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Abstract. In this paper, we study the distribution on the eigenvalues of the preconditioned

matrices that arise in solving two-by-two block non-Hermitian positive semidefinite linear systems

by use of the accelerated Hermitian and skew-Hermitian splitting iteration methods. According

to theoretical analysis, we prove that all eigenvalues of the preconditioned matrices are very

clustered with any positive iteration parameters α and β; especially, when the iteration parameters

α and β approximate to 1, all eigenvalues approach 1. We also prove that the real parts of all

eigenvalues of the preconditioned matrices are positive, i.e., the preconditioned matrix is positive

stable. Numerical experiments show the correctness and feasibility of the theoretical analysis.
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1 Introduction

Let us first consider the nonsingular saddle point system Ax = b as follows:

A =

(
B E

−E∗ D

)(
u

v

)

=

(
f

g

)

, (1)
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where, B ∈ Cn×n is Hermitian positive definite, D ∈ Cm×m is Hermitian posi-

tive semidefinite, E ∈ Cn×m (n ≥ m) has full column rank, f ∈ Cn , g ∈ Cm ,

and E∗ denotes the conjugate transpose of E .

We review the Hermitian and skew-Hermitian splitting:

A = H + S,

where

H =
1

2
(A + A∗) =

(
B 0
0 D

)

and S =
1

2
(A − A∗) =

(
0 E

−E∗ 0

)

. (2)

Obviously, H is a Hermitian positive semidefinite matrix, and S is a skew-

Hermitian matrix, see [1].

To solve the linear system (1), we have usually used efficient splittings of the

coefficient matrix A. Many studies have shown that the Hermitian and skew-

Hermitian splitting (HSS) iteration method is very efficient, see e.g., [1–15].

In particular, Benzi and Golub [2] considered the HSS iteration method and

pointed out that it converges unconditionally to the unique solution of the saddle

point linear system (1) for any iteration parameter. In the case of D = 0, Bai

et al. [3] proposed the PHSS iteration method and showed the advantages of

the PHSS iteration method over the HSS iteration method by solving the Stokes

problem. Bai et al. [4] generalized the PHSS iteration method by introducing

two iteration parameters and proved theoretically the convergence rate of the ob-

tained AHSS iterative method is faster than that of the PHSS iteration method,

when they are applied to solve the saddle point problems. Under the condition

that B is symmetric and positive definite and D = 0, Simoncini and Benzi [5]

estimated bounds on the spectral radius of the preconditioned matrix of the HSS

iteration method and pointed out that any eigenvalue (denote by λ) of the precon-

ditioned matrix approximates to 0 or 2, i.e., λ ∈ (0, ε1)∪ (ε2, 2), with ε1, ε2 > 0

and ε1, ε2 → 0, as α → 0; meanwhile, they pointed out that all eigenvalues

are real while the iteration parameter α ≤ 1
2λn , where λn is the smallest eigen-

value of B; Bychenkov [6] obtained more accurate result than that in [5] and

believed that all eigenvalues are real, as the iteration parameter α ≤ λn . Chan,

Ng and Tsing [7] studied the spectral analysis of the preconditioned matrix of

the HSS iteration method for the generalized saddle point problem for the case
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of D = μIm , researched the spectral properties of the preconditioned matrices,

and gave sufficient conditions that all eigenvalues of the preconditioned matrix

are real. Huang, Wu and Li [8] studied the spectral properties of the precondi-

tioned matrix of the HSS iteration method for nonsymmetric generalized sad-

dle problems and pointed out that the eigenvalues of the preconditioned matrix

gather to (0, 0) or (2, 0) on the complex plane as the iteration parameter ap-

proaches 0. Benzi [9] presented a generalized HSS (GHSS) iteration method by

splitting H into the sum of two Hermitian positive semidefinite matrices.

In [1, 2], the following Hermitian and skew-Hermitian splitting iteration

method was used to solve the large sparse non-Hermitian positive semidefi-

nite linear system (1) with D = 0:





(
α In+m + H

)
xk+ 1

2 =
(
α In+m − S

)
xk + b,

(
α In+m + S

)
xk+1 =

(
α In+m − H

)
xk+ 1

2 + b,
(3)

where α is a given positive constant and In+m is the identity matrix of order

n + m. The equation (3) can be rewritten as

xk+1 = M(α)xk + N (α)b,

where

M(α) =
(
α In+m + S

)−1(
α In+m − H

)(
α In+m + H

)−1(
α In+m − S

)
,

N (α) = 2α
(
α In+m + S

)−1(
α In+m + H

)−1
.

By simple manipulation, the authors of [1, 2] obtained the preconditioner of the

following form

P(α) = [N (α)]−1 = (2α)−1
(
α In+m + S

)(
α In+m + H

)
.

According to theoretical analysis, they proved the spectral radius ρ(M(α)) < 1

and the optimal iteration parameter

α∗ = arg min
α

{
max

γmin≤λ≤γmax

∣
∣
∣
∣
α − λ

α + λ

∣
∣
∣
∣

}
=

√
γminγmax,

where γmin, γmax and λ denote the minimum, the maximum and the arbitrary

eigenvalue of H , respectively.
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We review the accelerated Hermitian and skew-Hermitian splitting (AHSS)

iteration method established in [4] and first consider the simpler case that

D = 0. Let U ∈ Cn×n be nonsingular such that U ∗ BU = In , and V ∈ Cm×m

be also nonsingular. We denote by

Ẽ = U ∗EV , F = (V ∗)−1V −1,

P =

(
U 0

0 V

)

and Ã = P∗ AP =

(
In Ẽ

−Ẽ∗ 0

)

.

Then, the linear system (1) is equivalent to

Ãx̃ = b̃,

where

Ã = H̃ + S̃,

with

H̃ =

(
In 0

0 0

)

and S̃ =

(
0 Ẽ

−Ẽ∗ 0

)

.

Therefore, the AHSS iteration method proposed in [4] can be written as follows:





(3 + H̃)x̃ k+ 1
2 = (3 − S̃)xk + b̃,

(3 + S̃)x̃ k+1 = (3 − H̃)xk+ 1
2 + b̃,

(4)

where

3 =

(
α In 0

0 β Im

)

,

with α and β are any positive constants.

Further, by straightforward computation, it is easy to see that

A = M(α, β) − N (α, β) and Ã = M̃(α, β) − Ñ (α, β),

where

M(α, β) =




α+1

2 B α+1
2α

E

− 1
2 E∗ β

2 F



 , N (α, β) =




α−1

2 B −α−1
2α

E

1
2 E∗ β

2 F
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and

M̃(α, β) =




α+1

2 In
α+1
2α

Ẽ

− 1
2 Ẽ∗ β

2 Im



 , Ñ (α, β) =




α−1

2 In −α−1
2α

Ẽ

1
2 Ẽ∗ β

2 Im



 .

Now we consider the general case that D 6= 0, Bai and Golub in [4] fur-

ther extended the AHSS iteration method to solve the generalized saddle point

problems and proposed the AHSS preconditioner of the following form

M(α, β) =
1

2




α In + B 1

α
(α In + B)E

− 1
β
(β Im + D)E∗ β Im + D



 . (5)

In this paper, we use the AHSS iteration method to solve the generalized

saddle point system (1) with D being positive semidefinite. According to the

analysis, we easily know that the preconditioner proposed in this paper is differ-

ent from the AHSS preconditioner in (5). We prove that all eigenvalues of the

preconditioned matrices are very clustered with any positive iteration parameters

α and β; especially when the iteration parameters α and β approximate to 1, all

eigenvalues approach 1. We also prove that the real parts of all eigenvalues of

the preconditioned matrix are positive, i.e., the preconditioned matrix is posi-

tive stable. Numerical experiments show the correctness and feasibility of the

theoretical analysis.

2 Spectral analysis for PAHSS iteration method

Bai [16] studied algebraic properties of the AHSS iteration method for solving

the general saddle point problem (1) when D = 0 and obtained the optimal pa-

rameters. By theoretical analysis and numerical experiments, we easily see that

the AHSS iteration method is considerably robust and efficient. For the large

sparse generalized saddle-point problems, Bai in [17] only introduced the AHSS

iteration methods and the AHSS preconditioner in (5). In this paper, we propose

a preconditioner based on the AHSS iteration method, called the preconditioned

AHSS (PAHSS) preconditioner, which is different from the AHSS precondi-

tioner in (5), and study in detail the related spectral properties of the PAHSS

iteration method. So, the study in this paper is a complement and an extention of
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that in [17]. In this section, our main contribution is to use the PAHSS iteration

method to solve the generalized saddle point problem (1) when D is positive

semidefinite and to analyze the spectral properties of the preconditioned matrix.

First, we consider the special case that D is a Hermitian positive definite matrix,

and we begin our analysis by giving some notations.

Assume that U B−1
1 E(D−1

1 )∗V ∗ = 6 is the singular value decomposition

[17, 18], both U ∈ Cn×n and V ∈ Cm×m are unitary matrices, where B = B∗
1 B1,

D = D∗
1 D1 and

61 =

(
6

0

)

, 6 = diag{σ1, σ2, . . . , σm} ∈ Cm×m,

where σi (i = 1, 2, . . . , m) denote the singular values of B−1
1 E(D−1

1 )∗.

We apply the following preconditioned AHSS iteration method to solve the

generalized saddle point system (1),





(3 + H)xk+ 1
2 = (3 − S)xk + b,

(3 + S)xk+1 = (3 − H)xk+ 1
2 + b,

(6)

where H and S are defined as in (2), and

3 =

(
αB

β D

)

,

with α and β being any positive constants. When the iterative parameter α = β,

we can easily know that the iteration method (6) reduces to the PHSS iteration

method [3]. Bai, Golub and Li proposed in [19] the preconditioned HSS iteration

method. When we properly select the matrix P or the parameter matrix in [19],

we easily know the AHSS iteration method is a special case of that in [19].

By simple calculation, the iteration scheme (6) can be equivalently written as

xk+1 = 8(α, β)xk + 9(α, β)b, (7)

where

8(α, β) = (3 + S)−1(3 − H)(3 + H)−1(3 − S),

9(α, β) = 2(3 + S)−1(3 + H)−13.
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After straightforward operations, we obtain the following preconditioner

M(α, β) = 9(α, β)−1

= (23)−1(3 + H)(3 + S)

=
1

2

(
(α + 1)B α+1

α
E

−β+1
β

E∗ (β + 1)D

)

.

It is straightforward to show that

A = M(α, β) − N (α, β),

where
N (α, β) = (23)−1(3 − H)(3 − S)

=
1

2

(
(α − 1)B −α−1

α
E

β−1
β

E∗ (β − 1)D

)

.

In the following, we denote by

T =

(
U B−1

1

V D−1
1

)

. (8)

Then, we obtain the following two equalities:

M̃(α, β) = T M(α, β)T ∗ =
1

2

(
(α + 1)In

α+1
α

61

−β+1
β

6∗
1 (β + 1)Im

)

, (9)

Ñ (α, β) = T N (α, β)T ∗ =
1

2

(
(α − 1)In −α−1

α
61

β−1
β

6∗
1 (β − 1)Im

)

. (10)

According to (9), we further get

M̃(α, β)−1 =




2

α+1

(
I − 1

αβ
61 S̃(α, β)−16∗

1

)
− 2

α(β+1)
61 S̃(α, β)−1

2
β(α+1)

S̃(α, β)−16∗
1

2
β+1 S̃(α, β)−1



 , (11)

where

S̃(α, β) = Im +
1

αβ
62.

Subsequently, by analysing the eigenproblem

[M(α, β)]−1 N (α, β)x = λx, (12)

we obtain the following related properties for the eigenvalues λ of the iteration

matrix [M(α, β)]−1 N (α, β).
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Theorem 2.1. Consider the linear system (1), let B and D be Hermitian pos-

itive definite matrices, E ∈ Cn×m have full column rank, and α, β be posi-

tive constants. If σk (k = 1, 2, . . . , m) are the singular values of the matrix

B−1
1 E(D−1

1 )∗, where B = B∗
1 B1, and D = D∗

1 D1, then the eigenvalues of the

iteration matrix [M(α, β)]−1 N (α, β) of the P AH SS iteration method are α−1
α+1

with multiplicity n − m, and, for k = 1, 2, . . . , m, the remainder eigenvalues are

λk± =
(αβ − 1)(αβ − σ 2

k ) ±
√

(α − β)2(αβ + σ 2
k )2 − 4αβσ 2

k (αβ − 1)2

(α + 1)(β + 1)(αβ + σ 2
k )

.

Proof. Equivalently, the eigenvalue problem (12) can be written as the follow-

ing generalized eigenvalue problem:

N (α, β)x = λM(α, β)x . (13)

Then, according to (8) we obtain

T ∗N (α, β)T T −1x = λT ∗M(α, β)T T −1x .

Therefore, according to the formulas (9) and (10), the generalized eigenvalue

problem (13) is equivalent to

Ñ (α, β)x̃ = λM̃(α, β)x̃,

where

x̃ = T −1x =

(
BU−1u

CV −1v

)

,

i.e.,

[M̃(α, β)]−1 Ñ (α, β)x̃ = λx̃ .

By straightforward computation, we see that

M̃(α, β)−1 Ñ (α, β) =







T (11) 0 T (13)

0 α−1
α+1 In−m 0

T (31) 0 T (33)





 , (14)
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where

T (11) =
α − 1

α + 1
In −

2(αβ − 1)

αβ(α + 1)(β + 1)
S̃(α, β)−162,

T (13) = −
α − 1

α(α + 1)
6 +

α − 1

α2β(α + 1)
S̃(α, β)−163 −

β − 1

α(β + 1)
6 S̃(α, β)−1,

T (31) =
2(αβ − 1)

β(α + 1)(β + 1)
S̃(α, β)−16,

T (33) = −
α − 1

αβ(α + 1)
S̃(α, β)−162 +

β − 1

β + 1
S̃(α, β)−1.

For the convenience of our statements, we denote by

0̃(α, β) =

(
T (11) T (13)

T (31) T (33)

)

.

By [17, Lemma 2.6], we obtain the kth (k = 1, 2, . . . , m) block submatrix of

0̃(α, β):

0̃(α, β)k =

(
T (11)k T (13)k

T (31)k T (33)k

)

,
1

(α + 1)(β + 1)(αβ + σ 2
k )

2(α, β)k,

where

T (11)k =
α − 1

α + 1
−

2(αβ − 1)

αβ(α + 1)(β + 1)
σ 2

k

(
1 +

1

αβ
σ 2

k

)−1

,

T (13)k = −
α − 1

α(α + 1)
σk +

α − 1

α2β(α + 1)

(
1 +

1

αβ
σ 2

k

)−1

σ 3
k

−
β − 1

α(β + 1)
σk

(
1 +

1

αβ
σ 2

k

)−1

,

T (31)k =
2(αβ − 1)

β(α + 1)(β + 1)

(
1 +

1

αβ
σ 2

k

)−1

σk,

T (33)k = −
α − 1

αβ(α + 1)
σ 2

k

(
1 +

1

αβ
σ 2

k

)−1

+
β − 1

β + 1

(
1 +

1

αβ
σ 2

k

)−1

,

2(α, β)k11 = (α − 1)(β + 1)αβ − (α + 1)(β − 1)σ 2
k ,

2(α, β)k22 = −(α − 1)(β + 1)σ 2
k + (α + 1)(β − 1)αβ,

2(α, β)k =

(
2(α, β)k11 −2β(αβ − 1)σk

2α(αβ − 1)σk 2(α, β)k22

)

.
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We denote by λ̃ an arbitrary eigenvalue of 2(α, β)k . Then it holds that

λ̃2 − 2(αβ − 1)(αβ − σ 2
k )λ̃ + (α2 − 1)(β2 − 1)(αβ + σ 2

k )2 = 0.

Further, for k = 1, 2, . . . , m, we have

λ̃k± = (αβ−1)(αβ−σ 2
k )±

√
(α − β)2(αβ + σ 2

k )2 − 4αβσ 2
k (αβ − 1)2. (15)

Therefore, we complete the proof of Theorem 2.1. �

Theorem 2.2. Let the conditions of Theorem 2.1 be satisfied. Then all eigen-

values of [M(α, β)]−1 N (α, β) are real, provided α and β meet one of the fol-

lowing cases:

i) α < 1, β > 1 or α > 1, β < 1;

ii) α = 1, β 6= 1 or β = 1, α 6= 1;

iii) 0 < α, β < 1 or α, β > 1, α 6= β, and σk < σ−, or σk > σ+, k =

1, 2, . . . , m,

where σ− and σ+ are the roots of the quadratic equation:

|α − β|σ 2 − 2
√

αβ|αβ − 1|σ + αβ|α − β| = 0,

with

σ− =
√

αβ
[
|αβ − 1| −

√
(α2 − 1)(β2 − 1)

]
/|α − β|,

σ+ =
√

αβ
[
|αβ − 1| +

√
(α2 − 1)(β2 − 1)

]
/|α − β|.

Proof. According to (15), we obtain that λ̃k± (k = 1, 2, . . . , m) are all real if

and only if

(α − β)2
(
αβ + σ 2

k

)2
− 4αβσ 2

k (αβ − 1)2 ≥ 0,

i.e.,

|α − β|
(
αβ + σ 2

k

)
≥ 2

√
αβσk |αβ − 1|.
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Further, we have

|α − β|σ 2
k − 2

√
αβ|αβ − 1|σk + αβ|α − β| ≥ 0.

Consider the following inequality

|α − β|σ 2 − 2
√

αβ|αβ − 1|σ + αβ|α − β| ≥ 0. (16)

On one hand, if α and β satisfy the conditions i) and ii), then

4αβ(αβ − 1)2 − 4αβ(α − β)2 = 4αβ(α2 − 1)(β2 − 1) ≤ 0.

It is easy to obtain the inequality (16). On the other hand, if 0 < α, β < 1 or

α, β > 1 and α 6= β, then we have

4αβ(αβ − 1)2 − 4αβ(α − β)2 = 4αβ(α2 − 1)(β2 − 1) > 0.

So, for all σk (k = 1, 2, . . . , m), we can find out some positive constants α and

β such that σk < σ−, or σk > σ+. Then, the inequality (16) is obtained.

Hence, as α and β meet one of the cases i), ii) and iii), we obtain λ̃k± (k =

1, 2, . . . , m) are all real, i.e., λk± =
λ̃k±

(α+1)(β+1)(αβ+σ 2
k )

(k = 1, 2, . . . , m) are all

real.

So, we complete the proof of Theorem 2.2. �

Theorem 2.3. Let the conditions of Theorem 2.1 be satisfied. Denote by

ρP AH SS the spectral radius of the iteration matrices [M(α, β)]−1 N (α, β). Then,

we have

1) if the iteration parameters α and β satisfy one of the following conditions

i) α > β ≥ 1,

ii) α < β ≤ 1,

iii) β > 1, α < 1, and αβ ≤ 1,

vi) β < 1, α > 1, and αβ ≥ 1,

v) α = β 6= 1,

then, ρP AH SS =
|α − 1|

α + 1
,
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2) if the iteration parameters α and β satisfy one of the following conditions

i) β > α ≥ 1,

ii) β < α ≤ 1,

iii) β > 1, α < 1, and αβ > 1,

iv) β < 1, α > 1, and αβ < 1,

then, ρP AH SS ≤
|β − 1|

β + 1
.

Proof. In order to complete the above proves, we first estimate the bounds of

λ̃ and λ (λ̃ and λ defined as in Theorem 2.1). As one of the conditions i), ii) or

iii) in Theorem 2.2 are satisfied, then, we easily obtain the following result

|λ̃| = |(αβ − 1)(αβ − σ 2
k ) ±

√
(α − β)2(αβ + σ 2

k )2 − 4αβσ 2
k (αβ − 1)2|

≤ |(αβ − 1)(αβ − σ 2
k )| +

√
(α − β)2(αβ + σ 2

k )2 − 4αβσ 2
k (αβ − 1)2

≤ |(αβ − 1)(αβ − σ 2
k )| +

√
(α − β)2(αβ + σ 2

k )2

≤ |(αβ − 1)(αβ + σ 2
k )| + |(α − β)(αβ + σ 2

k )|.

Further, we obtain

|λ| =
|λ̃|

(α + 1)(β + 1)(αβ + σ 2
k )

≤
|(αβ − 1)(αβ + σ 2

k )| + |(α − β)(αβ + σ 2
k )|

(α + 1)(β + 1)(αβ + σ 2
k )

=
|αβ − 1| + |α − β|

(α + 1)(β + 1)
.

(17)

If 0 < α, β < 1, or α, β > 1, and σk ∈ [σ−, σ+],(k = 1, 2, . . . , m), (σ−, σ+

defined as in Theorem 2.2), it is obvious that

|λ̃| =

√

(αβ − 1)2(αβ − σ 2
k )2 +

[√
4αβσ 2

k (αβ − 1)2 − (α − β)2(αβ + σ 2
k )2

]2

=
√

(αβ − 1)2(αβ + σ 2
k )2 − (α − β)2(αβ + σ 2

k )2

=
√

(α2 − 1)(β2 − 1)(αβ + σ 2
k )2.
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Further, we have

|λ| =

√
(α − 1)(β − 1)

(α + 1)(β + 1)
. (18)

Secondly, since f1(x) = x−1
1+x (x > 1) and f2(x) = 1−x

1+x (0 < x < 1) are

monotone increasing function and monotone decreasing function, respectively,

then

β − 1

1 + β
<

α − 1

1 + α
, with β < α, (19)

and

1 − α

1 + α
<

1 − β

1 + β
, with α > β. (20)

According to Theorem 2.1, the iteration matrices [M(α, β)]−1 N (α, β) have

n −m eigenvalues α−1
α+1 . Then, for any other eigenvalues of the iteration matrices,

we complete the proves of the conclusions in 1) by the following four cases:

(i) If α > β ≥ 1, then, by (17), we obtain

|λ| ≤
|αβ − 1| + |α − β|

(α + 1)(β + 1)
=

αβ − 1 + β − α

(α + 1)(β + 1)
=

α − 1

1 + α
,

and by (18), we have

|λ| =

√
(α − 1)(β − 1)

(α + 1)(β + 1)
≤

α − 1

1 + α
(by (19)).

(ii) If α < β ≤ 1, then, by (17), we have

|λ| ≤
|αβ − 1| + |α − β|

(α + 1)(β + 1)
=

1 − αβ + β − α

(α + 1)(β + 1)
=

1 − α

1 + α
, (21)

and by (18), we get

|λ| =

√
(1 − α)(1 − β)

(α + 1)(β + 1)
≤

1 − α

1 + α
(by (20)).

(iii) If β > 1, α < 1, and αβ ≤ 1, or β < 1, α > 1, and αβ > 1, by (17), the

inequality (21) can be straightforwardly obtained.
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(iv) If α = β 6= 1, according to (18), we have

|λk±| =

√
(α2 − 1)2(α2 − σ 2

k )2 + 4α2σ 2
k (α2 − 1)2

(α + 1)2(α2 + σ 2
k )

=
|α − 1|

1 + α
.

Therefore, combining the above proves, we obtain

ρP AH SS =
|α − 1|

α + 1
.

It is similar to prove the conclusion in 2). Therefore, we complete the

proves. �

Corollary 2.1. Let the conditions of Theorem 2.1 be satisfied. ρP AH SS de-

fined as in Theorem 2.3. To solve the generalized saddle point problem (1), the

PAHSS method unconditionally converges to the unique solution for any posi-

tive iteration parameters α and β, i.e.,

ρP AH SS < 1.

Proof. According to Theorem 2.3, we straightforwardly obtain the above re-

sult. �

Remark 2.1. According to Theorem 2.3, on the one hand, as the iteration

parameters α and β approach 1, the spectral radius ρP AH SS approximates to 0,

on the other hand, when the iteration parameter α is fixed, for different value β,

we have

ρP AH SSmin =
|α − 1|

α + 1
,

where we denote by ρP AH SSmin the smallest spectral radius of the iteration ma-

trix [M(α, β)]−1 N (α, β) with different value β. �

In the following, we study the spectral properties of the preconditioned ma-

trix. Since

M(α, β)−1 A(α, β) = I − M(α, β)−1 N (α, β),
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then

λ[M(α, β)−1 A(α, β)] = 1 − λ[M(α, β)−1 N (α, β)], (see e.g., [3]).

Thus

λ[M(α, β)−1 A(α, β)] = 1 −
α − 1

α + 1
=

2

α + 1
, (22)

with multiplicity n − m, the remainder eigenvalues of the preconditioned matri-

ces are

λ[M(α, β)−1 A(α, β)] = 1 −
(αβ − 1)(αβ − σ 2

k ) ± 0k

(α + 1)(β + 1)(αβ + σ 2
k )

=
αβ(αβ + α + β + 2) + (2αβ + α + β)σ 2

k ± 0k

(α + 1)(β + 1)(αβ + σ 2
k )

,

where

0k =
√

(α − β)2(αβ + σ 2
k )2 − 4αβσ 2

k (αβ − 1)2, k = 1, 2, . . . , m.

For the convenience of our statements, we denote

λ̂k+ =
αβ(αβ + α + β + 2) + (2αβ + α + β)σ 2

k + 0k

(α + 1)(β + 1)(αβ + σ 2
k )

, (23)

and

λ̂k− =
αβ(αβ + α + β + 2) + (2αβ + α + β)σ 2

k − 0k

(α + 1)(β + 1)(αβ + σ 2
k )

. (24)

According to the above analysis, we obtain the following results:

To generalized saddle point problem (1), Bai [16] proved the preconditioned

matrix [M(α, β)]−1 A is positive stable (c f . [20] for the definition of positive

stable matrix). In the following, we also obtain the same property.

Theorem 2.4. Let the conditions of Theorem 2.1 be satisfied. Then, for any

positive constants α and β, the real parts of λ̂k− and λ̂k+ (k = 1, 2, . . . , m) are

all positive, i.e., the preconditioned matrices [M(α, β)]−1 A(α, β) are positive

stable.
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Proof. Obviously, 2
α+1 is positive real. Denote by Re(λ̂) the real part of λ̂, if

0 < α, β < 1 or α, β > 1 and α 6= β, for any k = 1, 2, . . . , m, σk ∈ [σ−, σ+],

then according to (23) or (24), we get

Re(λ̂) ≥ 0.

If α and β meet one of the cases i), ii) or iii) in Theorem 2.2, then, we have

(α − β)2(αβ + σ 2
k )2 − 4αβσ 2

k (αβ − 1)2 ≥ 0.

Thus

Re(λ̂k±) = λ̂k± .

Obviously

Re(λ̂k+) ≥ 0.

According to (24), we obtain

λ̂k− =
αβ(αβ + α + β + 2) + (2αβ + α + β)σ 2

k − 0k

(α + 1)(β + 1)(αβ + σ 2
k )

≥
αβ(αβ + α + β + 2) + (2αβ + α + β)σ 2

k −
√

(α + β)2(αβ + σ 2
k )2

(α + 1)(β + 1)(αβ + σ 2
k )

=
2αβ(σ 2

k + 1)

(α + 1)(β + 1)(αβ + σ 2
k )

> 0,

i.e.,

Re(λ̂k−) ≥ 0.

Therefore, we complete the proof of Theorem 2.5. �

Theorem 2.5. Let λ̂k+ , and λ̂k− defined as in (23) and (24), respectively. Then,

we obtain the following properties of the eigenvalues of the preconditioned ma-

trices M(α, β)−1 A(α, β)
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1) As the iteration parameters α and β approximate to 1, all eigenvalues of

the preconditioned matrices M(α, β)−1 A(α, β) approach 1.

2) For any positive iteration parameters α and β, the moduluses of all eigen-

values of the preconditioned matrices M(α, β)−1 A(α, β) cluster in the

interval (0, 2).

Proof. According to Theorem 2.3 and Theorem 2.4, we can easily obtain the

above results. �

Further, we consider the general case with D being Hermitian positive semi-

definite, then, we generalize our conclusions by taking steps similar to those

taken in [3, Theorem 5.1]. Denote the Moore-Penrose generalized inverse of

B1 and D1 by B+
1 and D+

1 , respectively, and the positive singular values of the

matrix B+
1 E(D+

1 )∗ by σi (i = 1, 2, . . . , m). By the similar analysis, we can

obtained the similar results with the above spectral properties.

3 Numerical examples

In this section, we use two examples to illustrate the feasibility and effectiveness

of the PAHSS iteration method for the generalized saddle point problems. We

perform the numerical examples by using MATLAB with machine precision

10−16 and using

‖rk‖2/‖r0‖2 = ‖b − Ax (k)‖2/‖b‖2 < 10−6

as a stopping criterion, where rk is the residual at the kth iterate. Bai, Golub and

Pan [3] considered the Stokes problem:





−μ 4 u + 5ω = f̃ , in �,

5 ∙ u = g̃, in �,

u = 0, on ∂�,
∫
�

ω(x)dx = 0,

where � = (0, 1) × (0, 1) ⊂ R2, ∂� is the boundary of �, 1 is the componen-

twise Laplace operator, u is a vector-valued function representing the velocity,

and ω is a scalar function represeting the pressure. By discretizing the above

equation, linear system (1) be obtained with A ∈ R(3m2)×(3m2) and D = 0.
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Example 1 [3]. Consider the following linear system:

A =

(
B E

−E∗ D

)(
u

v

)

=

(
f

g

)

,

where

B =

(
I
⊗

T + T
⊗

I 0

0 I
⊗

T + T
⊗

I

)

∈ R2m2×2m2
,

E =

(
I
⊗

F

I
⊗

F

)

∈ R2m2×m2
,

and

T =
μ

h2
tr idiag (−1, 2, −1) ∈ Rm2×m2

,

F =
1

h
tridiag (−1, −1, 0) ∈ Rm2×m2

,

in this example, we assume

D =
(

I
⊗

T + T
⊗

I
)

∈ Rm2×m2
,

where h = 1
m+1 is the discretization meshsize,

⊗
is the Kronecker product sym-

bol. Then, we confirm the correctness and accuracy of our theoretical analysis

by solving the generalized saddle problem.

Example 2 [12]. Consider the following linear system:

A =

(
W F

−F T N

)

,

where W = (wk, j ) ∈ Rq×q , N = (nk, j ) ∈ Rn−q×n−q , F = ( fk, j ) ∈ R(n−q)×q

and 2q > n, where

wk, j =






k + 1, for j = k,

1, for |k − j | = 1, k, j = 1, 2, . . . , q,

0, otherwise,
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Figure 1 – The distribution of the eigenvalues of [M̃(α, β)]−1 Ã for Example 1.

nk, j =






k + 1, for j = k,

1 for |k − j | = 1, k, j = 1, 2, . . . , n − q,

0, otherwise,

fk, j =

{
j, for k = j + 2q − n,

0, otherwise,
k = 1, 2, . . . , q, j = 1, 2, . . . , n − q.

In Figures 1, 2, 4 and 5, for different iteration parameters α and β, we depict

the distribution on the eigenvalues of the preconditioned matrices [M̃(α, β)]−1 Ã.
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Figure 2 – The distribution of the eigenvalues of [M̃(α, β)]−1 Ã for Example 1.

From these images, we see that the eigenvalues λ of the preconditioned matrix

are quite clustered.

In Tables 1 and 2, we can know that the smallest real part Re(λ)min of the

eigenvalues of the preconditioned matrix [M̃(α, β)]−1 Ã are all positive, as the

iteration parameters α and β take different values. Further, we know that the real

parts of all eigenvalues of the preconditioned matrices are all positive, therefore,

we numerically verify the accuracy of the Theorem 2.4.
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Figure 3 – The relation of ρP AH SS , |α−1|
α+1 and |β−1|

β+1 for Example 1.
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μ 1 10

n 19 24

α 0.9 0.2 3 0.9 0.2 3

β 0.2 2 5 0.2 2 5

Re(λ)min 1.0526 0.6664 0.33 1.0526 0.6664 0.34

Table 1 – The smallest real parts of the eigenvalues of the preconditioned matrix.

n 2500 3000

q 1500 2000

α 0.9 0.2 3 0.9 0.2 3

β 0.2 2 5 0.2 2 5

Re(λ)min 0.7055 0.485 0.3339 0.8307 0.5097 0.3336

Table 2 – The smallest real parts of the eigenvalues of the preconditioned matrix.

In Figures 3 and 6, we plot the curves of the spectral radius denote by ρP AH SS ,
|α−1|
α+1 and |β−1|

β+1 with the change of β. From subfigure a, we know that ρP AH SS ≤
|β−1|
β+1 , as β ∈ [0.1, 0.5], ρP AH SS = |α−1|

α+1 , as β ∈ [0.5, 2], and ρP AH SS ≤ |β−1|
β+1 , as

β ∈ [2, 4], From subfigure b, we know that ρP AH SS ≤ |β−1|
β+1 , as β ∈ [0.1, 0.4],

ρP AH SS = |α−1|
α+1 , as β ∈ [0.4, 2.5], and ρP AH SS ≤ |β−1|

β+1 , as β ∈ [2.5, 4].

Therefore, through the two images, we verify the efficiency and accuracy of

Theorem 2.3.

In Tables 3 and 4, by using GMRES(l) (l = 5, 10, 20, 100) iterative methods

with PAHSS preconditioning, we compare between the preconditioner proposed

in this paper and the preconditioner in (5) by the iteration numbers (denote by

“IT”) and the solution of times in seconds (denote by “CPU”). From the two

tables, we can easily see that the superiority of the PAHSS iteration method is

very evident.
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m 8 12 16 20 24 28

PAHSS-GMRES(5) CPU 0.094 0.625 3.656 14.578 47.563 122.75

IT 7 5 7 8 6 7

AHSS-GMRES(5) CPU 0.250 4.578 31.954 89.234 408.265 886.438

IT 12 22 27 21 36 31

PAHSS-GMRES(10) CPU 0.078 0.485 2.969 12.047 38.313 102.125

IT 10 11 3 5 7 8

AHSS-GMRES(10) CPU 0.094 1.375 11.61 44.094 163 445.39

IT 10 11 11 7 15 12

PAHSS-GMRES(20) CPU 0.078 0.485 2.735 10.765 30.593 77.687

IT 17 11 12 13 13 14

AHSS-GMRES(20) CPU 0.078 0.921 6.453 27.547 89.641 213.891

IT 17 20 10 25 20 20

PAHSS-GMRES(100) CPU 0.078 0.484 2.625 10.50 30.141 76.781

IT 10 11 12 13 13 14

AHSS-GMRES(100) CPU 0.078 0.906 5.016 19.719 67.047 160.328

IT 17 20 22 25 30 30

Table 3 – Example 1: μ = 10, α = 0.5 and β = 2.2.

n 800 1000 1400 1600 1800 2000

q 500 600 800 1000 1200 1500

PAHSS-GMRES(5) CPU 4.594 8.171 22.609 28.047 53.860 135.578

IT 6 7 8 5 7 6

AHSS-GMRES(5) CPU 61.766 129.125 343.625 504.656 702.907 869.437

I T 29 31 33 37 43 43

PAHSS-GMRES(10) CPU 3.687 7.734 20.219 26.062 45.454 114.25

IT 4 5 6 4 10 9

AHSS-GMRES(10) CPU 56.969 117.422 299.219 441.328 644.203 805.25

IT 20 18 25 22 27 23

PAHSS-GMRES(20) CPU 3.703 6.984 17.688 22.891 47.422 118.062

IT 13 14 14 12 10 8

AHSS-GMRES(20) CPU 53.281 114.547 294.766 450.875 614.984 775.422

IT 23 13 21 25 21 13

PAHSS-GMRES(100) CPU 3.5 6.922 18.093 22.469 46.984 115.922

IT 13 14 14 13 10 9

AHSS-GMRES(100) CPU 35.453 76.031 204.547 310.625 409.828 507.25

IT 97 3 13 27 34 38

Table 4 – Example 2: μ = 10, α = 0.5 and β = 2.2.
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Figure 4 – The distribution of the eigenvalues of [M̃(α, β)]−1 Ã for Example 2.
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