2 = (102, ∙ ∙ ∙ , 102)T , x3 = (101, ∙ ∙ ∙ , 101)T , x4 = (1, ∙ ∙ ∙ , 1)T , x5 =

(10−1, ∙ ∙ ∙ , 10−1)T , x6 = (10−2, ∙ ∙ ∙ , 10−2)T , x7 = (10−3, ∙ ∙ ∙ , 10−3)T .

As can be seen in Table 2, the method R-SFBFGS performed best for the

problem BD since it requires the least number of iterations and function evalua-

tions. The method R-FBFGS was faster than the methods LM and GN. Table 2

also shows that the method LM may not converge for this large residual problem

since it fails to solve this problem within 104 iterations when chosen the starting

points x1 and x2. Tables 1 and 3 indicate that the method GN was the most

efficient method for zero residual problems.

From Tables 1-4, we can see that the methods R-FBFGS and R-SFBFGS were

stablest, which shows that both methods can ultimately converge to some local
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R-FBFGS R-SFBFGS

Problem iter(it1) fn normg fv iter(it1) fn normg fv

ROSE 27(0) 41 1.7177e-007 1.2109e-013 26(0) 42 1.4848e-006 1.104e-011

FROTH 32(0) 88 0.00043829 48.9843 31(0) 74 0.00052402 48.9843

BEALE 11(0) 13 5.8368e-006 2.2389e-010 10(0) 12 3.429e-007 7.4291e-013

JENSAM2 16(0) 312 1.0965 0.27941 20(0) 340 1.3805 0.28746

JENSAM10 7(0) 190 36522.7336 3437.4932 6(0) 154 36523.336 3437.5617

KOWOSB 11(0) 13 3.3492e-005 0.00030753 10(0) 18 1.0464e-005 0.00030751

BD 404(3) 2671 0.45658 85822.2016 417(3) 2756 0.41606 85822.2016

OSB2 44(1) 57 2.6039e-005 0.040138 48(0) 56 4.4437e-005 0.040138

WATSON 22(0) 31 5.985e-006 1.0197e-007 19(0) 20 3.1376e-006 1.0195e-007

ROSEX 80(0) 86 4.1689e-005 2.4834e-009 54(0) 57 7.2284e-005 1.8273e-008

SINGX 59(0) 66 5.9403e-005 9.5247e-007 44(0) 50 5.4738e-005 8.5634e-007

VARDIM 19(7) 20 7.5927e-008 8.697e-016 18(6) 19 4.1247e-006 3.5516e-012

BAND 28(0) 29 6.8749e-005 1.6857e-010 24(0) 25 9.575e-006 1.7626e-012

LIN1 1(1) 2 1.3036e-010 2.1429 1(1) 2 1.3036e-010 2.1429

FBFGS SFBFGS

Problem iter fn normg fv iter fn normg fv

ROSE 14 45 4.8858e-014 5.7192e-030 14 44 0 0

FROTH 6 156 53.5088 56.9355 11 212 53.047 56.7989

BEALE 1 2 NaN NaN 1 2 NaN NaN

JENSAM2 24 474 1.9419 0.30837 29 609 2.2511 0.32263

JENSAM10 6 162 36522.7421 3437.4942 8 230 36523.3442 3437.5626

KOWOSB 8 21 5.7009e-005 0.00030752 9 22 2.0593e-006 0.00030751

BD 423 3219 0.38046 85822.2016 344 2609 0.44772 85822.2016

OSB2 17 40 1.6917e-005 0.040138 20 44 2.1078e-005 0.040138

WATSON 15 41 3.6602e-005 1.0194e-007 9 22 3.6417e-006 1.0196e-007

ROSEX 14 45 6.0032e-014 1.6936e-029 14 44 7.8129e-014 1.2634e-029

SINGX 12 13 3.5266e-005 9.4964e-008 11 12 7.9839e-005 6.5463e-007

VARDIM 16 17 4.5149e-007 5.2809e-016 15 16 1.569e-008 6.3777e-019

BAND 58 585 0.14979 0.00072902 9 10 2.8327e-005 1.7317e-011

LIN1 1 2 NaN NaN 1 2 NaN NaN

GN LM

Problem iter fn normg fv iter fn normg fv

ROSE 11 38 4.9452e-014 4.9797e-030 22 32 2.1751e-005 1.8964e-009

FROTH 10 262 57.3339 58.1129 79 443 0.0013233 48.9843

BEALE 1 2 NaN NaN 9 10 7.7481e-006 1.7642e-010

JENSAM2 29 602 2.4368 0.33211 18 318 2.6138 0.34176

JENSAM10 4 129 36533.6555 3438.7345 10 203 32704.789 3007.2856

KOWOSB 8 12 3.0796e-005 0.00030756 8 9 2.7402e-005 0.00030754

BD 398 3020 0.57759 85822.2016 6573 62665 0.18377 85822.2016

OSB2 8 14 1.827e-005 0.040138 41 45 9.7864e-005 0.040138

WATSON 4 5 1.3935e-007 1.0194e-007 20 21 2.1749e-006 1.0194e-007

ROSEX 11 38 1.1058e-013 2.4898e-029 54 59 1.0544e-005 5.3372e-011

SINGX 8 9 3.0164e-005 1.8743e-007 78 79 2.9682e-005 4.0319e-007

VARDIM 9 10 7.8389e-007 1.5919e-015 30 31 3.1339e-006 2.1246e-012

BAND 8 9 3.0316e-005 1.8754e-011 21 22 5.9486e-005 7.2724e-011

LIN1 1 2 NaN NaN 1 2 5.5977e-010 2.1429

Table 1 – Test results for test problems with given points in Table-0.
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R-FBFGS R-SFBFGS

Sp iter(it1) fn normg fv iter(it1) fn normg fv

x1 408(11) 2659 0.35844 85822.2016 263(11) 1630 0.46197 85822.2016

x2 427(9) 2794 0.49511 85822.2016 321(8) 2091 0.52185 85822.2016

x3 372(2) 2436 0.38249 85822.2016 453(3) 2924 0.35598 85822.2016

x4 271(3) 1728 0.50631 85822.2016 397(2) 2619 0.34217 85822.2016

x5 357(3) 2366 0.2513 85822.2016 380(4) 2561 0.38891 85822.2016

x6 299(3) 1975 0.41898 85822.2016 298(2) 1950 0.13986 85822.2016

x7 357(1) 2362 0.33776 85822.2016 360(2) 2348 0.27332 85822.2016

Av 355.9(4.6) 2331.4 353.1(4.6) 2303.3

FBFGS SFBFGS

x1 432 3235 0.24956 85822.2016 444 3312 0.28299 85822.2016

x2 376 2824 0.57481 85822.2016 384 2894 0.35015 85822.2016

x3 448 3392 0.42223 85822.2016 434 3268 0.36913 85822.2016

x4 335 2515 0.19002 85822.2016 319 2407 0.33001 85822.2016

x5 320 2448 0.41839 85822.2016 326 2461 0.07763 85822.2016

x6 356 2710 0.26727 85822.2016 303 2330 0.36326 85822.2016

x7 332 2481 0.13457 85822.2016 344 2599 0.39983 85822.2016

Av 371.3 2800.7 364.9 2753

GN LM

x1 450 3388 0.33622 85822.2016 10000* 174105 — —

x2 431 3246 0.32536 85822.2016 10000* 67699 — —

x3 406 3034 0.32743 85822.2016 9694 86477 0.16024 85822.2016

x4 389 2943 0.40604 85822.2016 941 7944 0.15998 85822.2016

x5 437 3298 0.42836 85822.2016 286 2098 0.27745 85822.2016

x6 381 2908 0.3431 85822.2016 393 2853 0.25431 85822.2016

x7 340 2504 0.44166 85822.2016 485 3547 0.18451 85822.2016

Av 404.9 3045.9 4542.7 49246

Table 2 – Test results for the large residual problem BD.

stationary points for the given test problems. Moreover, we observe that the

line search (2.4) was rarely used, but it is very efficient for the large residual

problems.

In order to show the number of iterations or function evaluations performance

of the six methods more clearly, we made Figures 1-2 according to the dada in

Tables 1-4 by using the performance profiles of Dolan and Moré [7].

Since the top curve in Figures 1-2 corresponds to GN when τ < 1, this method

is clearly the most efficient method for this set of 35 test problems. GN needs

the least number of iterations and function evaluations for about 48% and 51%

of the test problems. The possible reason is that most test problems are zero

or very small residual problems. However, GN only solves 87% of the test
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R-FBFGS R-SFBFGS

Sp iter(it1) fn normg fv iter(it1) fn normg fv

x1 29(19) 30 7.3573e-006 1.1704e-011 34(20) 43 6.4822e-007 1.1197e-015

x2 25(16) 31 9.2223e-008 2.9985e-017 24(16) 25 1.05e-005 2.3794e-011

x3 21(12) 22 3.4701e-006 5.381e-013 21(12) 22 5.2768e-005 5.8634e-010

x4 0(0) 1 0 0 0(0) 1 0 0

x5 19(7) 20 9.4672e-007 1.7041e-013 18(7) 19 6.9588e-005 7.4793e-010

x6 20(8) 21 1.7441e-006 6.403e-014 19(7) 20 5.7122e-005 4.2315e-010

x7 20(8) 21 6.0293e-006 4.2892e-013 20(7) 21 2.4841e-008 1.3298e-016

Av 19.1(10) 20.9 19.4(9.9) 21.6

FBFGS SFBFGS

x1 29 30 5.1336e-005 6.8275e-012 30 31 4.8478e-005 6.0885e-012

x2 26 27 1.5511e-005 6.2332e-013 26 27 4.2816e-005 4.7493e-012

x3 22 23 2.3744e-007 1.4606e-016 21 22 5.1305e-005 6.8191e-012

x4 0 1 0 0 0 1 0 0

x5 17 18 2.5966e-009 1.7467e-020 16 17 1.663e-011 7.1643e-025

x6 17 18 1.1484e-007 3.4167e-017 16 17 1.2009e-008 3.7362e-019

x7 10 11 5.8861e-012 8.9756e-026 45 46 9.7049e-007 2.0374e-013

Av 17.3 18.3 22 23

GN LM

x1 20 21 1.9919e-012 1.0279e-026 10000* 10001 — —

x2 16 17 8.999e-006 2.098e-013 3152 3153 1.6329e-007 5.7681e-015

x3 13 14 7.7751e-010 1.5661e-021 302 303 5.3062e-008 6.0906e-016

x4 0 1 0 0 0 1 0 0

x5 10 11 0 0 42 43 4.3908e-008 4.1704e-016

x6 10 11 3.8833e-012 3.9067e-026 45 46 4.7351e-008 4.8502e-016

x7 10 11 5.8861e-012 8.9756e-026 45 46 9.7049e-007 2.0374e-013

Av 11.3 12.3 1940.9 1941.9

Table 3 – Test results for the zero residual problem VARDIM.

problems successfully while the methods R-FBFGS and R-SFBFG can solve

all test problems. For τ > 2, the top curves correspond to R-FBFGS and

R-SFBFGS, which shows that both methods are best within a factor τ with

respective to the number of iterations and function evaluations.

Conclusions

We have proposed a regularized factorized quasi-Newton method with a new

Armijo-type line search for nonlinear least squares problems. Under suitable

conditions, global convergence of the proposed method is established. We also

compared the performance of the proposed method to some existing methods.

Numerical results show that the proposed method is promising.
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R-FBFGS R-SFBFGS

Sp iter(it1) fn normg fv iter(it1) fn normg fv

x1 12(3) 73 2.2596e-005 0.00094437 17(0) 118 7.682e-007 0.0010271

x2 23(0) 145 2.408e-007 0.00094199 134(0) 1373 4.2586e-005 0.0017947

x3 12(0) 41 3.5145e-006 0.00091307 14(0) 85 9.1386e-005 0.00091308

x4 11(0) 29 5.3353e-005 0.00063121 6(0) 7 5.4055e-005 0.00064601

x5 6(0) 7 2.4862e-005 0.00030753 6(0) 7 1.6505e-005 0.00030752

x6 18(0) 47 6.5095e-005 0.00030793 17(0) 35 5.5261e-005 0.00030754

x7 13(0) 29 1.5021e-005 0.00030758 18(0) 56 7.3324e-005 0.0003083

Av 13.6(0.4) 53 30.3(0) 240.1

FBFGS SFBFGS

x1 7 274 0.00015227 0.0074384 2 142 3.9349 9.9516

x2 2 110 68.0119 3084.3729 2 110 68.0119 3084.3729

x3 611 12675 9.969e-005 0.0079896 510 9705 8.9072e-006 0.00042368

x4 13 38 4.8556e-005 0.00030753 10 22 6.4239e-005 0.00030752

x5 6 7 2.1055e-006 0.00030751 6 7 3.3314e-006 0.00030751

x6 60 572 5.6015e-006 0.00030751 10 25 9.7842e-005 0.0016273

x7 10000* 241941 93.015 0.016707 7245 178138 9.9965e-005 0.0026686

Av 1528.4 36517 1112.1 26878

GN LM

x1 8 48 3.5482e-005 0.0077006 108 1042 4.8297e-007 0.0010271

x2 9 71 9.9007e-005 0.14258 1445 36235 0.53282 0.13116

x3 53 635 7.6567e-005 0.0010352 70 793 1.5315e-006 0.0017946

x4 9 11 6.3432e-005 0.00030769 6 8 5.6632e-005 0.0006283

x5 6 7 3.6309e-005 0.00030758 6 7 8.2719e-006 0.00030751

x6 6 10 8.366e-005 0.0003076 10 17 6.8217e-006 0.00030752

x7 10000* 240170 85.8983 0.015786 11 25 6.2113e-006 0.00030752

Av 1441.6 34422 236.6 5446.7

Table 4 – Test results for the small residual problem KOWOSB.
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